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Abstract. In this paper we study a class of multilevel high order time discretization

procedures for the finite difference weighted essential non-oscillatory (WENO) schemes

to solve the one-dimensional and two-dimensional shallow water equations with source

terms. Multilevel time discretization methods can make full use of computed informa-

tion by WENO spatial discretization and save CPU cost by holding the former computa-

tional values. Extensive simulations are performed, which indicate that, the finite dif-

ference WENO schemes with multilevel time discretization can achieve higher accuracy,

and are more cost effective than WENO scheme with Runge-Kutta time discretization,

while still maintaining nonoscillatory properties.
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Key words: Multilevel time discretization, weighted essentially non-oscillatory schemes, shallow
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1. Introduction

In this paper, the finite difference weighted essential non-oscillatory (WENO) schemes

with linear multilevel time discretizations are used to simulate discontinuous flows of the

shallow water equations with source terms. The numerical solutions are compared with

those of WENO schemes with Runge-Kutta time discretizations. We will be mainly address-

ing on cost CPU time and resolution.

WENO schemes were firstly developed from essential non-oscillatory (ENO) scheme,

which share many advantages with and usually perform better than TVD or TVB schemes,
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because they use an adaptive stencil trying to obtain information from the smoothest re-

gions. ENO schemes started with the classic paper of Harten, et al, in 1987 [8,9]. WENO

schemes use a convex combination of all candidate stencils instead of the one used as in

the original ENO. The first WENO scheme was constructed in 1994 by Liu et al. [13] for the

third order finite volume version in one space dimension. Then the third and the fifth order

finite difference WENO schemes in multi-space dimensions were constructed. With a gen-

eral framework for the design of smoothness indicators and nonlinear weights [11], higher

order WENO finite difference schemes up to the eleventh order were designed in [3], very

high order WENO schemes up to the seventeenth order were developed in [7], and WENO

schemes were generalized to triangle meshes [10]. WENO improves upon ENO in robust-

ness, better smoothness of fluxes, better steady convergence, better provable convergence

properties, and more efficiency [17].

WENO is a procedure of spatial discretization; namely, it is a procedure to approximate

the spatial derivative terms. It forms a very important class of high accuracy numerical

methods [11,13], leading to a class of high order finite difference or finite volume methods

for hyperbolic conservation laws [2, 20]. They give sharp, non-oscillatory discontinuity

transitions and at the same time provide high order accurate resolutions for the smooth

part of the solution [4,21].

For time-dependent problems, we need accuracy of time discretization as well. There

are mainly two different approaches to approximate the time derivative [14, 18]. One

way is via the classical Lax-Wendroff procedure, which relies on converting all the time

derivatives in a temporal Taylor expansion into spatial derivatives, then discretizing the

spatial derivatives, so it is also called the Taylor type. The approach can produce the

same high order accuracy with a smaller effective stencil. The other way is to use a high

order ODE solver, such as Runge-Kutta method or multilevel type. The approach has the

advantages of simplicity in concept and in coding and they are easily generalizable to

multidimensional problems. Runge-Kutta method is commonly used, but the method costs

more CPU time, as for every time step it must iterate k times for the k-th order Runge-Kutta

method. Multilevel time discretization methods can make full use of given information

with spatial discretization. Stencils of multilevel time discretization are more compact

than that of Runge-Kutta methods, since we communicate only with immediate neighbors

of cell i to computed un+1
i

from un
i
, and the CFL number of multilevel method is smaller

than that of Runge-Kutta method, while they need the same memory of the cells. Linear

multilevel methods are the most commonly used in multilevel procedures.

In this paper, the fifth order WENO finite difference schemes with multilevel type time

discretization are used to solve the one-dimensional and two-dimensional shallow water

equations. We follow the ideas of Jiang and Shu about the WENO schemes [11], Rogers et

al. [16] and Xing and Shu [19] about the balance of the flux and the source terms of shal-

low water equations, and linear multilevel time discretization. This paper is organized as

follows. In Section 2, we describe the discretization and numerical method of the shallow

water equations. Numerical examples are given to demonstrate the advantages of main-

taining high order accuracy, the resolution and cost effective of the constructed schemes in

Section 3. Concluding remarks are included in Section 4.
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2. Description of numerical model and numerical method

2.1. The governing equations

The two-dimensional conservative unsteady shallow water equations are

Ut + F(U)x + G(U)y = S(U), (2.1)

with

U = [D,uD, vD]T , F(U) = [uD,u2D+ gD2/2,uvD]T ,

G(U) = [vD,uvD, v2D+ gD2/2]T ,

and the source terms

S(U) = [0,−gDbx ,−gDby]
T , (2.2)

where D is the total water depth, u and v are the depth-averaged velocities in the x− and

y− directions, respectively, t is the time; g is the gravitational acceleration, bx and by are

the bed slopes stresses, b is the bottom function. Other terms could also be added into

source terms in order to include effects such as friction on the bottom and Coriolis terms.

