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Abstract. In this paper, we derive a posteriori error estimates for finite element ap-
proximations of the optimal control problems governed by the Stokes-Darcy system. We
obtain a posteriori error estimators for both the state and the control based on the resid-
ual of the finite element approximation. It is proved that the a posteriori error estimate
provided in this paper is both reliable and efficient.
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1. Introduction

Flow control problems have received significant attention because of their many engi-
neering applications. Extensive research has been carried out on various theoretical aspects
of flow control problems, see, for example, [1-3] and the references therein, for existence
results of optimal control, optimality conditions, regularity of optimal solutions and the
existence of Lagrange multipliers.

It is obvious that efficient numerical methods are essential to successful applications of
control problems. Nowadays, the finite element method is undoubtedly the most widely
used numerical method in computing optimal control problems. There exists much litera-
ture on the finite element approximation for PDEs and various optimal control problems,
see, for example, [4-11].

A posteriori error estimates are computable quantities in terms of the discrete solution
or data, allow to measure the actual discrete errors without the knowledge of exact so-
lutions. They are essential in designing algorithms with adaptive mesh refinement which
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equi-distribute the computational effort and optimize the approximation efficiency. Ever
since the pioneering work of Babuska [12-14], the adaptive finite element method based
on a posteriori error estimates has been extensively investigated. The literature in this
area is huge. The work related on the a posteriori error estimates for partial differential
equations is summarized in [15,16]. In [17] two a posteriori error estimators for the
mini-element discretization of the Stokes equations were presented.

Recently, the residual-based a posteriori error estimators for Stokes-Darcy coupled
problems were presented in [18] and [19]. In [18], Bernardi-Raugel and Raviart-Thomas
elements for the velocity and piecewise constants for the pressures were considered. In
[19], we consider a posteriori error estimate for the Stokes-Darcy system with the Beavers-
Joseph-Saffman-Jones interface boundary condition, where the approximation spaces are
the Hood-Taylor element and the piecewise quadratic element for the Stokes and the Darcy
regions, respectively.

Concerning the finite element approximation of the distributed optimal control prob-
lem governed by partial differential equations, residual based a posteriori error estimates
are investigated by [20-23]. Especially, the optimal control problem governed by the
Stokes equations was discussed in [3] and [24]. Moreover, we should also mention
the dual weighted residual estimates pioneered by R. Becker and R. Rannacher (see,
e.g., [25]). Recently, more work on this kind of problems can be found in [26,28]. To
our knowledge, there are still no theoretical results on a posteriori error estimates for the
optimal control problem governed by the Stokes-Darcy system.

In this paper, we extend the result of [19] to the optimal control problems, we develop
the a posteriori error analysis for the optimal control problem governed by the Stokes-
Darcy system with the Beavers-Joseph-Saffman-Jones interface boundary condition. The
approximation spaces for the state equations are the Hood-Taylor element and the piece-
wise quadratic element for the Stokes and the Darcy regions, respectively, while the control
is approximated by piecewise constants space. We obtain the residual based a posteriori er-
ror estimators for both state and the control based on the residual of the finite element ap-
proximation. It is proved that the a posteriori error estimate provided in this paper is both
reliable and efficient. Some techniques used in this paper can be found in, e.g., [3,9,15,16]
and [19].

The rest of the paper is organized as follows: in Section 2, we shall construct a weak
formulation and finite element approximation for the distributed optimal control problem
governed by the Stokes-Darcy system. In Section 3, a posteriori error estimates in H!-
norm are derived for optimal control problems governed by the Stokes-Darcy system with
the Beavers-Joseph-Saffman-Jones interface boundary condition. Reliability and efficiency
are obtained in Subsections 3.1 and 3.2, respectively.

2. Finite element approximation of the control problems

Let Q be an open bounded set in R? with piecewise Lipschitz boundary 9. In this
paper, we adopt the notation W™4(Q2) for Sobolev spaces on £ with the standard norm
Il - [ln,q,0 and semi-norm | - |, 4 . For the case of ¢ = 2, we denote H™(2) = W™2(£) and
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I llm,0=Il * llm,2,0- Furthermore, we set Wol’q(ﬂ) ={veWh(Q): yv |3q0= 0}, where yv is
the trace of v on the boundary d€2. In addition ¢ and C denote generic constants.
Firstly, let us consider Stokes-Darcy equation:

v, = —KV¢, inQ, 2.3)
V-y,=0 inQ, 2.4)

where O = Q,(JQy, Q, is the porous media region, Q; is the fluid region, y; is the
fluid velocity, p; is the kinematic pressure, f is the external body force, K is a symmetric
and uniformly positive definite tensor in 2, representing the permeability of the porous
media divided by the viscosity, T(ys,ps) = 2vD(ys) — pyI is the stress tensor, v is the
kinematic viscosity of the fluid, D(y;) = (Vy; + VTyf) /2 is the deformation tensor, y,
is the fluid velocity in Q, and ¢, is the hydraulic head in ,. Along the interface I' =
Q, N, the Beavers-Joseph-Saffman-Jones interface boundary condition is imposed (see,
e.g., [29,30]):

Yr oDy ==Yy, -1, (2.5)
—t7 - (T(ys,pf)-nf) = aty - yy, (2.6)
—ng - (T(ys,ps) - ng) = gp, 2.7)

where t; is the unit tangent vector to I', ny and n,, are unit outward normal to I" from
and Q,, respectively, and g, a are positive constants. On the exterior boundary,

yf=0, on 8Qﬂaﬂf, (28)

yp -0, =0, on 8Qﬂaﬂp. (2.9

Introduce the spaces:
Xf = {Vf S [Hl(ﬂf)]z Ve = 0 on aﬂf \F},
Qf = LZ(Qf))
X, =H'(Q).
For simplicity, in the following part of this paper, in ¢, we replace y¢, ps by y, p respec-
tively and in Q, we replace ¢, by ¢. Set
A0 92 (0,9)) 2 a3, V) + by (v, ) = by(y, @) + 80,(6, %) + g (b, v - )

—g{y-ng, ) +a(P.y,P.v),
(Y,P, d)): (V,q,#’) G)(f X Qf XXP5 (210)
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where the bilinear forms are defined as

ap(qbﬂ/)) = (Kv¢)v¢)ﬂp;
ap(y,v) = 2v(D(y), D(V))q,.
bf(v) CI) = _(v v, q)ﬂf)

where (-, )q ; and (-, -)QP denote the L2-inner products on the domains Q¢ and Q,, respec-
tively, (-,-) the L2-inner products on the interface boundary I', P, denotes the projection
onto the tangent space on I', i.e., P.y = (y; - t;)t;. Then, the standard weak formulation
for Stokes-Darcy equation (2.1)-(2.9) can be rewritten to: find (y,p,¢) € X; X Qs X X,
such that

A(@p ¢ aw) =(E+Buv)y,  V(vqy)eX; x Qs XX, 2.11)

For the above problem, it is well known (see [32]) that the following Babuska — Brezzi
condition holds:

. |b f (v,q)|

inf sup

9€Qs vex; ||V||1,Qf||Q||0,nf

Moreover, it can be proved that the above Babuska — Brezzi condition is equivalent to the
following inf-sup condition:

Lemma 2.1. [19] Let B =X; XQy X X, the bilinear form A defined by (2.10) from B X B
satisfies

A(p 9 (v, )

inf sup > C,
0p 93 wa)ed |yl g, +Iplog, + 11, ) (IVlha, + lglog, + v, )

where C is a constant independent of y, Vv, p, q, ¢, . Similarly,

A g% (v.p.4))

inf sup =C.
0p 02 waiem (llyllya, +Ipllog, +19lla, ) (IVh.a, +lallog, + v, )

Let Q; be a bounded open sets in R? with Lipschitz boundary 2, where Q;; can be a
subdomain of Q £ and Q; =Q £ in some special cases. Let the state space be Xp XxQf XX,
and the control space be U = [L2(€2;;)]%. Let B be the linear continuous operator from U
toH= [LZ(Qf)]Z, and K be a closed convex subset of U. In this paper, we set

K={veU:v=>0},

where v=0meansv; = 0,1 =1,2, v= (v, Vy).
Using the weak formulation (2.11), the optimal control problem governed by Stokes-
Darcy equation (2.1)-(2.9) can be stated as:
min {g;(y) + g2(¢) +j(w)} (2.12)

uekKcU
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subject to

A0, 9 ¥)) =(E+Buv)y,  VV@Y)eX xQ xX,  (213)

where g;, g, and j are differential convex functionals, g; and g, are bounded below,
j(w) — 400 as ||w||y — oo. In this paper, we further assume that the strictly convex
condition:

(Jwmw=v) = (Fmw=v) >clw=vi3g, (2.14)

is valid for the functional j(-), and j'(-), g7(-) and g5(-) are locally Lipschitz continuous.

