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Abstract. This paper is concerned with recovery type a posteriori error estimates of
fully discrete finite element approximation for general convex parabolic optimal control
problems with pointwise control constraints. The time discretization is based on the
backward Euler method. The state and the adjoint state are approximated by piece-
wise linear functions and the control is approximated by piecewise constant functions.
We derive the superconvergence properties of finite element solutions. By using the
superconvergence results, we obtain recovery type a posteriori error estimates. Some
numerical examples are presented to verify the theoretical results.
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1. Introduction

It is well known that finite element methods are undoubtedly the most widely used
numerical method in computing optimal control problems. A systematic introduction of
finite element methods for PDEs and optimal control problems can be found in [7, 15,
17-20, 23, 28, 32,33]. The literature on a posteriori error estimation of finite element
method is huge. Some internationally known works can be found in [1-4,6]. Concerning
finite element methods of elliptic optimal control problems, a posteriori error estimates of
residual type were investigated in [26], a posteriori error estimates of recovery type were
derived in [21].
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For parabolic optimal control problems, a priori error estimates of space-time finite
element discretization were investigated in [29,30], a priori error estimates of finite el-
ement methods were established in [24], and residual type a posteriori error estimates
of finite element methods were established in [27,34]. Recently, Fu and Rui considered
a characteristic finite element approximation of control problems governed by transient
advection-diffusion equations in [16].

Superconvergence properties of finite element methods for elliptic optimal control
problems were studied in [10,11,31]. Yang and Chang showed the superconvergence
properties for optimal control problem of bilinear type in [35]. The superconvergence of
optimal control problems governed by Stokes equations were derived in [25]. Some super-
convergence results of mixed finite element methods for elliptic optimal control problems
can be found in [5,8,9,12,13,36]. Recently, we discussed the superconvergence of finite
element methods for quadratic parabolic optimal control problems in [14].

The purpose of this work is to study the superconvergence and recovery type a poste-
riori error estimates of the fully discrete finite element approximation for general convex
parabolic optimal control problems with control constraints.

We are interested in the following parabolic optimal control problem:

u(x,t)eK

T
min {f (g(y(x,t))-i-h(u(x,t)))dt},
0

ye(x,t) — div(A(x)Vy(x,t)) = f(x,t) + Bu(x,t), x€Q, tel, (1.1)
y(x,t)=0, x€dQ, teld,
y(x)o):y()(x)a xEQJ

where Q be a bounded domain in R? with a Lipschitz boundary 89, 0 < T < +oco and J =
[0, T]. g(+) and h(-) are convex functionals on L2(£2). The coefficient A(x) = (a;;(x))2x2 €
(WH®(Q))2*2, such that for any & € R?, (A(x)E)-& > ¢ | £ |2 with ¢ > 0. Let B be a
continuous linear operator from L2(2) to L2(Q) and f(x,t) € C(J; L?(£))). Moreover, we
assume that g(-) is bounded below, h(u) — 00 as ||ul|;2) — oo and K is a nonempty
closed convex set in L2(J; L2(2)), defined by

K={v(x,t)eLz(.];LZ(Q)):aSv(x,t)fb, ae. (x,t)eQxJ },

where a and b are constants.

In this paper, we adopt the standard notation W™4(Q2) for Sobolev spaces on Q with
norm || - [lymacgy and seminorm | - |yyma(q). We set Hy(Q) = {v €HY(Q):v|z09 = 0} and
denote W™2(Q2) by H™(2). We denote by L*(J; W™4(£2)) the Banach space of L* integrable
functions from J into W™4(Q2) with norm ||v||s¢;.wma(q)) = (fOT ”V”;vm,q(n)dt)l/s for s €
[1,00) and the standard modification for s = co. We can define the space H!(J; W™9((2)).
The details can be found in [24]. In addition, ¢ or C denotes a generic positive constant
independent of h and At.