We write the shallow water equations in quasi-linear form as follows

Ut + A(U)Ux + B(U)Uy = S(U), (2.3)

where

A(U) =
∂ F

∂ U
=







0 1 0

c2 − u2 2u 0

−uv v u






, B(U) =

∂ G

∂ U
=







0 0 1

−uv v u

c2 − v2 0 2v






,

c =
p

gD is the propagation speed of the shallow water wave. The eigenvalues of Jabo-

bians A and B are

λ(A) = u− c,u,u+ c, λ(B) = v − c, v, v + c;

respectively. The corresponding right and left eigenvectors of Jacobin A and B as follow:

RA =







1 0 1

u− c 0 u+ c

v 1 v






, LA =







u+c

2c
− 1

2c
0

−v 0 1

−u−c

2c

1

2c
0






, (2.4)

RB =







1 0 1

u 1 u

v − c 0 v + c






, LB =







v+c

2c
0 − 1

2c

−u 1 0

− v−c

2c
0 1

2c






. (2.5)
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2.2. Description of the fifth order finite difference WENO schemes

We solve the spatial derivative of the shallow water equations using the finite difference

formulation. In this section, we give a short overview for one-dimensional scalar hyperbolic

conservation law as (2.6),

ut + f (u)x = 0. (2.6)

The two-dimensional cases procedure in a dimension-by-dimension fashion, for more de-

tails, we refer to [11].

Denote Ii = [x i− 1

2

, x i+ 1

2

] be the ith cell, centered on x i, we assume that the grid points

are uniform with ∆x = x i+1− x i. For a finite difference scheme, we evolve the point value

ui at mesh points x i in time. The spatial derivative f (u)x is approximated by a conservative

flux difference

f (u)x |xi
≈

1

∆x
( f̂i+ 1

2
− f̂i− 1

2
).

For a (2r − 1)th order WENO scheme, the numerical flux f̂ is computed through r neigh-

boring point values f ± by f̂ = f̂ + + f̂ −. We use Lax-Friedrichs splitting as

f ±(u) =
1

2

�

f (u)±αu
�

,

where α is taken as α=maxu | f
′(u)|.

Let fi = f +(ui). For example, the fifth order WENO scheme (r = 3), the 3 numerical

fluxes are given by

f̂
(0)

i+ 1

2

=
1

3
fi +

5

6
fi+1 −

1

6
fi+2,

f̂
(1)

i+ 1

2

= −
1

6
fi−1 +

5

6
fi +

1

3
fi+1,

f̂
(2)

i+ 1

2

=
1

3
fi−2 −

7

6
fi−1 +

11

6
fi.

The next is to compute the smoothness indicators and the nonlinear weights. The

(2r − 1)th order WENO flux is a convex combination of all these r numerical fluxes

f̂ +
i+ 1

2

=

r−1
∑

m=0

ωm f̂
(m)

i+ 1

2

.

The nonlinear weights ωm are defined in the following way:

ωm =
αm
∑r−1

s=0 αs

, αs =
ds

(ǫ+ βs)
2

,

where ds are the linear weights which yield (2r − 1)th order accuracy, βs are the so-called

"smoothness indicators", which measure the smoothness of those polynomials. ǫ is a small
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positive constant used to avoid the denominator to become zero and is typically taken as

10−6. For the fifth order WENO scheme, the linear weights ds are given by

d0 =
3

10
, d1 =

3

5
, d2 =

1

10
,

and the smoothness indicators βs are given by

β0 =
13

12
( fi − 2 fi+1 + fi+2)

2+
1

4
(3 fi − 4 fi+1 + fi+2)

2,

β1 =
13

12
( fi−1 − 2 fi + fi+1)

2+
1

4
( fi−1 − fi+1)

2,

β2 =
13

12
( fi−2 − 2 fi−1 + fi)

2+
1

4
( fi−2 − 4 fi−1 + 3 fi)

2.

f̂ − can be computed with mirror symmetry procedure to that of f̂ +
i+1/2

with respect to

x i+1/2. For the shallow water equations, we use the local characteristic decomposition,

which is more robust than a component by component. The right eigenvectors and the left

eigenvectors of the Jacobian A and B and Roe’s average are needed for the local character-

istic decomposition.