By means of the standard technique (see, e.g., [2]), it can be proved that the control
problem (2.12)-(2.13) has a unique solution (y, p, ¢,u), and that (y, p, ¢, u) is the solu-
tion of (2.12)-(2.13) if and only if there is a co-state (z,s,&) € X; X Qf X X, such that
(y,p, ¢,2,s,&,u) satisfies the following optimality conditions:

A((y,p, ¢): (V,CI;U))) :(f_'_Bu)V)Qf; V(V,Q;Q/))Exf XQf x X > (2]—5)
A(ow 6 (25,0) = (8100w), + (g8)n), , VOw6m X xQp xX,, (216)

(j’(u)+B*z,v—u)U >0, YveKcU, 2.17)

where B* is the adjoint operator of B, (+,-)y is the inner product of U and A((-,-,-); (*,-,-))
is defined by (2.10).

Next, we consider the finite element approximation of the control problem (2.12)-
(2.13). For simplicity, we will assume that Q;, Q, and Q, are all polygons in the following.
The results can be extended to the general domains with smooth boundaries. Let 7} , and
T, n be regular meshes on Q and €2, respectively.

We assume that the meshes 7 j, and 7, , are compatible such that their nodes on I" are
the same. Let X" x Q" be the Hood-Taylor element on Ty pand X g be conforming piecewise
quadratic element space on 7, , such that

VI ={veC(Q):vl; €Py(7), VT €Ty, v=0 on 3Q,\T'},
X = (V)%
Q}} = {q €C(Qy):ql; €Py(7), VT € 9f,h},
Xg = {v €C(Q,) :v|; EPy(1), VT € %,h} ,
where P; denotes the space of polynomials of order i.

Then the discrete weak formulation of the state equations (2.11) reads: find (yy, py, ¢1) €
X? X Q’} x X ;}, such that

A((V 2o 1) (Vi @) ) = (E+ B, Vi, V(v G th) €XE x Q1 x X
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Let 91? be a regular partition of ;. Associated with ,22 is a finite dimensional subspace
WI’} of L2(Qy) such that x|z, is a constant for all y € W; and 7y € 9&1 Let U" = (Wl’})z,
K" = U"NK. It is easy to see that U" c U and K" c K.

Then the discretized weak formulation of the state equations (2.12)-(2.13) reads:

gldifcth {g1(yn) + g2(¢pp) + j(up)} (2.18)

up

subject to

A((Yh:ph; n); (Vh,Qh,wh)) = (f+Buy, vi)o,, V(v qn ) € XJ]} X Q}} X Xll,l- (2.19)

Similarly, it can be shown that the control problem (2.18)-(2.19) has a unique solution
(Yns Pr> $n> ) and that (yy,, py, dp, ) € XJ]} X Qi} xX}’)l x K" is the solution of (2.18)-(2.19)

if and only if there is a co-state (zy, s, ;) € Xj} X Q’} XX;I such that (Yi, Pr> s Zhs Sh> S s W)
satisfying the following optimal conditions:

AP 013 (Vo @) ) = (E+ B, vida s V(¥ @ thr) €XE x QL x X, (2.20)

At s G €0)) = (8100w )+ (85091, m1)

V(W ths ) € X} X Qf x Xp,  (2.21)

s
QP

( 7/(up) + Bz, vy, — uh) 20, Vv, €K' C U. (2.22)

3. A posteriori error estimates for the Stokes-Darcy control

In order to obtain a numerical solution of the control problem with acceptable ac-
curacy, the finite element meshes should be refined or adjusted according to a mesh re-
finement scheme. A widely used approach in engineering is adaptive finite element ap-
proximation. The a posteriori error estimates is essential in designing algorithms with
adaptive mesh refinement which equi-distribute the computational effort and optimize the
approximation efficiency.

In this section, we will derive a posteriori error estimators for the optimal control of
Stokes-Darcy flows. The upper bound is derived in Subsection 3.1, while the lower bound
is obtained in Subsection 3.2.

3.1. The upper bound

In this subsection, the following well known error estimate for average interpolation
will be useful.

Lemma 3.1 ( [33]). Let I: W™I(Qf) — v} (or Whi(Q,) — XI}}), 1 < q < oo, be the
average interpolation operator defined in [33]. For m=0or 1, and v € W4(Q),

v =Wlnge < D, ChE™vl g0
T'NTAD
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where h is the diameter of the element 7.

Moreover, using the well known trace Theorem and the standard scaling technique
(see, e.g., [7]), the following lemma can be deduced.

Lemma 3.2. Forve W4(Q), 1 <q < oo,

_1 1-1
”VHO,q,aT =C (hr ! ”VHO,q,T + h'r ! |V|1,q,r) .

In order to obtain sharp a posteriori error estimators, we will divide Q; into three
subsets:
Q" ={x€Qy: (B'z)(x)+j'(0) <0},
Q% = {x € Qy : (B*z,)(x) +j'(0) > 0,u,(x) = 0},
O+ = {x € Qy : (B*z)(x)+ j'(0) > 0,u,(x) > 0}.

Next, we will derive an upper error bound for the finite element approximation of the
control.

Lemma 3.3. Let (y,p, p,2,s,&, 1) and (Yu, Ph> Pr» Zn>Shy, En, Uy) be the solutions of (2.15)-
(2.17) and (2.20)-(2.22), respectively. Then

lu—wyl2g, < Cn? + Clizy — 2(wy)ll2, 3.1)
where

2

b

n? = J |j/(uh) +B*z)
Q-uQt
and z(uy,) is the solution of the equations:

A((yCun), p(wy), ¢ () (v,0, %)) = (E+ By, Vg

V(v:q5¢)exf XQf xXp} (32)
A &m0 (o), sCun), £ ) ) = (&1 (w), w) | + (50 @)om)
V(w,t,n) €Xp x Qf X X,,. (3.3)
Moreover, we have that
e <Cn}+C (2=l g, + -2, ), (3.4)

where
2
62 = f ((]/(U) + B*Z) - ‘@h (]/(U) + B*Z)) ,
Q*

P, is the L2—projection operator from (L2(Qy))? to U", and

O ={x Q" :u(x)=0,u,(x) > 0}.
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Proof. Note that u, € K. It follows from (2.14) and (2.17) that
Cllu- w2, <(jwu-w) - (/@) u-w,)
<- (B*z,u - uh) v (j’(uh),u - uh) ’
= (B*zh — B*z(uy),u— uh) st (B*z(uh) —B*z,u— uh) ’
+ (j’(uh) + B*zj,,u, — u) .
It is easy to see that

(j’(uh) + B*zy,uy, — u) ’

:f (j’(uh) + B*zh) (u, —u) + J (j’(uh) + B*zh) (v, — ),
Q-uQt

0o

and
J (j/(uh) + B*Zh) (u, —u)
o
y « )2 2
<C(5) (/) +B*2y) "+ Célluy — uli2

Q-uQt
=C(8)n? + Colluy —ull, ,

609

3.5)

(3.6)

3.7)

where & is a small positive constant, C(&) is a constant dependent on 6. Note that j'(u;)+

B*z, > j’(0)+ B*z, > 0 and u, —u =0 —u < 0 on the domain Q,. Therefore,

f (j/(llh) + B*Zh) (uh — U) <0.
QO
Then it follows from (3.6)-(3.8) that
(/') + Bz uy —u) < CE? +Cllwy — il -

Moreover, the Schwartz’s inequality implies that

(B'2i — B*aw),u—w,) | <C(&IIB (2 — 2w )2 o, +Cllwy —ulZ o,

<C(0)llz, — Z(uh)ll(z),gf +C6luy — ull(sz-
Furthermore, it follows from (2.16)-(2.17) and (3.2)-(3.3) that

(B*z(uh) —B'z,u— uh) ”

= (&1 (v(w) — &1,y — y(u) ) + (g5 (¢ () - g5(#), ¢ — () <0,

(3.8)

(3.9

(3.10)

(3.11)
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where we have used the fact that g; and g, are all convex. Summing up, (3.1) follows
from (3.5) and (3.9)-(3.11) where we set 6 to be small enough.