The plan of the paper is as follows. In Section 2, we formulate the fully discrete finite
element approximation for general convex parabolic optimal control problems. In Section
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3, we give some useful intermediate error estimates. In Section 4, we derive the supercon-
vergence properties for the control, the state and the adjoint state. In Section 5, we obtain
a posteriori error estimates of recovery type for the fully discrete approximation scheme.
We do some numerical experiments to verify our theoretical results in the last section.

2. A fully discrete finite element approximation of parabolic control problem
For ease of exposition, we set V = L*(J; W) with W = Hj(Q) and X = L*(J; U) with
U = L%(2). Moreover, we denote || - lgmqy and || - I12¢q) by Il - I, and || - ||, respectively.

Throughout the paper we impose the following assumptions:
(A1) g’(-) is locally Lipschitz continuous and there exists a constant ¢ > 0, such that

(§'OD =g y1—y2) Zcllyi —y2ll’s, Yy, y,€W. 2.1
(A2) There exists a constant ¢ > 0, such that

(R (uy) — W' (ug), uy —up) > clluy — up |, Vuy,u, €U. (2.2)
(A3) Leth(u)= fﬂj(u)dx then (h'(u),v) = (j'(u),v), where j(-) is a smooth and convex

function such that j”(-) € Wb®(Q) and j”/(-) € L*(R).
Let

a(v,w)= J (AVv)-Vwdx, Yv,wew,
Q

(fl,fz):f S+ fadx, Vfi, fo€U.
Q

It follows from the assumptions on A that
aw,v)zclvllf,  lav,w)l <Clvihliwll,  Yv,wew.

Thus a weak formula for the problem (1.1) reads: Find (y,u) € (H}(J; L?(Q))NV) xK,
such that

T
min {J (g(y)+h(w) dt} ,
0

(yew)+a(y,w) = (f +Bu,w), VweWw,tel,
¥(x,0) = yo(x), x €.

2.3)

It is well known (see, e.g., [23,27]) that the problem (2.3) has a unique solution (y,u),
and the pair (y,u) € (H'(J;L?(Q)) N V) x K is the solution of (2.3) if and only if there
is a adjoint state p € H(J; L2(£2)) NV such that the triplet (y, p,u) satisfies the following
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optimality conditions:

yow)+aly,w)=( +Bu,w), VweW,tel,
y(X,O):yo(X), XEQ, (24)

—(pe,9)+alg,p)=('(¥)q), Vqew,telJ,
p(x, T)=0, x €N, (2.5)

(W (w)+B*p,v—u) >0, VvekK,teld, (2.6)

where B* is the adjoint operator of B.
Let 7" be regular triangulations of  and 2 = U__,1%. Let h = max_c,n{h.}, where
h. denotes the diameter of the element 7. Further more, we set
uh = { v, € L2(Q) : |, = constant, V1 € Th },
Khz{vheUh : aSvth},
wh = { VREC() : Wl P, YT €T vyloq=0 },
where P; is the space of polynomials up to order 1.

We now consider the fully discrete finite element approximation of the problem (2.3).
Let At>0,N=T/At€Z", t,=nAt,n=0,1,---,N. Set " = ¢(x, t,) and

(pn _ (pn—l

d n
tP At

) n=1,---,N.

We define for 1 < p < oo the discrete time-dependent norms

N—k »
[ e———— (At ||‘PnHlv)vm’q(ﬂ)) ’
k

n=1-—

where k = 0 for the control u and the state y and k = 1 for the adjoint state p, with
the standard modification for p = co. For convenience, we denote ||| - |||;p(.wma(q)) by
1wy and let

;W) == { ¢ : [llelllpwny <0 },  1<p<oo.
Then a possible fully discrete finite element approximation of (2.3) is as follows:

min {HZ:At (g (o) +h(“2))}’

ulekh
(dt.y}rlliwh) ta (y}?’wh) = (fn_'_Bu}Tll,Wh) > VYwy, € Wh, n=1,---,N,
V) =y3x), xeQ,

2.7)
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where yg(x) € W' is an appropriate approximation of yy(x).