2.3. Balance of the flux and the source terms

Here we adopt the ideas of Rogers et al. [16] about the balance of the flux and the

source terms, they presented an algebraic technique for balancing the flux gradients and

the source terms. The numerical imbalance is eradicated by reformulating the govern-

ing matrix hyperbolic system of conservation laws in terms of deviations away from an

unforced but separately specified equilibrium state. Thus, balancing is achieved by the in-

corporation of this extra physical information and bypasses conventional numerical treat-

ments of the imbalance.

The vector of conserved variables U is given by

U = U eq + Ũ , (2.7)

where Ũ is the deviation of U from the equilibrium or still water value such that ∂ U eq/∂ t =

0. Actually, for still water values, the shallow water convenient properties ζ = u = v = 0,

and

U eq = [h, 0,0]T , Ũ = U − U eq = [ζ,uD, vD]T ,

in which ζ is the free surface elevation above the still level h+ b, ζ is still water height,
D = ζ+ h is the total water depth. The shallow water equations are transformed to

∂ Ũ

∂ t
+
∂ [F(U)− F(U eq)]

∂ x
+
∂ [G(U)− G(U eq)]

∂ y
= S(U)−

∂ (F(U eq))

∂ x
−
∂ (G(U eq))

∂ y
, (2.8)

Ũt + F̃(U)x + G̃(U)y = S̃(U), (2.9)
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with

Ũ = [ζ,uD, vD]T , F̃ = [uD,u2D+ g(ζ2 + 2hζ)/2,uvD]T ,

G̃ = [vD,uvD, v2D+ g(ζ2 + 2hζ)/2]T ,

S̃(U) = [0,−gζbx ,−gζby]
T . (2.10)

We can see that the Jacobian matrixes Ã(U) and B̃(U) of (2.9) are same as A(U) and B(U)

of (2.1), and the discretization of the equations (2.9) is similar to that of (2.1).

The approach taken in the paper for some examples chosen are to use the still water

level as the datum h. It is perfectly reasonable to choose a fixed horizontal datum else-

where, and derive the balanced hyperbolic equations using a stage-discharge approach.

The scheme reduces to the original WENO scheme describe in the previous section when

the bottom is flat. In the thesis, straight forward treatments of the modified source terms

with its point values are used.

The scheme reduces to the original WENO scheme describe in the previous section

when the bottom is flat. In order to keep the high order accuracy of the WENO scheme

for the shallow water equations with source terms, inspired by Xing [19], we procedure

the source terms as follows. For the two-dimensional shallow water equations, we perform

the same WENO procedure to approximate the source terms, namely, we use the local

characteristic decomposition and the same nonlinear weights to the vector [0, b, 0]T in x−
direction and [0,0, b]T in y− direction to approximate the derivative in source terms, in

other words, one half of the derivative in source term is approximated by the operator

obtained from the computation of f + as described in Section 2.2, and the other half is

computed by the operator obtained from the computation of f − with biased stencils, so

the approximation to source terms is also a fifth order accuracy, and the method is suit to

problems with discontinuous bottom topography or the nonexistence derivative of bottom

function.

2.4. Description of a class of time discretizations

In this section, we describe shortly the construction of a class of multilevel time dis-

cretizations with the one-dimensional scalar hyperbolic conservation law as (2.6).

Denote ∆t be the time step, tn+1 = tn +∆t, let un be the approximation of the point

values u(tn), the linear multilevel time discretization, which are the most commonly used

in multilevel type, for ut = L(u) as follows:

un+1 =

m
∑

k=0

αkun−k + h

m
∑

k=−1

βk L(un−k), (2.11)

where h≈∆t, β−1 6= 0 means its a implicit formula, β−1 = 0 means its a explicit formula.

Taylor expansion or numerical integral methods are commonly used to construct linear

multilevel time discretization formula. The main idea of Taylor expansion method is as

follows: use Taylor expansion to every terms of linear multilevel formula at tn, the right



Simulations of Shallow Water Equations by Finite Difference WENO Schemes 511

hand terms in (2.11), compare it with Taylor expansion of u(tn+1) at tn and make those

anterior terms the same to fix parameters of αk and βk.

We list some frequently-used linear multilevel formulas as follows:

If m= 2:

un+1 = un+
h

12

�

23L(un)− 16L(un−1) + 5L(un−2)
�

, (2.12)

which is the third order explicit Adams formula;

un+1 = un +
h

24

�

9L(un+1) + 19L(un)− 5L(un−1) + L(un−2)
�

, (2.13)

which is the fourth order implicit Adams formula.