Next, we consider the estimate for e. Note that uy > 0 on Q*. Then (2.22) implies that
2,(j'(u) + B*z,) = 0 on Q. Therefore,

e :J (j’(u) +B*z) — P, (j’(u) +B*z)2
SCJ ((J"(u)+B*Z)—(j’(uh)+B*zh))2+cf (j’(uh)+3*zh)2
QF QF

2 2
+cf (2('(un) +B*2)) +cf (207 (w) + B'24) — 2, (j'(w) + B'2) )
Q*

*

2
<c(llz—zl2 g, +llu—wl2, )+ cJ (') + B2,

<cnt+C(llz= g, +lu-wlg, ).

This proves (3.4). O

Using the above lemmas, we can derive the following upper bound of error estimates
for both control and state in the control problem governed by the Stokes-Darcy system. In
this part, techniques used in the proof are standard as in [19]. In the following, we will
use 77 and 7, to denote the elements in J;j, and 7, 3, [y and [, to denote the edges in
s p and T, , respectively. Moreover, [, denotes the edge on 9, \ T, and [ could be any
edge on J;j, or 7, ;. For convenience, we first introduce the notations [A;] and [D;] for
jumps on the edge | = %11 N %12 defined respectively by

(D] = ((ZVD(Yh) = pal)lz;, — (2vD(yn) - pal) |le,f) 0y,

[A]l= ((Zv]])(zh) +sh]l)|T11’f — (2vD(zy) +3hH)|rﬁf) ‘ng,
while

[KV¢p] -n,|; = (Kv¢h|rl{p —KV¢h|T§p) "1,
[K*VE] - myly = (K*VEply —K"VEl2 ) -1y,

. 1 1 . .
where n; and n, are un.lt outward normal to gy and g Irn and F, p,, respectively.
Moreover, we set the residuals:

M= D Mt D Mot D Mawe D, wnizf

Tfetzc)h Tpe%,h rfe?f)h lfr]aﬂf:

DL MWt D M+ i D, (3.12)

[,NoQ,=0 [,coQ,\T lcr lcr
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where

2
Mye, =12, f (2vV -D(yp) — Vp, +f+Buy)”,
T
2
n%’rp = h%p J (gv : (Kv¢h)) P
Tp
ngdiVTf - ”dIVYh”(Z)’Tf, n%lp - hlpJ (g[de)h] ' np)23
Ip

'r)%lf :hlff [Dl]21 'r)%lb :hlbﬁ (gde)h'np)za
b

Ly

2
Ty = hlJ ((ZVD(Yh) —papll) 0y + gpny + aP’L'Yh) ,
z

iy =M f(gKV% ‘n, — gy ns)?,
l

and

M= DL Mt D Mt D Mawe D, nszf

T €Tfh TpE€Tph T €5 1yn9Q;=0

DI DI DI (3.13)

[,N09,=0 1,COQ\T Icr lcr

where

2
3., =k, J (2vv - D(zp) + Vs, + g{(yh)) ;
Tf

M., =12, J (a9 tve + ()

p

Madive; = I1ivZRllg .. 03 =My 1 (g[K*VE] - ),
p

nglf = hlf J [Al:|2: n%zb = hlb (gK*v€h * np)25
l Ly

2
i3 = hlf ((ZVD(Zh) +spl) -np — g€y -y + aPTzh) ,
1

3 =hy J(gK*v§h'np + gz, ng)?,
1

where h_ < and h, , are diameters of the elements 7, € 7, and 7, € 7, , respectively, h; ;
and hl are the sizes of the edges [ in Q¢ and [, in Q,, respectively, h;, is the size of the
edge lb on 90, \T and h; is the 51ze of the edge l



612 M. Cui and N. Yan

Then we have the following a posteriori error estimate.

Theorem 3.1. Let (y,p, ¢, z,s,&,u) and (yu, Pn> Pn» Zn> Sn» En> Up) be the solutions of (2.15)-
(2.17) and (2.20)-(2.22), respectively. Assume that all conditions in the Lemma 3.3 are valid.
Moreover; assume that g1(-) and g5(-) are locally Lipschitz continuous. Then
&+ llu—wlZ o +ly =yl o, +llz—zsl2 g + 1P — pilg,

s = sullg, +116 = dllg +IE-Eul2, SCr? (314)

where
n* =07 +nj5+n3,

e and 7, are defined in Lemma 3.3, while 1, and 5 are defined by (3.12) and (3.13),
respectively.

Proof. Considering Lemma 3.3, we need to estimate ||z, — z(uh)llf o in order to obtain

the a posteriori error estimate for |ju — uhll(z) Q-

We use the standard technique for residual based a posteriori error estimates in the
following proof, similar details can be found in [19]. Let E, = z; — z(uy), E; = s, — s(up,),
Er =&, — &(up). It follows from Lemma 2.1 that there exists (w, t,n) € Xy X Qs X X,, such
that

C(IEl ., + 1N, + 1l ) (Iwlh.a, +tloq, +Iinllg, )

SA((W, t,n); (zp — z(up),sp, —s(uy), & — 5(“10))- (3.15)

Letw; =Iwe XJ}}, t;=Ite Qﬁ}, n;=Ine Xg be the interpolations of w, t and 1 defined
in Lemma 3.1. Then it follows from (2.20)-(2.22), (3.2)-(3.3) and (3.15) that

C (Bl a, + 1 lloq, +1Eela, ) (Iwlh.a, +Itlloq, +linlla, )
<A((w, 6,13 (2 — 2(w,), 51— s(w,), & — E(wy))

=A( (W —wy, £ = t7,m = 1) (2 — 2004, 5, — 5Cuy), § — ECuy)) )
+ A (w113 (2 — 200,51, — (W), & — E(wy))

—2v (D(w —w;),D(z, — z(uh)))gf— (div(zh —2(w), t — tl)ﬂf

<

+(divew = w5y =sw) ) |+ (KV0 =), 9(& — EwD) )
— (gw=w)ny, (& — E))) + (g0 — n), (2 — 2(wy)) -y )v

+a(PoCw—wp), Po(y — a(w)) +2v (Dw), Dz — 2(w),
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— (divzy — 2(w,)), tl)gf + (diviwy), 55, - s(uh))ﬂf + g (K, V(E, - E(uh)))gp
- (gwf ng, (& — Ew))) + (g, (2 — 2(up)) - my ) + a(Powy, P (2, — 2(w)))
J 2v(V - D(zp))W—w)+ ». J 2vD(z;) - np (W — W)
Tfe?fh Tf ot¢

Tr€T5h

—(divzh,t—tl)gf— Z f Vsp(w—wp) + Z f sp(w—wp)-ng
’L'f an

TrETEN Tr €T

-, ng-(K*VSh)(n—mH > f gK* V& - np(n—ny)
T o7y

T €T €T h

<g(w wp) -1y, €h> <g(n —m),zh-nf> +a<PT(W—Wz),PTZh>
- (s w-w)  —(g@w)n-mn),
(¢

S GICORFHUCYET) RS CICARTFACICNE

By rearranging the terms, we obtain

C(IEq, + IEdlog, + 1l g, ) (Iwlh.q, + ltllog, +Inla,)