It follows (see e.g. [27]) that the control problem (2.7) has a unique solution (y;,u}),
n=1,---,N,and (y;,u;) € Whx K" n=1,---,N, is the solution of (2.7) if and only
if there is a adjoint state p,’:_l e W, n=1,--- N, such that the triplet (y,’:,p,’:_l,u,’;) €
Whx WhxKl n=1,--- N, satisfies the following optimality conditions:

(dty]':,wh) +a (J’;T,Wh) = (f” +Bu,’;‘,wh) , Vw,eWh n=1,--- N,
Yr(x) = yg(x), xeq, (2.8)

— (dpfan) +a(qwry ') = (& (OF) @),  VYaneWhn=N,---,1,
py(x)=0, x €N, 2.9)

(h’ (uﬂ)+B*pg_1,v—u2) >0, VveK,n=1,---,N. (2.10)

Generally speaking, we select yg(x) = P, (yo(x)) and Py is an elliptic projection operator
which will be specified later.

3. Error estimates of intermediate variables

We define some intermediate variables. For any v € K, let (y(v),p(v)) € V x V be the
solution of the following equations:

(y:(),w) +a(y(v),w) = (f +Bv,w), YweWw,teld,
y(»)(x,0) = yo(x), x€Q, (3.1)

- (p),q) +a(g,pM) = (g'Y(),q), Vqew,telJ,
p(v)(x,T)=0, x €. (3.2)

For any v € K, a pair (y,’f(v),p}’}_l(v)) e Whx Wwh n=1,2,--- N, satisfies the following
system:
(deyf ), w) +a (V) wy) = (" +Bv™, wy,) , Vw,eWh n=1,--- N,
YR = yg(x), x€Q, (3.3)

— (dePpO),an) +a(anpp D) = (& (M) qn), YageW" n=N,--- 1,
pr(v)(x)=0, x €. (3.4

Let u and uy, be the solutions of (2.4)-(2.6) and (2.8)-(2.10), respectively. It is clear that

(¥,p) = (y(W), p(w)) and (¥, pn) = (Yu(up), pr(up))-
We introduce the standard L2(£2)-orthogonal projection Qj, : U — U™, which satisfies:

forally e U

(Y —Qup,v) =0, Vv, eUm, (3.5)
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and the elliptic projection P, : W — W", which satisfies: for any ¢ € W

a(p —Pyp,wp) =0, Vw,ewh (3.6)

We have the following approximation properties:
Iy —Qulls < Ch'™** |y, VY €H'(Q),s=0,1, (3.7)
¢ — Proll < CR?[|Pll12qy, V¢ € H*(Q). (3.8)

Lemma 3.1. Let (y3(Qpu), pn(Qnu)) and (yi(u), py(u)) be the discrete solutions of (3.3)-
(3.4) with v = Quu and v = u, respectively. Suppose that u € llz)(J ;HY(Q)) and the assump-
tion (A1) is satisfied. Then

ya(Qnt) — yr(@lli2gty + NPR(Qut) — Pr( |2ty < CH2. (3.9

Proof: Set v =Qju and v =u in (3.3), respectively. Then we obtain the following error
equation:

(deyp(Quw) — deyi W), wy) +a (7 (Quu) — yr(w), wy) = (B (Quu" —u™) , wy),
Vw,eWh n=1,--- ,N. (3.10)
From Cauchy’s inequality, we have

(deyP(@Quu) — doy(w), ¥ (Quu) — ¥ (W)

1
Z oAt (”y}?(QhU) - J’;?(H)HZ — |y @) - y;':_l(u)”Z) , (3.11)

and
(B (Quu" —u"), y(Qu) = yp(w)
<C||@uu" = u*||_, [|yr@u) = yp)||, < Ch?uml [|yrQu) — yi@w)||
<CEMH |2 + 5 ||y (Qu) — yrw); - (3.12)

