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Abstract. In this paper we consider polynomials orthogonal with respect to the linear
functional L : P→ C, defined on the space of all algebraic polynomials P by

L[p] =

∫ 1

−1

p(x)(1− x)α−1/2(1+ x)β−1/2 exp(iζx)dx ,

where α,β > −1/2 are real numbers such that ℓ = |β − α| is a positive integer, and
ζ ∈ R\{0}. We prove the existence of such orthogonal polynomials for some pairs
of α and ζ and for all nonnegative integers ℓ. For such orthogonal polynomials we
derive three-term recurrence relations and also some differential-difference relations.
For such orthogonal polynomials the corresponding quadrature rules of Gaussian type
are considered. Also, some numerical examples are included.

AMS subject classifications: 33C47, 41A55, 65D30
Key words: Orthogonal polynomials, modified Jacobi weight function, recurrence relation, Gaus-
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1. Introduction

In this paper we continue investigation on orthogonality with respect to the exponential
modification of classical weight functions, studied in [5–8]. Let us suppose that α,β >
−1/2 are real numbers such that ℓ = |β − α| is a positive integer, and ζ ∈ R\{0}. We are
concerned with the following measure

dµ(x) = (1− x)α−1/2(1+ x)β−1/2 exp(iζx)χ[−1,1](x)dx (1.1)
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supported on the interval [−1,1]. We investigate the question connected with the exis-
tence of a sequence of orthogonal polynomials {πn}n∈N0

with respect to the linear moment
functional L : P→ C, defined on the space of all algebraic polynomials P by

L[p] =

∫ 1

−1

p(x)dµ(x) =

∫ 1

−1

p(x) (1− x)α−1/2(1+ x)β−1/2 exp(iζx)dx . (1.2)

The corresponding moments are µk = L[x k], k ∈ N0.
This paper is organized as follows. In Section 2 the existence of orthogonal polyno-

mials for some parameters α and ζ and for all positive integers ℓ = |β − α| is proved.
Section 3 is devoted to three-term recurrence relations as well as to some differential-
difference relations. Finally, in Section 4 the corresponding quadrature rules of Gaussian
type are considered. Such quadrature rules are suitable for computation of integrals of

highly oscillatory functions of the form
∫ 1
−1

f (x)(1− x)α−1/2(1+ x)β−1/2eiζx dx . Notice
that such kind of integrals appears in many branches of applied and computational sci-
ence, e.g., for determining of the retarded potentials of electromagnetic field of a linear
wire antenna (see [9]).

2. Existence of orthogonal polynomials

The measure (1.1) can be written in the following form

dµ(x) =

¨
(1+ x)ℓ(1− x2)α−1/2 exp(iζx)χ[−1,1](x)dx , β > α,
(1− x)ℓ(1− x2)β−1/2 exp(iζx)χ[−1,1](x)dx , α > β .

Therefore, in the sequel we consider the measures

dµ±(x) = (1± x)ℓ(1− x2)α−1/2 exp(iζx)χ[−1,1](x)dx ,

where α > −1/2 and ℓ is a positive integer, i.e., we consider the existence of polynomials
orthogonal with respect to the linear functionals

L
±,ζ,α,ℓ(p) := L

±(p) =
∫ 1

−1

p dµ±, p ∈ P. (2.1)

The moments

µ±
k
=

∫ 1

−1

x k(1± x)ℓ(1− x2)α−1/2 exp(iζx)dx (2.2)

can be expressed in terms of Bessel functions Jν of the order ν (see [10, p. 40]). We
restrict our attention only to the case ζ > 0, since the corresponding results for ζ < 0 can

be obtained by a simple conjugation, because µ±
k
(−ζ) = µ±

k
(ζ), k ∈ N0.
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Theorem 2.1. The moments µ±
k