< J —2vV- D(Zh)—vsh—gl(}’h))(w w;)
Tfoth T
f — gV (K*VE) = g3(¢n) ) (n =) — (divay, £ — t))y,
Tpeﬂph Tp

+ > Jl Adw-w)+ Jg[K*vsh]-np(n—m
01y

lfﬂﬁﬂf: lpﬂaﬂpzﬂ lp
+ > J gK*"VE; - m,(n—ny)
lbcaﬂ \F
f (2vD(zy) +spl) -0 — g€ -np + aP zh)(w w;)
ler

J(gK V&, -n, + gz, -ng)(n —1np)
leF

+ (810w - g0t w ), + (85060 - @)
+ (g1 - g oD w-w )+ (8060 - gi@@)n—m)
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Using Lemma 3.1, we have that

C (1B 0, + IEdllo.g, + I1Eelq, ) (1wl q, + ltllo.g, +Inla,)

C( Z hiff (2vv-D(zh)+Vsh+g;(yh))2

Tfe(?fh

+ 3R f eV (K'VE) + g5+ >, hy | AT

TPE‘?Ph lfﬁﬁﬂfzg lf
24 * 2

+ hy, | QIK'VE]m,2+ D hy, | (8K*VE,-m,)

1, man =0 [ 1,CoQ\T Ly

2

+ Zhl ((Zv]l)(zh) +spl) -ng — g€y -np + aPTzh)

ler l

* 2 : 2

+Zhlf(gK V{h-np+gzh-nf) +”d1VZh”0,Qf

ler

D=

+ llyn = yCun)IZ o, + Il — qs(uh)ng,gp) (1wl +lieloq, + lnllg, )-

Therefore,

iz — 2(up)lly 0, + lisw — s(uplloo, + 1€, — Eup)llLg,

_C( Z h’ZFfJ (ZVV'D(Zh)+VSh+g1(Yh))2
Tf

Tr€Tph

+ > f (sv- ' vED+ayen) + 3 h, [AzP

"€ P 1;N9Qy=0

+ > by | GIEVEI R+ Y hy | (gK*VE, n,)?

1,N9Q,=0 I 1,CaQ\I ly
2
+Zhl ((ZVD(Zh) +spl) - ng — g€y -np + aPTzh)
ler

+Zhl f(gK*VEh ‘n, + g7 nf)2
ler [
1

2
+1divzy|§ o+ lyn — yW)llg o, + ll¢n — dup)llf
Bef f »8ep

1=

=C (ﬂ% + llyn _Y(uh)”(z)’ﬂf + llpn — d)(uh)”(z)’ﬂp) . (3.16)

Then in order to have the error estimate ||z, — z(uh)ll1 q.» we still need to estimate ||y, —
f
y(up)llio, and [[¢n — ¢(up)ll1q,. Similarly as above, let Ey, =y, — y(u,), E, = pp —
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p(up),Ey = ¢p—p(up). Letv, =1Ive Xﬁ}, g =Ige Q’}, Y =T GXS be the interpolations
of ve Xy, g € Qf and Y € X defined in Lemma 3.1, respectively. We have

C(IEy I, + 1B lloa, +1Eg .0, ) (1M1, +llalloq, +I1¥ll1a,)

<A((yn = yCun), by — pCup), dn — $(0); (v, 9))

=A( (v — y(u), ph — P(wy), b1 — $(W)); (V= V1,0 — 41 % — 1) )

=2v (D~ (), D =v)) | = (v —vi),py = p(w) ) | +(divya =1,
+8 (K9~ $), VO =), — g (= y0wd) mpp — )
+g((dn— B, (v=vp)- 0y ) +a(Po(yn — y(w), P (v —vy) )

_ Z J (_ZW.D(thvph_f—Buh)(v—v1)+(divyh,q—qz)nf
TrET Y Tf

f —g(V-(KV$) )y —vp) + f I =vp)
rpe?h Tp 1;noQ,=0 Ly

f 2vD(yy) — ph]I) ‘ng(v—vy)+ J [KV¢p]-n,(yp — )
1,N3%,=0

ler

+ 3w, J KV my(p — )+ > J gV -1, (h — )
Ly

1,CoQ,\T ler J1

—g<Yh‘nf,¢ —¢1> +g<¢h,(V—V1)'nf> +a<PTYh’P’L'(v_vI)>)

which gives

C(I1Ey I, + 1B llog, +1Eglq, ) (Mg, + llgloq, +Illg, )

SC( > hiff (ZVV-]D(yh)—Vph+f+Buh)2+ > hipf (gV-(Kquh))Z
Tf T

Tr€Tfn Tp€Tph p
+ Z hlfJ [Dl]2+ hl J Kquh] n )

+ D>, h, | (gKVéy-n p)2+||d1vyh||ogf
lbcaﬂ \l" Iy

+ Z hy f ((ZVD(YIJ —pull) -ng + gpny + aPth)Z

ler
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1
2
+ZML@WWW%—WWWV)OMMyHMMyHWM%) (3.17)

ler
Therefore,

llyn — Y(uh)”igf +Ilpp — p(uh)”%’gf +ll¢n — ¢(uh)”igp

_C( > h%fJ (ZVV-ID)(yh)—Vph+f+Buh) + > hipJ (gv-(Kquh))2
Tf T

2

Tr€Tfn Tp€Tph p
2
+ Z hy, [Dl] + Z hy, (g[KVth] 'np)
lfmﬁﬂf:(b l ﬂaﬂ =0 lp

+ > My | @KV, n) + lidivyallE g,

lbcaﬂ \I" Iy
2
+ Zhl ((ZVD(Yh) —ppll) -0 + gppns + aPth)
ler
+ZhlJ(gKv¢h n, — gy nf)z) < Cnj. (3.18)
ler

Summing up, it follows from (3.16) and (3.18) that
12, — 2(w,)lI o, < Cln3 +n3)- (3.19)
Thus, Lemma 3.3 and (3.19) imply the a posteriori error estimate for the control:
lu—wllg o, < Cni+n35+n3)=Cn* (3.20)
Next, let us consider the a posteriori error estimate for state and costate. Note that
lly =yl o +lIp = Pl g, + 16 — p(wlE < Cllu-wlZ, (321
and
Iz = 2(u)I2 o +lls = sCu)lZ g, +11& — EwIZ o
<c (lly -yl o, + ¢ — ()l )
scnu—uhng,ﬂu. (3.22)
Then the inequalities (3.16)-(3.18) and (3.20)-(3.22) imply that
Iy =yulliq, + 1P = pallgg, + 116 — ¢nllig,
llz =zl o +lls = sull2 g, +1IE = EnllZ o < Cn?. (3.23)
Moreover, it is easy to be deduced from (3.4), (3.20) and (3.23) that
e <C(nd+llu—wlZy +lz—2ll3 ) < Cr?. (3.24)
Summing up, (3.14) follows from (3.20), (3.23) and (3.24). O
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3.2. The lower bound

We will prove the lower bounds for the error of the optimal control problem governed
by the Stokes-Darcy system so that to show the a posteriori estimators provided in Theorem
3.1 are not only reliable but also efficient. In this subsection, we set the functional j(-) =
f . j(), where j(-) is a function. Hence (j'(w),v) = fﬂu j(w)v. For simplicity, we still

denote j(-) by j(-).