If m= 3:

un+1 = un +
h

24

�

55L(un)− 59L(un−1) + 37L(un−2)− 9L(un−3)
�

, (2.14)

which is the fourth order explicit Adams formula;

un+1 = un +
h

720

�

251L(un+1) + 646L(un)− 264L(un−1) + 106L(un−2)− 19L(un−3)
�

, (2.15)

which is the fifth order implicit Adams formula.

In the same way, we can get linear multilevel formulas as follows:

Milne formula:

un+1 = un−3 +
4h

3

�

2L(un)− L(un−1) + 2L(un−2)
�

; (2.16)

Hamming formula:

un+1 =
1

8

�

9un− un−2
�

+
3h

8

�

L(un+1) + 2L(un)− L(un−1)
�

; (2.17)

Simpson formula:

un+1 = un−1 +
h

3

�

L(un+1) + 4L(un) + L(un−1)
�

. (2.18)

It is difficult to use implicit formula with WENO scheme for hyperbolic equation, since

shocks may be generated. A great point of multilevel type is need of other initial value

except for initial data, which is not need for single step type of Lax-Wendroff type. We

can get initial values of multilevel scheme using single step methods with the same order

accuracy, such as Runge-Kutta method. In this paper, the third order TVD Runge-Kutta

method is used for the initial values of the third order explicit formula, the fourth order

Runge-Kutta method is used for the initial values of the fourth order explicit formula to

keep high order accuracy. The third order TVD version and the fourth order version for

ut = L(u) are given respectively by

u(1) = un +∆t L(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆t L(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆t L(u(2)); (2.19)
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and

u(1) = un +
1

2
∆t L(un),

u(2) = un +
1

2
∆t L(u(1)),

u(3) = un +∆t L(u(2)),

un+1 =
1

3

�

− un + u(1) + 2u(2) + u(3)
�

+
1

6
∆t L(u(3)). (2.20)

3. Numerical results

In this section, we perform numerical experiments to test the performance of the fifth

order finite difference WENO schemes with different linear multilevel time discretization

developed in the previous section, such as the third order explicit Adams multilevel type

and the fourth order explicit Adams multilevel type. In this section, we mainly give the

results of WENO scheme with the third order explicit Adams multilevel time discretization

for the shallow water equations to save space, as the Figures are similar. We denote the

module with WENO5-AD3, and compare the results with that of the fifth order WENO

schemes with the third order TVD Runge-Kutta time discretization, which we denote with

WENO5-RK3, addressing on the important issue of cost CPU time and relevant efficiency,

both one-dimensional and two-dimensional shallow water equations are studied. We also

use the abbreviations of WENO5-AD4 and WENO5-RK4.

For CPU time comparison, all the computations are performed on a personal computer,

Core (TM) 2 Duo CPU P8600 @ 2.4 GHz with 4 GB ram. In our numerical experiments,

the gravitation constant is taken as 9.812 m/s2; the small positive constant in the WENO

weight formula is taken as ǫ = 10−6, except for the special test. We did stability analysis of

linear WENO5-AD3 and WENO5-AD4 for ut + ux = 0 using standard Fourier analysis, and

the CFL number of WENO5-AD3 and WENO5-AD4 are about 0.52 and 0.31, respectively. so

the CFL number is taken as 0.35 for WENO5-AD3 schemes, 0.21 for WENO5-AD4 schemes,

and 0.8 for WENO5-RK3 and WENO5-RK4 schemes, which are about 80% of the biggest

numbers. Uniform meshes are used.

Example 3.1. An one-dimensional accuracy test over a sinusoidal hump [5,13]. To check

the order accuracy of the schemes for a smooth solution of the one-dimensional shallow

water equations, we use the same test in [19]. In the domain [0,1], the bottom topography

is given by

b(x) = sin2(2πx),

the initial data are given by

D(x , 0) = 5+ ecos(2πx),

(Du)(x , 0) = sin(cos(2πx)).
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We take the still water height h as h= 5− b(x). We compute up to time t = 0.1 s when

there is no shocks in the solution, with a 2-periodic boundary conditions. The reference

solution is computed with the same scheme and 25600 points, since the exact solution is

unknown.Table 1: L1 errors and numeri
al orders of a

ura
y for the one-dimensional order test, WENO5-AD3 and WENO5-RK3 using N spa
e points.
N