, k ∈ N0, can be expressed in the form

µ±
k
=

A

(iζ)k+ℓ

ℓ∑

j=0

�
ℓ

j

�
(±1) j(iζ)ℓ− j
�

Pαk+ j(ζ)Jα(ζ) +Qαk+ j(ζ)Jα−1(ζ)
�

, (2.3)

where A = (2/ζ)α
p
πΓ(α+ 1/2), and Pα

k
and Qα

k
are polynomials in ζ, which satisfy the

following four-term recurrence relation

yk+2 = −(k+ 2α+ 1)yk+1− ζ2 yk − kζ2 yk−1,

with the initial conditions Pα0 (ζ) = 1, Pα1 (ζ) = −2α, Pα2 (ζ) = 2α(2α+1)−ζ2 and Qα0(ζ) = 0,

Qα1(ζ) = ζ, Qα2(ζ) = −(2α+ 1)ζ, respectively.

Proof. In [8, Theorem 2.1] for α > −1/2 and for all k ∈ N0 it was proved that

bµk =

∫ 1

−1

x k(1− x2)α−1/2 exp(iζx)dx =
A

(iζ)k
�

Pαk (ζ)Jα(ζ) +Qαk(ζ)Jα−1(ζ)
�

. (2.4)

By using the binomial formula, (2.2) and (2.4) we get

µ±
k
=

∫ 1

−1

x k
ℓ∑

j=0

�
ℓ

j

�
(±1) j x j(1− x2)α−1/2 exp(iζx)dx

=

ℓ∑

j=0

�
ℓ

j

�
(±1) j
∫ 1

−1

x k+ j(1− x2)α−1/2 exp(iζx)dx =

ℓ∑

j=0

�
ℓ

j

�
(±1) jbµk+ j

=

ℓ∑

j=0

�
ℓ

j

�
(±1) j

A

(iζ)k+ j

�
Pαk+ j(ζ)Jα(ζ) +Qαk+ j(ζ)Jα−1(ζ)

�

=
A

(iζ)k+ℓ

ℓ∑

j=0

�
ℓ

j

�
(±1) j(iζ)ℓ− j
�

Pαk+ j(ζ)Jα(ζ) +Qαk+ j(ζ)Jα−1(ζ)
�

.

✷

In numerical calculation we use formula (2.3) only for k = 0,1,2, and for k ≥ 3 we use
recurrence relations for the moments µ±

k
given in the following lemma.

Lemma 2.1. Moments µ±
k

, k ∈ N, of the linear functional L± satisfy the following recurrence

relation

µ±
k+2 = −

k+ ℓ+ 2α+ 1

iζ
µ±

k+1+

�
1± ℓ

iζ

�
µ±

k
+

k

iζ
µ±

k−1, (2.5)

with µ±
k

, k = 0,1,2, given by (2.3).

Proof. Starting with µ±
k
−µ±

k+2 =
∫ 1
−1

x k(1±x)ℓ(1−x2)α+1/2eiζxdx , by using integration
by parts we get

µ±
k
−µ±

k+2 =−
1

iζ

�
kµ±

k−1± ℓµ±k − (k+ ℓ+ 2α+ 1)µ±
k+1

�
.
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Now it is easy to get (2.5) from the previous equation. ✷

Now, we are ready to prove the existence theorem.

Theorem 2.2. Let α > −1/2 be a rational number, ℓ be a positive integer and ζ be a positive

zero of the Bessel function Jα−1. Then, the polynomials π±n orthogonal with respect to the

linear functionals L±, given by (2.1), exist.

Proof. By using a concept of orthogonality with respect to the linear functional L (cf.
Chihara [1, pp. 5–17]), the necessary and sufficient conditions for the existence of the
corresponding orthogonal polynomials πn, n ∈ N0, can be expressed in terms of Hankel
determinants as follows:

∆±n =

���������

µ±0 µ±1 · · · µ±n−1
µ±1 µ±2 · · · µ±n
...

...
. . .

...
µ±n−1 µ±n · · · µ±2n−2

���������

6= 0, n ∈ N.

Since Jα−1(ζ) = 0, the moments (2.3) reduce to

µ±
k
=

A

(iζ)k+ℓ

ℓ∑

j=0

�
ℓ

j

�
(±1) j(iζ)ℓ− j Pαk+ j(ζ)Jα(ζ), k ∈ N0.