Theorem 3.2. Let (y,p, ¢,2,s,&,u) and (Vi, Pr> P> Zns Sh» En» Up) be the solutions of (2.15)-
(2.17) and (2.20)-(2.22), respectively. Assume that all the conditions in the above Theorem
3.1 hold. Then

n? <C (= w2 o, +1ly =yl o, +llz2=2z4l2 g +1lp = pallZ g,
lls = shll2 o, + 11 = @ull3 o +1IE = Enll2 o +e?) + el +e2), (3.25)

where e is defined in Lemma 3.3, 7 is defined in Theorem 3.1, and

= > L (£+ B, - F+ Buh)2

Tfeg'f’h
2 —_— 2
+ 22| (sV- &V - gV (KVey)
Tp€Tph Tp
- 2
+ > h, | (eKVEIn, - g[KV$,] )
1,N9Q,=0 L
- 2
+ Y hlbf (gKquh-np—gKv(ph-np)
lbcaﬂp\l“ Ly
2
+thJ(gKV¢h n, —gkVéy,-n ) ; (3.26a)
ler
N — N2
=), 1 f (s -giom) + > B f (g50on) - 25(0))
TF €T h s Tp€Tph T
- 2
+ D" f (gV-(K*V5h)—gV-(K*VSh))
€T n Tp
- 2
+ > h, | (sIVETn, - glK*VE, n, )
1,NoQ,=0 b
- 2
+ > hlbf (gK*vgh-np—gK*vgh-np)
lbcaﬂp\l“ Iy
2
+thf(gl<*v€h n, —gK"'VE;-n ) ; (3.26b)
ler
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where f+ Buy, and g;(yy,) are the linear approximations of f+Buy, and g/ (yy) on the element
Tpin Ty g 8o(Pn)s gV - (KV¢M) and gV - (K*VEN) are the linear approximations of g5(Pn),
gV -(KV¢M) and gV -(K*VEM) on the element Tp i Ty h g[KVph] ‘n, and g[K*VEN ‘1,
are the linear approximations of g[KV¢"] -n, and g[K*VEN] -n, on the interior edges

l, in Qp, gKVd)h-np and gK*VER. n, are the linear approximations of gKVoh- n, and
gK*VEn. n, on the edges located on the interface T' or Neumann boundary 09, \ T (see,
e.g., [15], for more details on these approximations).

In order to prove the above theorem and derive the lower bound of the error, we will
use the following well known properties on the interior bubble functions for elements and
edges (see, e.g., Theorems 2.2 and 2.4 in [15]).

Lemma 3.4 ( [15]). For any regular element 7, there exists a constant C independent of v
and h. such that for all v € P

C_1||v||3ﬁ < f P vidx < C||v||g’T, (3.27a)
T
CHWllox < lpevlloe +heltpvly: < Cliviioes (3.27b)

where P is the subspace of polynomials of order n on the element T, n < oo, 1, is the
triangular bubble function on the element T such that vy .|;. = 0.

Lemma 3.5 ( [15]). Let [ = afll N 3'512 be an interior edge and let y; be the corresponding
edge bubble function such that y; = 0 on 8(%11 U flz). Let P(1) be the space of polynomials of
order n, n < oo. There exists a constant C, independent of function v and the edge size hy,
such that for all v € P(1),

CcHvig, < Jxlvzds < CllvIl§, (3.28a)
l
—-1/2 1/2
B 2 v o suer + 200l ez < ClV Il (3.28b)

Remark 3.1. In this subsection, we will use the similar edge bubble functions for the edges
located on the interface I' or Neumann boundary 0, \ " instead of on the interior edges
as in Lemma 3.5. When [ is located on the boundary, the [ is an edge of the element
Tif € Tppor T, € F,p (Dot edges of two elements as in Lemma 3.5). Then, the bubble
functions y; ; and y; , for [ are defined on the elements 7; ; and 7; , such that y; ; =0 on
dtis\land y;, =0o0n d7;, \, respectively. Although in the boundary edge cases, there
are a few differences on the definitions of the bubble functions, all results of Lemma 3.5
are still valid and will be applied in a posteriori error estimates in the following.

Next, we will use the bubble function technique [15, 16] to deal with 1, and 75 pro-
vided in Theorem 3.1.
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Firstly, we consider the estimate for 71),. We will make use of the following equation of
the residual (see, e.g., the proof of (3.18)) :

A((y—yh,p —Pho® — 1) (v,q,w))

= Z (f+Buh+V'T(yh,Ph))V+ Z (Bu— Buy)v
TPETphY Tf TET Y Ty

J g(V - (KV¢p)y — (divyy, @),

Tpegph Tp

- >, J[ Jv— J [KV¢p]-mpp— D JgKquh’npw
;N30 =0 lnan =0 L,ca\IrJip

f (—2vD(yp) + pul) - np — gppny — aPTYh)
ler

J( KV ¢y -n, + gy, - np Y. (3.29)
ler

Lemma 3.6. Let (y,p, ¢,z,s,&,u) and (Yu, Pn> Pn> Zns Sn> En, Uy) be the solutions of (2.15)-
(2.17) and (2.20)-(2.22) respectively. Then there exists a constant C > 0, independent of
h. , such that for each ¢ € ;) there holds

’L'f’

n3., <C(Ily =yl ., +lIp = pul2 . +IBa— w3,
2 £ D 112
+h2 ||f+ B, — F+ Buy2 ) (3.30)

where 14 . is defined in (3.12), and f+ Buy, is defined in Theorem 3.2.

Proof. Denote the interior residual ry = V - T(yy, py) + f+ Buy. Let ¢ be the interior
bubble functions for the element 7 in 75 ;, defined in Lemma 3.4. Let ¥; be a piecewise
discontinuous approximation to the interior residual ry on element 7¢. Then Lemma 3.4
implies that

C||1_‘f||0T _J ¢Tf = J wffrf(rf—rf)+J warfrf (3.31)

The first term on the right side of (3.31) can be bounded with the aid of the Cauchy-
Schwartz inequality and Lemma 3.4,

J wrfff(ff - l‘f) S C”Iab*rfffllo,rf”ff - rf“O,Tf
T

< CllEfllo,« NIEr — x5 llosz, - (3.32)
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Let ¢ Ry denote its continuous extension to 2¢. By the residual equation (3.29) and
choosing v = waff, g =0, ¢ =0, we have that

A((y_Yh’p _Pha¢’ - ¢’h);(va 0)0)) = J ’l/)’rfffrf + (Bu _Buh,’l/)Tfff).
Tf

Thus by Lemma 3.4, we have

J Yo Tprp
Ty

=A((y— YioP = Pro® — #n); (Y-, 75,0, 0)) — (Bu—Buy, - Ff)y,

=2v (D =y, D= 7)) = (Ao i)p—pi) | = Bu—Buyp B,

<C Uty =allue, + 1P = Prlloe e Fply o, + 1B = wllo z, e, Ty e, )

<Ch7! (Iy = vullye, + 1P = Pallo e, )llEsllo e, + CIBG = wlloe, s lloe, - (3:33)

It follows from (3.31)-(3.33) that

||1_‘f||§,ff <C (J Yo Br(Ff —l‘f)+f ¢¢fff1‘f)
Tf i

<Clllloz, I = tlloz, + Chz* (Ily = vallyc, +1lp = pallo,e, ) Iy ll.c,
+ClBCu = wy)lloz, I o s, (3.34)

and therefore we have
1 llo.e, < C(RZMly = Yl e, + 1P = pallo,s, ) + 1BCu = upllo <, + IF5 = tlloz, ). (3.35)
Then it follows from (3.35) and an application of triangle inequality that

leglloe, <IEr —xelloc, +Eslloc,

< (K:20ly = Yalhe, +1lp = Prlloe, )+ IBCa = wplloz, + 11 —rllo.s, ). (3.36)

The perturbation term ¥y — ry reduces to f+ Buy, — (f+ Buy,). Thus the desired bound for
the residual 7., ; follows:

2 1,2 2
nZ’L’f _hrf”rfllo,rf

<C(lly=yull2 ., +Ip = pall3 ., + 1B~ w2 +k2 |[F+Buy — £+ B3, ).

This completes the proof. O
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Lemma 3.7. Let (y,p, ¢,2,s,&,u) and (Yi, Pr> P> Zn, Sh> En, Uy) be the solutions of (2.15)-
(2.17) and (2.20)-(2.22) respectively. Then there exists a constant C > 0, independent of
th, such that for each 7, € 7, j, there holds

3. <C(lp— dull2, +1gV- KV — gV - KVEIR., ), (3.37)

where M2z, is defined in (3.12), and gV - (KV ¢,) is defined in Theorem 3.2.