WENO5-AD3 WENO5-RK3

D Du D Du

L1 error order L1 error order L1 error order L1 error order

25 1.458E-2 1.180E-1 1.457E-2 1.180E-1

50 2.093E-3 2.80 2.220E-2 2.41 2.093E-3 2.80 2.219E-2 2.41

100 3.285E-4 2.67 2.935E-3 2.92 3.285E-4 2.67 2.935E-3 2.92

200 2.308E-5 3.83 2.022E-4 3.86 2.308E-5 3.83 2.022E-4 3.86

400 9.346E-7 4.63 8.081E-6 4.65 9.349E-7 4.63 8.083E-6 4.64

800 3.206E-8 4.87 2.758E-7 4.87 3.207E-8 4.87 2.759E-7 4.87

1600 1.038E-9 4.95 8.947E-9 4.95 1.040E-9 4.95 8.967E-9 4.94Table 2: L∞ errors and numeri
al orders of a

ura
y for the one-dimensional order test, WENO5-AD3 and WENO5-RK3 using N spa
e points.
N

WENO5-AD3 WENO5-RK3

D Du D Du

L∞ error order L∞ error order L∞ error order L∞ error order

25 7.038E-2 6.264E-1 7.034E-2 6.261E-1

50 1.743E-2 2.01 1.685E-1 1.89 1.743E-2 2.01 1.685E-1 1.89

100 4.324E-3 2.01 3.664E-2 2.20 4.323E-3 2.01 3.664E-2 2.20

200 5.147E-4 3.07 4.743E-3 2.95 5.147E-4 3.07 4.743E-3 2.95

400 2.885E-5 4.16 2.554E-4 4.22 2.884E-5 4.16 2.554E-4 4.22

800 1.034E-6 4.80 8.788E-6 4.86 1.034E-6 4.80 8.787E-6 4.86

1600 3.260E-8 4.99 2.767E-7 4.99 3.256E-8 4.99 2.764E-7 4.99

In Table 1, the L1 numerical errors and orders of accuracy by WENO5-AD3 and WENO5-

RK3 for water depth D and the discharge Du are displayed for comparison, where N is the

number of points. The L∞ numerical errors and orders of accuracy by WENO5-AD3 and

WENO5-RK3 are shown in Table 2. We can see that the fifth order accuracy are almost

achieved for both WENO5-AD3 and WENO5-RK3 schemes; they produce similar numerical

errors and orders of accuracy.

In Fig. 1, we give the L1 and L∞ numerical errors for D and Du and CPU time when

space points numbers are N=25, 50, 100, 200, 400, 800, 1600, and Log scale for both

numerical errors and CPU time are used. We can see that the line of WENO5-AD3 always

at the bottom of the line of WENO5-RK3, which means that to get the same numerical
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Figure 1: LogNumericaler rors
10

and LogC PU t ime
10

by WENO5-AD3 and WENO5-RK3 with N =

25,50,100,200,400,800,1600 
ell points for the one-dimensional order test. Top: L1 errors.Bottom: L∞ errors.
error, WENO5-RK3 costs more CPU time. Moreover, WENO5-AD3 has more superiority

when the cell number is bigger, about 80% of WENO5-RK3 for the total CPU time.

The numerical errors and orders of WENO5-AD4 and WENO5-RK4 are similar, the cost

CPU time of WENO5-AD4 is 59.8s, while that of WENO5-RK4 is 65.7s.

For this test, we also simulated flows with WENO5 and the fourth order explicit Milne

formula. The results of orders of accuracy are given in Tables 3 and 4, and the numerical

errors and the cost CPU time used are displayed in Fig. 2. We can see that the results are

similar to that of WENO5-AD4 and better than that of WENO5-RK4.
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al orders of a

ura
y for the one-dimensional order test, WENO5-Milne and WENO5-RK4 using N spa
e points.
N

WENO5-Milne WENO5-RK4

D Du D Du

L1 error order L1 error order L1 error order L1 error order

25 1.459E-2 1.181E-1 1.458E-2 1.180E-1

50 2.097E-3 2.80 2.222E-2 2.41 2.093E-3 2.80 2.220E-2 2.41

100 3.285E-4 2.67 2.936E-3 2.92 3.287E-4 2.67 2.936E-3 2.92

200 2.307E-5 3.83 2.022E-4 3.86 2.308E-5 3.83 2.022E-4 3.86

400 9.304E-7 4.63 8.040E-6 4.65 9.350E-7 4.63 8.085E-6 4.64

800 3.178E-8 4.87 2.719E-7 4.89 3.207E-8 4.87 2.759E-7 4.87

1600 1.189E-9 4.74 9.557E-9 4.83 1.040E-9 4.95 8.967E-9 4.94Table 4: L∞ errors and numeri
al orders of a

ura
y for the one-dimensional order test, WENO5-Milne and WENO5-RK4 using N spa
e points.
N