From the Hankel determinant we can extract the factor (AJα(ζ))
n/(iζ)n(n+ℓ−1). Thus we

have

∆±n =
�
AJα(ζ)
�n

(iζ)n(n+ℓ−1)
H±n , (2.6)

where H±n is the determinant of the matrix
h

h
n,±
i j

in
i, j=1

with

h
n,±
i j
=

ℓ∑

ν=0

�
ℓ

ν

�
(±1)ν(iζ)ℓ−ν Pαi+ j−2+ν (ζ), i, j = 1, · · · , n.

It is easy to see that all of the determinants H±n , n ∈ N, are polynomials in ζ with ratio-
nal coefficients because α is a rational number. Since positive non-trivial zeros of Bessel
functions Jα−1, with a rational index α−1, are transcendental numbers (see [11, p. 220]),
they cannot be zeros of the polynomial with the rational coefficients unless polynomials
are identically equal to zero. Therefore, we have to prove that all of the determinants H±n
are not identically equal to zero. For that purpose we prove that H±n (0) 6= 0 for all n ∈ N.
Since

H±n (0) =

���������

(±1)ℓPα0+ℓ(0) (±1)ℓPα1+ℓ(0) · · · (±1)ℓPα
n−1+ℓ(0)

(±1)ℓPα1+ℓ(0) (±1)ℓPα2+ℓ(0) · · · (±1)ℓPα
n+ℓ
(0)

...
...

. . .
...

(±1)ℓPα
n−1+ℓ(0) (±1)ℓPα

n+ℓ
(0) · · · (±1)ℓPα2n−2+ℓ(0)

���������
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and Pα
k
(0) = (−1)k(2α)k, k ∈ N0 (see [8, Lemma 2.1]), using the fact that (2α)k+ℓ =

Γ(2α+ k+ ℓ)/Γ(2α), we get

H+n (0)=
1

(Γ(2α))n

���������

Γ(2α+ ℓ) Γ(2α+ 1+ ℓ) · · · Γ(2α+ n− 1+ ℓ)
Γ(2α+ 1+ ℓ) Γ(2α+ 2+ ℓ) · · · Γ(2α+ n+ ℓ)

...
...

. . .
...

Γ(2α+ n− 1+ ℓ) Γ(2α+ n+ ℓ) · · · Γ(2α+ 2n− 2+ ℓ)

���������

and H−n (0) = (−1)nℓH+n (0).
Since

Γ(2α+ k+ ℓ) =

∫ +∞

0

x k+ℓ+2α−1e−x dx ,

we see that the last determinant is the Hankel determinant for the generalized Laguerre
measure xℓ+2α−1 exp(−x)χ[0,+∞)(x)dx , α ∈ Q, α > −1/2, ℓ ∈ N. Because of the well-
known fact about the existence of the sequence of orthogonal polynomials with respect to
the generalized Laguerre measure, H±n (0) must be different from zero.

Accordingly, when α > −1/2 is a rational number and ζ is a positive zero of the Bessel
function Jα−1, the sequence of orthogonal polynomials with respect to the linear functional
given by (2.1) exists. ✷

Remark 2.1. By definition of confluent hypergeometric function 1F1 for Re(b)> Re(a)> 0
we have (see formula 9.211, 1. in [4])

1F1(a, b; z) =
21−bez/2Γ(b)

Γ(a)Γ(b− a)

∫ 1

−1

(1− u)−a+b−1(1+ u)a−1ezu/2du.

So, we get the following explicit formulae for the moments µk, k ∈ N0:

µk =

∫ 1

−1

(1+ x − 1)k(1− x)α−1/2(1+ x)β−1/2eiζxdx

=

k∑

j=0

�
k

j

�
(−1)k+ j

∫ 1

−1

(1− x)α−1/2(1+ x)β+ j−1/2eiζxdx

=

k∑

j=0

�
k

j

�
(−1)k+ j

2α+β+ je−iζΓ(β + j+ 1/2)Γ(α+ 1/2)

Γ(α+ β + j+ 1)

× 1F1(β + j+ 1/2,α+ β + j+ 1; 2iζ).