Proof. The proof is similar to Lemma 3.6. Denote ry, = gV - (KV¢y). Let szp be the
interior bubble function for the element 7, in 7, ;. Let 7y be a piecewise discontinuous
approximation to the interior residual r4 on the element 7,,.

Similar to Lemma 3.6, we have that

J Yo TeTy ZA((Y— YnsP — Prs @ — 15 (0, 0,¢rpf¢))
=8,(6 — Pn e, 7o) = 8 (KV($ = 61), Ve, 7))

<Cllp = Pllis, e, Fallne, < CHIG = ulluc, IFllos,  (3.38)

Lemma 3.4 and (3.38) imply that

||f¢||(2),fp SCJ ¢rpfi =C (J Yo Ty(Fy — r¢)+J ¢rpf¢r¢)
Tp Tp Tp

<ClIglo,c, (h1 16 = Bully e, + 11y = rglors, ) (3.39)

and hence,
I7gllo, < C(RZ2 6 = dalluc, + 175 = rglor, ) (3.40)
The Schwartz’s inequality implies that

Irpllo,e, <Fg —Telloe, +11Tgllor,
<C(h2 1 = dullyz, + 7y = rgllore, ). (3.41)
Note that the perturbation term 7'y, —ry = gV - (KV¢y)— gV -(KV ¢y). Thus for 7, € T, p,
g =k gl <C (e - gul . +h2 gV - KV — gV - (KVeIZ . ).
This completes the proof. O

Lemma 3.8. Let (y,p, ¢,2,s,&,u) and (yi, Pr> P> Zn, Sh> En, Uy) be the solutions of (2.15)-
(2.17) and (2.20)-(2.22) respectively. Then there exists a constant C > 0, such that

ng, <C(Ily = a7y +lIp = pally; + 1B~ w2,

+ B2 |If+ B, — F+ Buhll(z)jf), (3.42)
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where 1y . is defined in (3.12), and f+ Buy, is defined in Theorem 3.2, le = ’Ellf U 'Elzf denotes
the subdomain of )¢ consisting of the union of the elements such that [ is one of the element’s
edges.

Proof. For convenience, let Ry = —[D; f] be the edge residual on the interior edge. Let
X1, be the corresponding bubble function for the interior edges [; defined by Lemma 3.5

such that y;, =0 on ol = ﬁ(f}f U flzf). Then we have

f f f

It should be pointed that Rf is only defined on ;. In the following and later, we will still
use it (or other edge residuals) to denote their continuous extension to le, and use y; fRf
to denote its continuous extension to Q¢. Then y; fl_{f € X;. Note that

A((y=yip =P ® — 813 (11,R7,0,0))

= f (£+ Bu+ V- Ty )1 ) Gt pRp)dx - f [0, 1(x1,R,)ds
I ly

= J (f"‘ Bu, +V- T(Yh;ph)) (x1,7Rp)dx
Ly
+ ) (Bu - Buh))(l’fRfdx —J [Dl](Xl,fRf)ds (344)
ly ly

Then, using Lemma 3.5, we have that

J leRfRfds
e

ZA((Y —YnP — P> ® — &1); (11, Ry, 0, 0))
- f (f+ Buh +V- ']I‘(uh,ph)) (leRf)dx — (Bu — Buh)xl’fl_{fdx
s Iy
=(2vB0 -9, Bu k), = (dvCngRO P =pi),,

— f erl,fRfdx — (Bu — Buh)xl’fl_{fdx
Tf Zf
<C((lly=yallyg, +1lp = pallo Mlxe Ryl

1l o, 20, Ry o, + 1BCa = wllgg, 0. Rl )
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-1
<c(hy " (ly = ally g, + lIp = Pillz,)
+ 1y (I1Bu = wy)llog, + liry lo,) ) IR¢ oy, - (3.45)

Combining (3.43)-(3.45), we have

leRfRde)

5 5 po1/2
<CIIRllos, IR = Ryllo, + € (A (ly = yally 1, + lIp = Paloy,)

+ /(1B — uh)nozf+||rf||01f))||Rf||01f (3.46)

IR, <c ( Jl 1Ry Ry — R s + J
f

l

Then
> !
IR g, <C (B Uy =yl g, +1lp = pallo,) + b 1B Ca = wylly,

+ 1Pl g, + IRy = Rylloy, ) (3.47)

Noting that ¥y —ry = f+ Bu, — (f+ Buy) and using the estimate of the interior residual
(3.36), it follows that

Bl
IR log, < (B (lly =yl g, +1lp = pallo,) + b 1B Ca = wylly,

1
+ b/ lif+ Buy — F+ Buyllo, + IRy —Reloy, ). (3.48)

Note that on the interior edge [ € F, \8 Q¢ , the perturbation term Rf — Ry =0. Then
we obtain the estimate:

2 _ 2
a1, =hi IR llg,,
2 2 2 2 €1 na 12
<C(lly =yaly +lIp = plZ; + 1B —upl2; -+ I+ Bu, —F+ Buy 2, ).
This completes the proof. O

Lemma 3.9. Let (y,p, ¢,2,s,&,u) and (yi, Pr> P> Zns Sh> En, Uy) be the solutions of (2.15)-
(2.17) and (2.20)-(2.22) respectively. Then there exists a constant C > 0, such that

n%, <c(lig - oulll; +hL 18V - (KVH) =gV - (KVRIlg,

+ 1y IgKV 3] - m, — gTKV ] 1, 12, ), (3.49)

where a1, is defined in (3.12), gV -(KV¢y) and g[KV¢p]-n, are defined in Theorem

3.2, le denotes the subdomain of Q,, consisting of the union of elements with [, as their one
edge.
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Proof. The proof is similar to Lemma 3.8. Let Ry = —g[K'V ;] -n, be the edge residual
on the interior edge. X1, is the corresponding bubble functions for the interior edges [,,.
From Lemma 3.5, we have that

- 5 _ _
C”R¢ ||0;lp < J leRd; = J lequ (R¢ —R¢)ds + J }(lququde. (3.50)
lP lP P
Similar to Lemma 3.8, we can estimate fz leRquqs ds as follows.
P

J leRqSRqus

b

=A((y— Y P = Prs @ — ¢1); (0,0, mj%)) - J gV - (KVp)(x1,Ry)dx

b

=g(KV(¢ — ¢h),V(szR¢))ip —ﬁ re(r Rg)dx
i

P

<C (A 2116 = dallyg, +hy/lrg g, ) 1Rgllo,- (3.51)
Combining (3.50)-(3.51) and (3.41), we have
IRgllog, < C (1219 = dully, + 217 = rgllog, + IRy —Rolloy, ) - (3:52)
On the interior edge [,,, the perturbation term
Ry —Ry=g[KVy]-n, — g[KVy] - n,. (3.53)

Then, we have that for interior edge [,

2
M5, =h, fl (slkvy-m,)
=hy, IRy,
SC(||¢> —¢ull?; +h1IgV - (KV ) — gV - (KV I ;
»lp P >'p
+ by, Ig[KVgp] -1, — SRV ] 1, 13, )

This completes the proof. O

The following lemma is about the boundary residual 1y, on the Neumann boundary
aQ\T.
p
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Lemma 3.10. Let (y,p, ¢,z,s,&,u) and (Y, Pr> Pn> Zn, Sh> Ens Uy) be the solutions of (2.15)-
(2.17) and (2.20)-(2.22) respectively. Then there exists a constant C > 0, independent of h; .
such that for each boundary edge I, C I \T, there holds

Ny <C(ll¢ — @nll>; +h711gV - (KVy) — gV - (KV )l
b 1,0, b 0,1,

+ 1y, lIgKV @1, — gKV Gy -my 2, ), (3.54)

where 1y, is defined in (3.12), gV - (KV ¢y,) and gKV ¢y, - n,, are defined in Theorem 3.2, l~b
denotes the elements with 1, as one of its edges.