WENO5-Milne WENO5-RK4

D Du D Du

L∞ error order L∞ error order L∞ error order L∞ error order

25 7.050E-2 6.271E-1 7.038E-2 6.257E-1

50 1.745E-2 2.01 1.686E-1 1.89 1.744E-2 2.01 1.685E-1 1.89

100 4.332E-3 2.01 3.671E-2 2.20 4.323E-3 2.01 3.664E-2 2.20

200 5.150E-4 3.07 4.746E-3 2.95 5.149E-4 3.07 4.745E-3 2.95

400 2.891E-5 4.16 2.559E-4 4.21 2.885E-5 4.16 2.555E-4 4.22

800 1.042E-6 4.79 8.854E-6 4.85 1.034E-6 4.80 8.786E-6 4.86

1600 3.468E-8 4.91 2.936E-7 4.91 3.256E-8 4.99 2.764E-7 4.99

Example 3.2. Test for the exact C-property. In this test case [15,19], the bottom is defined

with

b(x) = 5e−
2

5
(x−5)2 , x ∈ [0,1],

the initial water height is defined as D(x) = 1− b(x), and the initial velocity u is defined

as zero. The surface should remain flat. The terminal time is taken as t = 0.5s.

We take the still level h as h = 1− b(x). In Table 5, L1 and L∞ errors of water height

D and the discharge Du for WENO5-AD3 and WENO5-RK3 are displayed respectively with

different meshes. The results obviously confirm the theoretical predictions. The accuracy

is quite satisfactory. We run 100 times as the CPU time, the cost CPU time is 17.84s

for WENO5-AD3, and 23.82s for WENO3-RK3 when space points number is 500. The

corresponding CPU time is 31.02s for WENO5-AD4 and 33.47s for WENO5-RK4.

Example 3.3. Dam break on a flat bed. The dam-break problem is the most common test

to evaluate the performance of shock capturing schemes in shallow flows, see, e.g. [15].
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Figure 2: LogNumericaler rors
10

and LogC PU t ime
10

by WENO5-Milne and WENO5-RK4 with N =

25,50,100,200,400,800,1600 
ell points for the one-dimensional order test. Top: L1 errors.Bottom: L∞ errors.
The bottom is flat b(x) = 0 and the initial conditions are taken as:

D(x , 0) =

¨

D1, x < 0,

D2, x ≥ 0,
(Du)(x , 0) = 0. (3.1)

We take the computational domain as [−1,1], D1 = 1m and D2 = 0.1m. The simulation is

performed up to time t = 0.1s.

The water depth D and the discharge Du using the WENO5-AD3 and WENO5-RK3

schemes on a mesh with 200 points and exact solution are plotted in Fig. 3, which show

very good agreement with the exact solution [6], and no spurious oscillations occurred. We



Simulations of Shallow Water Equations by Finite Difference WENO Schemes 517Table 5: L1 and L∞ errors for the stationary solution, WENO5-AD3 and WENO5-RK3 using Nspa
e points.
N

WENO5-AD3 WENO5-RK3

D Du D Du

L1 L∞ L1 L∞ L1 L∞ L1 L∞

500 6.82E-16 1.78E-15 5.89E-15 3.04E-14 1.24E-15 3.55E-15 7.25E-15 3.03E-14

200 1.47E-15 5.33E-15 1.51E-14 6.59E-14 2.75E-15 7.11E-15 2.19E-14 5.56E-14

100 6.57E-16 3.55E-15 6.14E-15 1.85E-14 1.03E-15 3.55E-15 1.46E-14 3.02E-14
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Figure 3: Dam break on a �at bed by WENO5-AD3 and WENO5-RK3. Left: water depth; Right:dis
harge.
run 100 times as the CPU time for every program, the CPU time is 1.83s for WENO5-AD3,

2.26s for WENO5-RK3, while the CPU time is 2.85s for WENO5-AD4, 3.11s for WENO5-

RK4.