3. Recurrence and differential-difference relation

In this section we suppose that the parameters ζ > 0, α,β > −1/2, |β − α| = ℓ ∈ N,
are such that the sequence of (monic) orthogonal polynomials {πn}n∈N0

with respect to



Orthogonal Polynomials with Respect to Modified Jacobi Weight 483

the moment functional (1.2), i.e., with respect to the quasi inner-product

(p,q) := L[pq] =

∫ 1

−1

p(x)q(x)w(x)dx , (3.1)

exists. The inner-product (3.1) has the property (zp,q) = (p, zq), and because of that
the corresponding (monic) polynomials {πn}n∈N0

satisfy the fundamental three-term re-
currence relation

πn+1(x) = (x −αn)πn(x)− βnπn−1(x), n ∈ N, (3.2)

with π0(x) = 1, π−1(x) = 0. Recurrence coefficient β0 can be chosen arbitrary, but as
usual it is convenient to take β0 = L[1].

The recursion coefficients αn and βn can be expressed in terms of Hankel determinants
as (cf. [3])

αn =
∆
′±
n+1

∆±
n+1

− ∆
′±
n

∆±n
, βn =

∆±
n+1∆

±
n−1

(∆±n )
2 ,

where∆±n is defined in (2.6) and∆
′±
n is the Hankel determinant∆±n+1 with the penultimate

column and the last row removed.

Theorem 3.1. The weight function w(x) = (1− x)α−1/2(1+ x)β−1/2 exp(iζx) satisfies the

following Pearson type differential equation

(φw)′ =ψw, φ(x) = 1− x2, ψ(x) = β −α− (α+ β + 1)x + iζ(1− x2).

Proof. By direct calculation we get

(φw)′ =
�
(1− x)α+1/2(1+ x)β+1/2 exp(iζx)

�′

= (1− x)α−1/2(1+ x)β−1/2 exp(iζx)

×
�
(β + 1/2)(1− x)− (α+ 1/2)(1+ x)+ iζ(1− x2)

�

=
�
β −α− (α+ β + 1)x + iζ(1− x2)

�
w(x).

This completes the proof of the theorem. ✷

By using the same arguments as in the proof of Theorem 3.1 in [7], with φ and ψ
given in Theorem 3.1, it is easy to prove the following theorem.

Theorem 3.2. For every n ∈ N, we have

φπ′n +ψπn =

n+2∑

k=n−1

γk
nπk, (3.3)
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where

γn+2
n = −iζ,

γn+1
n = −(n+α+ β + 1)− iζ(αn +αn+1),

γn
n =
�
β −α− (α+ β + 1)αn+ iζ(1− βn+1 − βn−α2

n)
�
/2,

γn−1
n = βn(n− 1),

and αn and βn are the three-term recurrence coefficients in (3.2).

Theorem 3.3. The monic polynomials orthogonal with respect to the linear functional (1.2)
satisfy the following differential-difference equation

φπ′n = pn
1πn+ qn

1πn−1, n ∈ N, (3.4)

where pn
1 and qn

1 are polynomials of the first degree given by

pn
1 = −nx +

αn

2
(2n+α+ β + 1)− β −α

2
− iζ

2
(1− βn+1 + βn−α2

n),

qn
1 = βn

�
2n+α+ β + iζ(x +αn)

�
.

Proof. By using the three-term recurrence relation (3.2) and (3.3) we get

φπ′n +ψπn =
��
γn+2

n (x −αn+1) + γ
n+1
n

�
(x −αn)− γn+2

n βn+1+ γ
n
n

�
πn

+
�−βn

�
γn+2

n (x −αn+1) + γ
n+1
n

�
+ γn−1

n

�
πn−1.