Proof. Again, let Ry, = —gKV ¢y, - n, be the boundary residual on the Neumann
boundary 9Q,\I". Let x;, be the bubble function for the edges [, € dQ, \ T such that

X1, =0on a1, \ 1,. Similar to Lemma 3.9, we have that

”Rdhl’”%,lb < CJ leR(ZP,bds ZJ lequ,b(qu,b —R¢,b)ds +J }(le¢,bR¢,de. (355)
Ly

I Ly
Note that
A= yip = Pr® — 91 (0.0, 21,R))
:JZ gV (KV¢h)(Xsz¢,b)dX+Jl —gKV ey -n,(x1,Rp p)ds
b
_ Jl s leR¢,bdx+Jl YR 5R 0. (3.56)
b b

Then,

J lequ’qub’de

Ly

= ~(()’—}’h,P —Ph, ¢ — ¢1); (0,0, Xszqs,b)) —ﬁ ro(x1,Rg,p)dx
b

g(KV(d) - ¢h))v(lle¢,b))i - f ro (x1,Re,p)dx
b I,
<C (||¢ - ¢h||1jb||)(sz¢,b||1jb + ||r¢||ojb||)(1bR¢,b||ojb)

<C (1" = bull g, + 1/l gllo, ) IRg o, (3.57)

Therefore, from (3.55)—(3.57) and the estimate for the interior residual (3.41), we have
the following estimate:

~1/2 /2= _
IRy pllog, <C (hlb Pl - Pully g, +hlb/ 17 —rglloj, +IRgb _R<¢>,b||0,l,,) .
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Note that on boundary edge the perturbation term

Ryp—Ryp=—8KV-n,+gKVey,-n,. (3.58)
Then, for [, € 9Q,\T,

n%lb =h1b||R¢,b||(2),lb
<C (||¢ —oulll; + 1,18V - (KVr) — gV - (KVullg 5
+ by, I gKV by, 1, — KV -1y |2, ).

This completes the proof. O

Now, estimators ﬁ%l and ﬁ%l in n, are left to be estimated.

Lemma 3.11. Let (y,p, ¢,2,s,&,u) and (Yu, Pn> Pr» ZnsSh> En, Uy) be the solutions of (2.15)-
(2.17) and (2.20)-(2.22) respectively. Then there exists a constant C > 0, independent of hy,
such that for l C T,

iz + 15 <C (Ily =Vullic,, +lp=pallG s, + 116 = @alli -, +IIB(u— uh)llé,m)
+hillf+Buy — £+ Buyllg . +hEllgV - (KVdr) — gV - (KVPRIlG .,
+hylIgKV ¢y, n, — gKV ¢y, -, |17, (3.59)

where 7y and 7y are defined in (3.12), f+ Buy, gV - (KV¢y) and gKV ¢y, - n, are defined
in Theorem 3.2, 7, ¢ € J5 and 1, , € I, ;, are elements with | as their one edge such that
= aTl’f ﬁﬁ’rl’p.

Proof. Forl =T ;,N1T;, CT,let y;; and y;, be the bubble functions for [ on the
elements 7; ; and 7, ,, respectively, such that y; r =0on d7; ¢\l and y; , =0o0n d7;, \LI.
Let R; 4 and R; ¢ denote the edge residuals on the edge of interface I' such that

Ry = ( — 2vD(yp) +Ph]1) Ny — gPpny — aPryy, (3.60a)
Rl,gb = —gKVd)h-np—l-gyh-nf. (3.60b)
Similar to the estimate of the interior edge residual, from Lemma 3.5, we have
||R1,f||g,l =C J Xl,lez,de, ||R1,¢||§,1 =C J Xl,pRlZ,qst- (3.61)
I !
Making use of the residual equation (3.29), we have

A((y — YD — P> ® — 1) (X1.¢R1 5,0, Xl,pRz,¢))

:f (f+ Buh +V- 'H‘(uh,ph)) (Xl,le,f)dX + f (Bu — Buh)xl’le’de
Tlf

Tl,f
+<f
Tl

gV - (KVdp)(x1 pR1 p)dx + f x17RfRy pds + f A1pR1¢R1pds.
I I

P
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Then,

f Xl’le’le’de + f Xl,pRl,d:Rl,(pdS
[ l
ZA((Y — VP — P ® — 1) (X1R1s5 0 Xl,pRl,¢))

— f (f+ Buh + V. T(uh,ph)) (Xl,le,f)dX - f (Bu - Buh)xl,le,de
TLf Tl,f

- f gV - (KV¢p)(x1pR1,¢)dx

P

Z(ZV(D(Y—Yh),]D)(Xz,fRz,f)) - (diV(Xl,le,f);p _Ph) .

Tl,f

+g(KV =90, V0n,R)) | +8(6 = dnnhes ny)

Tl,

- g<(y_Yh) . nfa%l,pRl,¢> + a<PT(y— Yh)aPT(Xl,le,f)>

—f l'f(lz,le,f)dX—f B(u_uh)ll,le,fdx_f ro (X1 pR1p)dx
Tlf Tlf

Tl,p
<C((lly = ally«,, + 1P = pallo,s, e Reslh e,
+11¢ = bnllie, 11 pR1lh e, + 116 — ullollxe R fllo

+ Iy = yallollx1 pRigllog + 11y = Yalloallxr sRi £ o,
+IB(u—uwpllo,z  N1xe,sRi flloz,, +11Eplloz,  NxepRiflloe,

+lrgllo=,, IR0 glloz,, )- (3.62)

Using the above result and Lemma 3.5, we have

f Xl’le’le’de + f Xl,pRl,dJRl,dJ ds
l [

—1/2 -1/2
<C (1" (ly = yallyey, +11p = pallo.e,, ) + Ry b = dullae,, + 116 — Bulo,
11y = Villo + k1B = wlloz,, + 12Ul + By gz, )
X (IR ¢ llo,s + IRy £lo,)- (3.63)

Therefore, it follows from (3.36), (3.41) and (3.61)-(3.63) that

~1/2
IR £llo + IR, ¢ llo,z SC(hl / (||y—Yh||1,Tl,f +1lp = pallo<,, +1¢ — ¢’h||1,rl,p)

1/2 7= -
+h 2 (I = lloe,, +1IFg = rgllo,e, + B —uplloz,, )

+11¢ = Pullog + Iy = Vnllog + IR f =Ry fllog + IR —R1,¢||o,z)-
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Note that on the edge [, the perturbation term

Rl,f _Rl,f = O, (3643)
Ry 4 —Riy = —gKVy -0, + gKV¢y-n,. (3.64b)

Moreover, Lemma 3.2 implies that

16 = dullos < Ch; %Il = Bully.z,, (3.652)
ly = Valloy < Chy " 2lly = il e, - (3.65b)

Then, for [ C T", we obtain the estimate on the interface:
~2 | 2 2 2
Ty + 05 =lllRy ¢1l5,; +hllRi g5,

SC(H}’—YhHim +1lp —Ph||3,fl’f + ¢ — ¢h||i% +[|B(u— uh)||§,w
+h7||f+ Buy, — f+ Buh”(ZWJ +h7|lgV - (KVéy) — gV - (de)h)”(z)m)p

+hyllgKV gy -1, = KV Gy o1, 17 ). (3.66)

Considering Lemmas 3.6 - 3.11, only the div-residual term needs to be estimated for
15. It is easy to see that

Nadive, = 1AVYRIIG -, = Ildivyy — divyllg ., < lly —yall3 .- (3.67)
Then, it follows from Lemmas 3.6 - 3.11 and (3.67) that
n3 <C (IBu—wlB g, +Ily=ull o, +1Ip = Pallq, + 119 = $ul2o ) +Cé€
<C (=g, + Iy =yl +lp = pulidq, + 6 = dulq ) +Ce2.  (3.68)

Thus we completed the derivation of the lower bound for the term 1, defined by (3.12).
Similarly; we can obtain the lower bound for 15. To estimate terms defined in 705, we
will make use of the following equation (which can be obtained similarly to (3.29)):

A((w, t,M);(z — 24,5 — Sp, & — 5h))

= > f (81 +2v D) + Vs, )w+ Y f (81— g1 w
Tf Tp

Tf e‘gf:h Tf Egj",h

.y f (8- & vED +g5(m))n+ . f (25(0) - ga(ew))m

Tpe%,h Tp€<?p,h
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+ > Jl ~lAdw+ Y, Jg[K*veh]-npn
f P

+ Z f gK*VE, -y + (divzy, tg,
lbcaﬂ \I
J — (2vD(zp) +sp1) -ng + g€, -ny — aP zh)
leF

J( gK*'VE-n, — gz ng)n . (3.69)
leF

Using the above equation, we can prove the following lemma. Because the technique
of the proof for the lemma is similar to the proof on 7,, we only display the results and
omit the proofs.