Example 3.4. A small perturbation of steady-state water. This is a classical example to

show the capability of the proposed scheme for the perturbation of the stationary state

[19]. In the domain [0,2], the bottom topography is given by the function

b(x) =

(

0.25
�

cos(10π(x − 1.5))+ 1
�

, 1.4≤ x ≤ 1.6,

0, otherwise,

the initial data are given by

D(x , 0) =

¨

1− b(x)+ β , 1.1≤ x ≤ 1.2,

1− b(x), otherwise,
(Du)(x , 0) = 0.
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Here the small pulse β = 0.001. Fig. 4 displays the surface level by WENO-AD3 and

WENO5-AD4 with ǫ = 10−6 and ǫ = 10−12, which verified the results of the relative

bigger ǫ have oscillation, WENO5-RK3 and WENO5-RK4 are also sensitive to the value

of ǫ. For this small pulse problem, we take ǫ = 10−12 in the weight formulas for WENO

schemes, as 10−6 is not small enough relatively, and maybe interfere the resolution of small

pulse. Fig. 5 displays the left and right-going waves of the small pulse by WENO5-AD3 and

WENO5-RK3. Reference solutions are computed by WENO5-RK3 with 3000 points. We can

clearly see that there are no spurious numerical oscillations produced by both WENO5-

AD3 scheme and WENO5-RK3 scheme with 200 points, and the results are comparable
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Figure 4: Results of surfa
e level with ǫ = 1E−6 and ǫ = 1E−12. Left: by WENO5-AD3; Right:by WENO5-AD4.
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on resolution. We run 100 times for every program as the CPU time to the small pulse

problem, the cost CPU time for WENO5-AD3 schemes is 2.73s, for WENO5-RK3 schemes is

3.45s, while the cost CPU time for WENO5-AD4 schemes is 4.18s, for WENO5-RK4 schemes

is 4.63s.

Example 3.5. An two-dimensional accuracy test. To check the numerical accuracy for the

two-dimensional shallow water equations we use the same test in [19]. On the unit square

[0,1]× [0,1], the bottom topography is given by

b(x , y) = sin(2πx)+ cos(2πy),

and the initial data are given by

D(x , y, 0) = 10+ esin(2πx) cos(2πy),

(Du)(x , y, 0) = sin(cos(2πx)) sin(2πy),

(Dv)(x , y, 0) = cos(2πx) cos(sin(2πy)).

We take the still water height h as h = 10 − b(x , y). We compute up to time t =

0.05s when there is no shocks in the solution, with 4-periodic boundary conditions. The

reference solution is computed with the same scheme and 1600 cells in x -direction and

y-direction separately, since the exact solution is unknown.Table 6: An two-dimensional a

ura
y test. L1 errors and numeri
al orders of a

ura
y by theWENO5-AD3 s
heme.
N

D Du Dv

L1 error order L1 error order L1 error order

25× 25 1.189E-2 3.725E-2 9.952E-2

50× 50 1.427E-3 3.06 2.789E-3 3.74 1.338E-2 2.89

100× 100 1.021E-4 3.81 1.554E-4 4.16 9.542E-4 3.81

200× 200 5.211E-6 4.29 7.306E-6 4.40 4.802E-5 4.31

400× 400 2.038E-7 4.73 2.958E-7 4.63 1.847E-6 4.70Table 7: An two-dimensional a

ura
y test. L∞ errors and numeri
al orders of a

ura
y by theWENO5-AD3 s
heme.
N

D Du Dv

L∞ error order L∞ error order L∞ error order

25× 25 9.597E-2 1.145E-1 1.014E-0

50× 50 2.507E-2 1.94 2.261E-2 2.68 2.764E-1 1.88

100× 100 4.138E-3 2.60 2.692E-3 3.07 4.201E-2 2.72

200× 200 3.435E-4 3.59 1.905E-4 3.82 3.230E-3 3.70

400× 400 1.719E-5 4.32 9.807E-6 4.28 1.791E-4 4.17
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In Tables 6 and 7, the L1 and L∞ errors and orderly accuracy for water depth D, the

discharge Du and Dv obtained by using WENO5-AD3 scheme are displayed, where N is

the cell number. We can see that the fifth order of accuracy are almost achieved for the

WENO5-AD3 schemes.

Example 3.6. Test for the exact C-property in two dimensions. To check the exact C-

property in two-dimensional flow over a non-flat bottom, we use the following test case

[15,19], namely the bottom is defined with

b(x , y) = 0.8e−50((x−0.5)2+(y−0.5)2), x , y ∈ [0,1],

and same to the one-dimensional case, the initial water height is defined as D(x , y) =

1− b(x , y), and the initial velocity u, v are defined as zero. The surface should remain flat.