From the previous equation and the expressions given in Theorem 3.2 and Theorem 3.1,
by direct computation we get what is stated. ✷

Theorem 3.4. The polynomials pn
1 and qn

1 , n ∈ N, which appear in Theorem 3.3, satisfy the

following recurrence relations

pn+1
1 = −qn

1

x −αn

βn

+ pn−1
1 + qn−1

1

x −αn−1

βn−1
,

qn+1
1 = (x −αn)

�
pn

1 + qn
1

x −αn

βn

− pn−1
1 − qn−1

1

x −αn−1

βn−1

�
+φ + qn−1

1

βn

βn−1
,

respectively.
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Proof. The proof follows from Theorem 3.3 and the following equation:

φπ′n+1 −φπn = (x −αn)φπ
′
n − βnφπ

′
n−1

=(x −αn)(p
n
1πn + qn

1πn−1)− βn(p
n−1
1 πn−1 + qn−1

1 πn−2)

=

�
qn

1(x −αn)− pn−1
1 βn− qn−1

1

βn

βn−1
(x −αn−1)

�
πn−1

+ (x −αn)p
n
1πn+ qn−1

1

βn

βn−1

�
(x −αn−1)πn−1 − βn−1πn−2

�

=−
�

qn
1

x −αn

βn

− pn−1
1 − qn−1

1

x −αn−1

βn−1

��
(x −αn)πn−βnπn−1

�

+

�
(x −αn)p

n
1 + qn−1

1

βn

βn−1
+ (x −αn)

�
qn

1

x −αn

βn

− pn−1
1 − qn−1

1

x −αn−1

βn−1

��
πn

=−
�

qn
1

x −αn

βn

− pn−1
1 − qn−1

1

x −αn−1

βn−1

�
πn+1

+

�
qn−1

1

βn

βn−1
+ (x −αn)

�
pn

1 + qn
1

x −αn

βn

− pn−1
1 − qn−1

1

x −αn−1

βn−1

��
πn.

✷

Theorem 3.5. The following equation

pn+1
1 + pn

1 + qn
1

x −αn

βn

= −(β −α) + (α+ β − 1)x − iζ(1− x2)

holds for all n ∈ N.

Proof. It is easy to see from the previous Theorem that the quantity pn+1
1 + pn

1 +

qn
1(x −αn)/βn does not depend on n, i.e.,

pn+1
1 + pn

1 + qn
1

x −αn

βn

= p2
1 + p1

1 + q1
1

x −α1

β1

for all positive integers n. By using formulae for pn
1 , n= 1,2, and q1

1 from Theorem 3.3, by
direct calculation we get

p2
1 + p1

1 + q1
1

x −α1

β1
=− (β −α) + (α+ β − 1)x − iζ(1− x2)

− 1

2

�
α1(α+ β + 1)−α2(α+ β + 5) + iζ(α2

1 −α2
2 + β1 −β3)
�

.

Starting with explicit formulas for moments µk, k ∈ N0, given in Remark 2.1, by using func-
tions for symbolic computations implemented in the software package OrthogonalPolyno-mials (see [2]) we generate three-term recurrence coefficients in symbolic form and with
coefficients α1, α2, β1 and β3 obtained in such a way we get that α1(α+ β + 1)−α2(α+

β + 5)+ iζ(α2
1 −α2

2 + β1− β3) = 0, i.e., we get what is stated. ✷
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Theorem 3.6. The polynomials πn orthogonal with respect to the linear functional (1.2)
satisfy the following second order differential equation

φqn
1π
′′
n +
�
ψqn

1 − iζβnφ
�
π′n−
�
−nqn

1 − iζβnpn
1 +

qn
1(A

n
1qn

1 − pn
1 Bn

1)

φ

�
πn = 0,

where pn
1 and qn

1 are given in Theorem 3.3,

An
1 = −

qn−1
1

βn−1
, Bn

1 = pn−1
1 + (x −αn−1)

qn−1
1

βn−1
,

αn and βn are the three-term recurrence coefficients.