By choosing wy, = y;'(Quu) — y;'(u) in (3.10) and multiplying both sides of (3.10) by 2At¢,
then summing n from 1 to N, we get

N
7N (@) — YN @)+ D At ||y - yiw);
n=1

N N
2
<CEM D I Atu"2+6 D At||yr(Qu) - ypw); - (3.13)
n=1 n=1
Thus, we have

yr(Qru) — yr(Wlllizgy < Ch2|||u|||12(H1)~ (3.14)

Similarly, we obtain that
lprn(Qrw) — pr(@I[li2ey < CllYR(QRW) — Ya(@I[l12¢.2)- (3.15)

Then (3.9) follows from (3.14) and (3.15). O
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Lemma 3.2. Let (y(v),p(v)) and (yn(v), pn(v)) be the solutions of (3.1)-(3.2) and (3.3)-
(3.4), respectively. Assume that y(v),p(v) € ll%(J;HZ(Q)) NH(J;H*(Q)) N H*(J; L*(Q))

and the assumption (A1) is satisfied. Then we have

1Py () = YOz + 11Pap (V) = P2y < € (R + At ).

Proof. From (3.1) and (3.3), we obtain
(P ) = deyp ), wy) +a (3" (V) = ¥ (), wy) =0,
Yw,eWh n=1,--- N.
By using the definition of P,, we get
(dePoy" () = doyp (), wy) +a (Poy"(v) = yj(v), wy,)
=(dPy" () = d,y" () + dy" (V) = YV, wy) -

Note that
(dePry" (V) = dey" (), Poy"(v) = Y1)
<||dePhy" () = dey" )| ||Poy™ () = ¥ )
<Ch*||dey" )|, |[Pry" () = v )|
<ch*(an)™ J |y 0|, dt ||Pry™ () = yr )
<Ch¥(At) 2 1y, e, o mcan |Pay" () = yE 0]
and

(dey" () = yr ), Py (v) — Y2 (7))

<(ADH|y"0) =y W) = AtyrO)| [Py () = )|

=(an™ J ' (tas — D0 (O [Py ") =y )|

n—1
1
<CAD2 |y lae, ez Py ") = v 01| -

Similar to Lemma 3.1, from (3.18)-(3.20) and Young’s inequality, we have
2 al 2
[Py ) =y O)|* +¢ D APy () = yr)||;
n=1
<C(8) (H1ye IRy yyagay + BO1yee oy 2y )

N
+8 Y At||Py" () -y
n=1

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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Thus, we get

11Phy () = yaWlllizgey < € (B2 + At) . (3.22)

Similarly, we derive that
1P (7) = paOlllizgy < € (W + At) . (3.23)
From (3.22) and (3.23), we obtain (3.17). O

4. Superconvergence analysis

Let u be the solutions of (2.4)-(2.6). For a fixed t* (0 < t* < T), we divide Q into the
following subsets:

Qft={ur:7tcQa<u(,t)<b},
Q={ur:tcQu(,t);=a or u,t),=b},
o =a\(atu’).

It is easy to see that the above three subsets are not intersected with each other and Q =
QTuUQ®UQ~. We assume that u and Jj, are regular such that meas (Q7) < Ch, (see

e.g., [30]).