The terminal time is taken as t = 0.1s.Table 8: L∞ errors for the a

ura
y for the stationary solution in two-dimensionals, WENO5-AD3and WENO5-RK3 using N 
ells.
N

WENO5-AD3 WENO5-RK3

D Du Dv D Du Dv

100× 100 2.22E-14 6.72E-13 1.12E-13 2.22E-14 6.72E-13 8.79E-13

50× 50 2.22E-14 3.51E-13 6.15E-13 2.22E-14 3.30E-13 4.21E-13

10× 10 4.44E-14 5.40E-14 6.37E-14 2.22E-14 4.27E-14 8.14E-14

We take the still level h as h = 1− b(x , y). In Table 8, L∞ errors for the water height

D and the discharge Du, Dv for WENO5-AD3 and WENO5-RK3 are presented respectively

with different meshes. The results are at the level of 1E − 14, and obviously are round off

errors, verifying the exact C-property. The cost CPU time is 1.54s for WENO5-AD3, and

1.73s for WENO3-RK3 when cell number is 100× 100.

Example 3.7. Asymmetric break of dam. We consider the sudden break of a dam separat-

ing two basins with the surface level of 5m (downstream) and 10m (upstream). The dam

breaks asymmetrically at time t = 0 when velocity are zero. We simulate the test case until

time t = 7.2s. The length of the breach is 75m and it starts at y = 95. Reflection boundary

conditions are applied on all the edges of the domain. Fig. 6 shows the description and the

initial conditions of the test case.

The contours of the surface level and velocity vectors computed by WENO5-AD3 and

WENO5-RK3 on a meshes with 200× 200 cells are shown in Fig. 7. We can see in the

figures that the right moving water of upstream from propagate to the downstream up and

down, and suction wave propagate to the upstream, two asymmetric spiral vortexes are

formed because the great velocity and the reflection of wave on the upper wall on both

side of breach. The results by WENO5-AD3 and WENO5-RK3 are similar, and our results

are similar to other results presented in the literature greatly, e.g. [1,6,15]. The cost CPU

time for WENO5-AD3 is 29.9s, for WENO5-RK3 is 34.5s.
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Example 3.8. A small perturbation of steady-state water in two dimensions. This is a

classical example to show the capability of the proposed scheme for the perturbation of

the stationary state for the two-dimensional shallow water flows [12,16]. In this case, the

bottom topography is given by the function

b(x , y) = 0.8e−5(x−0.9)2−50(y−0.5)2 , x , y ∈ [0,2]× [0,1].
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The initial surface level and initial velocity are given by

D(x , y) =

¨

1− b(x , y) + 0.01, 0.05≤ x ≤ 0.15,

1− b(x , y), otherwise,
u(x , y, 0) = v(x , y, 0) = 0.

The absorbing extrapolation boundary conditions of left and right boundary are used, and

the reflection boundary condition is used for up and down solid wall boundary.

We take the still water height h as h = 1 − b(x , y). Fig. 8 displays the right-going

disturbance as it propagates the bottom hump on a mesh with 200×100 cells, the contours

of the surface level D + b are presented at different time 0.12s, 0.24s, 0.36s, 0.48s. The

results are in good agreement with other published results and indicate that the scheme

can resolve the complex small features of the flow very well. To the ending time 0.12s,

the cost CPU time for WENO5-AD3 is 15.7s, while for WENO5-RK3 is 17.5s, and to the

other ending time, the cost CPU time of WENO5-AD3 and WENO5-RK3 maintain almost

the corresponding ratio.

4. Concluding remarks

In this paper, we simulate the one-dimensional and two-dimensional shallow water

equations with source terms by high resolution finite difference WENO schemes with lin-

ear multilevel high order time discretizations. We compare the numerical results with

those obtained by finite difference WENO schemes using same order Runge-Kutta time

discretizations by addressing CPU time, efficiency and resolution. The numerical results

in Section 3 show that the WENO5-AD3 schemes can simulate the flow accurately and

catch the stronger discontinuous like WENO5-RK3 in water wave, and the WENO5-AD3

schemes have smaller CPU costs than those needed by the third order Runge-Kutta time

discretization. We can see that the cost CPU time of WENO5-AD3 is about 80% of WENO5-

RK3 for one-dimensional tests, and about 90% of WENO5-RK3 for two dimensional tests.

WENO5-RK4 and WENO5-AD4 cost similar ratio time, and similar resolution. Generally,

the implementation of multilevel time discretization is more cost effective than single step

time discretization with the same order of accuracy, and multilevel time discretization can

make full use of computed information by WENO spatial discretization, so they have higher

accuracy, maintain similar high resolution and obtain non spurious oscillatory numerical

solutions.
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