Proof. In the same way as in proof of Theorem 3.7 in [7], using (3.4) and (3.2) we get
φπ′n−1 = An

1πn + Bn
1πn−1. From the previous equation and (3.4), after some calculation

we get

φqn
1π
′′
n +
�

qn
1(φ
′ − pn

1 − Bn
1 )−φ(qn

1)
′�π′n

−
�
(pn

1)
′qn

1 − pn
1(q

n
1)
′+

qn
1(A

n
1qn

1 − pn
1 Bn

1)

φ

�
πn = 0.

From Theorem 3.3 we have that (pn
1)
′ = −n, (qn

1)
′ = iζβn, and from Theorems 3.1 and 3.5

that

φ′ − pn
1 − Bn

1 = −2x − pn
1 − pn−1

1 − (x −αn−1)
qn−1

1

βn−1

= −2x + β −α− (α+ β − 1)x + iζ(1− x2) =ψ.

Now it is easy to get what is stated. ✷

4. Quadrature rules of Gaussian type

Let us suppose as in the previous Section that parameters ζ > 0, α,β > −1/2, |β−α|=
ℓ ∈ N, are such that the sequence of (monic) orthogonal polynomials {πn}n∈N0

with respect
to the moment functional (1.2) exists. Knowing three-term recurrence coefficients, by
using functions implemented in the software package OrthogonalPolynomials (see [2])
in extended arithmetics we are able to construct the corresponding quadrature rules of
Gaussian type:

∫ 1

−1

f (x)(1− x)α−1/2(1+ x)β−1/2eiζx dx =

n∑

k=1

w
(n)

k
f (x

(n)

k
) + Rn( f ), (4.1)

where Rn( f ) = 0 for each polynomial of degree at most 2n− 1. Such rules can be applied
for numerical integration of highly oscillating functions.
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We illustrate effectiveness of our Gaussian quadrature rules by an example. We apply
formula (4.1) to the following integral (α = 3/4, ℓ= 2, β = α+ ℓ= 11/4)

I(ζ) =

∫ 1

−1

1

x − i/2
(1− x)1/4(1+ x)9/4eiζxdx ≈ Gn(ζ) =

n∑

k=1

w
(n)

k

x
(n)

k
− i/2

,

for the following two different values of ζ (zeros of J−1/4(z)): ζ ∈ {ζ1,ζ2}, where ζ1 ≈
5.123062742746341 and ζ3 ≈ 1000.990052907274. The exact values of integrals are

I(ζ1) = −0.9979100215803087795569777849572646172277872860245393651 · · ·
+ i 0.1060452345218433816792525404362447599718050780557974608 · · · ,

I(ζ2) = 0.0006127739397848197129287771403323748896639360579902957 · · ·
+ i 0.0003067686754640449514948870244230309159659007533964626 · · · .

In Table 1 the relative errors in Gaussian approximations, rn = |(Gn(ζν)−I(ζν ))/I(ζν )|,
ν = 1,2, for n= 5(5)30 nodes are given. In numerical construction we use software pack-
age [2]. We also apply the corresponding Gauss-Jacobi quadrature formula with respect
to the weight function x 7→ (1− x)1/4(1+ x)9/4 and give its relative errors r J

n . It is easy
to compare the obtained results. Gauss-Jacobi quadrature is faster for small ζ, but when ζ
increases, Gauss-Jacobi formula cannot be applied, and our formula becomes much faster.Table 1: Relative errors rn and r J

n
, for n= 5(5)30, when ζ= ζ1, ζ2.

ζ ζ1 ζ2

n rn r J
n rn r J

n

5 2.10(−1) 6.44(−4) 3.37(−16) 1.75(4)
10 2.53(−3) 8.56(−6) 3.70(−24) 5.35(3)
15 2.04(−5) 6.78(−8) 2.12(−36) 1.48(4)
20 1.65(−7) 5.43(−10) 5.99(−43) 1.24(4)
25 1.33(−9) 4.38(−12) 8.33(−54) 1.08(4)
30 1.08(−11) 3.54(−14) 1.91(−59) 6.16(3)
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