Lemma 3.12. Let (y,p, ¢,z,s,&,u) and (Y, Pn> Pn> Zn, Sh> Ens Uy) be the solutions of (2.15)-
(2.17) and (2.20)-(2.22) respectively. Then there exists a constant C > 0 such that

3., <C(lz=zll? . +lls = sull2 . + Iy = Vallos, +12 lIg5 ) — g1 @IZ ., ),

3. <C(IE-Eull2. +1 — dulld. +H2 [IgV - (K*VE) — gV - (K VEDIZ
+h2 ligy(on) — 5 (@nl2 . ),

n, < C(lz =2y +ls =il +lly=yall2; -+ lg50m) — g2 ).

n, < c (I =&l +1l - ¢>h||2 +h2||gv-u< vE) -8V (K VEIZ,
+ i llg () — & el +hlp||M— g[KVE] 2, ),

n%, <C(IE=Eull2; +116 = nl, +h2lIgV - (K'VE,) — gV - (K'VEIIZ,
+hi ||g2(¢h) (@Il +m,,nm— (K*VE)- npum)

i3+ 0% < C Iz =zl +ls—sul2,, +1E =&l +ly—vill2.,,
16 — bullg -, +H7lgt ) — g1 -, +hillgs(dn) — g5 (@Il -,
+hgV - (K*VE) — gV - (KVEDIR . +MhllgK*VE, n, — gKVE, mylI3, ),

2 : 2
anivrf = ”dlvzhllo, = C”Z_Zh”1 TF?

where 13: ., M3z, 31,5 M31,» N31,, T3t N3 and Nadiyr, are defined in (3.13), g1(ya), 85(¢n),
gV - (K*VEp), g[K*VE,] - n, and g(K*VEy) - n, are defined in Theorem 3.2.
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Summing up, we have that

2 <C(lly—yil2q, +llz— 2l o +1lp = palZg,

lls = shllZ o, + 16 = @ull3 o +1IE = Enll2 o ) +Cel. (3.70)

Thus, we obtain the lower bounds for the term 75 defined by (3.13). Finally, we
consider the estimate for the term 7).

Lemma 3.13. Let (y,p, ¢,2,s,&,u) and (Yu, Pn> Pr» ZnsSh> En, Uy) be the solutions of (2.15)-
(2.17) and (2.20)-(2.22) respectively. Then there exists a constant C > 0, such that

e+ lu—wldg, +lIz-zl2,, ), (3.71)
where 1, and e are defined in Lemma 3.3.

Proof. Let
Qp={xeQ :u(x)=0}.

Note that B*z + j’(u) = 0 when u > 0 and B*z + j’(u) = 0 when u = 0. Moreover,
considering that j/(-) is locally Lipschitz continuous and U" is a piecewise constant finite
element space, we have that

J (e Bm)

2 2
:f (j’(uh) +B*z, — j'(u) + j’(o)) + J (j’(uh) +B*zy — j'(u) — B*z)
Qo

27\

<c (7' - ' )lZ g, + 18" (2= z)I2 g, ) + J (B2 +7©@)
Q,

0

<c (11w - ' (w)lZ g, + 1B (2= 212, ) + Jﬂ (B +7©0) Bz ()

0

<c(lu—wlq, +lz=2lZ,, ), (3.72)

where we used the fact that B*z, + j’(0) < 0 < B*z + j’(0) on Q. Therefore, we have
J (') + B2 < € (lla—wll g +llz—22,, ). (3.73)
.

Moreover, we note that u > 0 and hence B*z + j’(u) = 0 on Q7\Q*, and u;, > 0 and hence
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,(B*z, + j’'(uy)) = 0 on ¥, where Q" is defined in Lemma 3.3. It can be deduced that

f' (B*Zh +j/(uh))2
Q+

_ Jr (B*zh + j’(uh))2 + fm\m (B*zh + j’(uh))2
= f' (B*Zh+j/(uh)_gh(B*Zh+j/(uh)))2+J (B*Zh"‘j/(“h) - (B*Z+j/(“)))2
Jor an\e*

2 2
<c J (B*z +j'(w)— @, (B*z + j’(u))) +C J ((B*zh +5(uy) - (B'z+ j’(u)))
QF QF

2
+C f (2u(B2+ (W) - 2Bz + /() ) +C(llz -zl g, +llu—wl2, )
Q*

<ce+C(llz=z3q, +lu—usllZg, ). (3.74)

Thus, (3.73) and (3.74) lead that

= f (j’(uh)+B*zh)2+f (i) +82,)’
_ N

2 2 2
<c(e+llu-wlq, +lz-2zl2,, ). 0

Summing up, Theorem 3.2 is a straightforward consequence of (3.68)-(3.71), and then
we completed the derivation of the lower bound.
3.3. Conclusions
It is obtained from Theorem 3.1 and Theorem 3.2 that
e+ lu—wyllZ g, + 1y =il g, +lz— 22 +lp—pil2,
+lis =sullgq, + 16 = allf o + 115 = Enll g, < C%, (3.75a)
n? <C(llu— w2 o, +1ly =yl o, +llz= 2420, +1Ip = pallZq,
lls = shllZg, + 116 — dulq +1E—Ehlq +e*) +C (3+€2),  (3.75b)

where the constant C is independent of the mesh size h, but dependent on the constant in
the strict convexity condition and the Lipschitz constant of the cost functional. It is easy to
see that e% and e% are all higher order terms, if f, g7, g5 and K are smooth enough. This
means that the a posteriori estimator n? provided in this paper is equivalent to the error:

lu— w50, + 1y = ¥alli g, + 12— 24lli g, +lp = Prllq,

s = sullg g, + 116 = dullf g + 1€ - Enlli g +e*, (3.76)



632 M. Cui and N. Yan

if the higher order terms €, and €5 can be ignored.
Moreover, note that

2
e? :J ((j’(u)+B*z) —g’h((j/(u)+B*z)) , (3.77)
Q*
where @, is the L2—projection operator from (L%(Q))? to U", and
O ={xeQt :u(x)=0, u,(x) > 0}. (3.78)

Then e? at least has the same order with ||u — uhllg Q- Furthermore, it measures the error
between
Qf={xeqQu:u(x)>0} OQF ={xeQy:ulx)>0} (3.79)

Especially, e? can be a higher order term if
meas(Q*) < meas(Q};]Jr \ Q) =0(1), (3.80)

where meas(Q*) is the area of Q*.

Based on the above theoretical results, the a posteriori error estimates provided in this
paper can be used as the indicators of the adaptive finite element mesh refinement, where
1, and 73 defined by (3.12) and (3.13) can be used as the indicators for the state and
costate, while 1); defined in Lemma 3.1 can be used for control if the operator B* is well
defined and can be calculated easily and locally.

In this paper, we discuss the a posteriori error estimate of the finite element approxima-
tion for the optimal control problem governed by Stokes-Darcy equations. There are still
many important issues to be addressed in this area. Especially, many computational issues
have to be addressed for efficient adaptive finite element method of the related problem.
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