Theorem 4.1. Let u and uy, be the solutions of (2.4)-(2.6) and (2.8)-(2.10), respectively.
Assume that all the conditions in Lemmas 3.1-3.2 are valid and the assumptions (Al1)-(A3)
are satisfied. Moreover, we suppose that the exact control and adjoint state solution satisfy

u, K'(u)+ B*p € I3(J; WH(Q)).
Then, we have
1Quu — uplllz2y < € (h§ +At). 4.1
Proof. Letting v = u;, in (2.6) and v = Q,u" in (2.10), we derive
0< (h’ (W")+B*p",up — u”) + (h’ (uZ) +B*p,’:_1,Qhu” - uﬂ)

= (h’ (u,’;) — R (u") —|—B"‘p}’:_1 —B*p",Quu" — uZ) + (K’ (W) +B*p",Quu" —u"). (4.2)
According to the assumption (A2) and (4.2), we obtain

cllQuu” — upl?
< (h’ (Qu™) — 1 (u;‘) ,Quu — u,';‘)
= (h’ ™ —n (u;;‘) ,Quu" — u;;‘) + (h’ (Quu™) — R (u),Quu" — uZ)
< (K W) +B*p",Quu" —u") + (h’ (Quu™) —h (™) +B*p]'}_1 —B*p",Quu" — u;‘) . (4.3)
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From the assumption (A3), we have that there exists a constant 0 < 6 < 1 such that
(h’ (Quu™) — R (u™),Quu" — uZ)
= (57 (@ =) 17 (46 (@ =) (@ ) Q=)
=((" @) =7 (" @) (Quu" —u"),Quu* —uj)
42 (77 0+ 0 (Qu ) (Qua" — "), Q" — )
<Ch" )|y 0 flQue” = flQua” = ]
#5157 Ol o =y e~
<Ch? ||u"||; [|Quu™ —up|. (4.4)
It is clear that
(B*pg_l — B, Qu" — u}r:)
= (B*pp " (un) = B*pp~(Quu) + B*pj " (Quu) — B*pj (), Quu — u)
+ (B*p;‘_l(u) —B*p" 1 (u) + B*p" 1 (u) — B*p"(w), Quu"t — u,';‘) . (4.5)
By using (A1) and (3.3)-(3.4), we have
(B*p,’:_l(uh) —B*p} 1 (Quu), Quu" — uﬂ)
=— (&' (yiun) — &’ (yr@Quw) , ¥ (up) — y2(Quu))
<—c|lyru) - yp@uw)|’ <o. (4.6)
From (4.3)-(4.6), we obtain

N
11Quu = upllly 2 = D At (Quu" — uft, Quu" — u})
n=1
N

N
< Z At (h’ ")+ B*p",Quu" — u”) + Z At (B*pg_l(Qhu) - B*p}’:_l(u), Quu" — u,’:)
n=1

n=1

N N
+Z At (B*pg_l(u) —B*p" (u),Qu" — uﬂ) +Z At (B*p”_l(u) —B*p"(u),Quu" — uZ)
n=1 n=1

N
+CR2AE Y |l || Qu — || == 1 + I, + I + Iy + Is. 4.7)

n=1

For the first term, we have
(h’ ™)+ B*p",Quu" — u”)

:J +J +J (W (") +B"p") (Quu" —u") dx, (4.8)
ot Q0 Q-
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and (Quu" — u™)|qo = 0. From (2.6), we have h'(u") + B*p" = 0 on Q. Let n be the
element average operator defined in [21]. Then

N
I :AtZ (K W)+ B*p") (Quu" —u™) dx
n=1J07
N
:AtZ (K W")+B*p" — n(h' (") +B*p")) (Quu" —u") dx
n=1J07

N
<ch*ac ) [W @) +Bp"|, o lu"lle-
n=1

N
<cr?at) | @") +BD" 1000 10" w0y meas (27)

n=1

< (I @)+ By + g 1)) - 4.9)

From Young’s inequality and Lemma 3.1, we derive

N
I, =Y At (B* (p 1 (Qu) — pp ' (W), Quu" — )
n=1

N N
<c(8) ) At i) - p @) + 8D At | Qut - uf?
n=1 n=1

=C(&)pr(Qnt) = Pr(III 2y + S111Qu = upllfa, 2,

<C(&)h* +51l1Qnu — unlllfy 2y- (4.10)

By using (3.8), Young’s inequality and Lemma 3.2, we get

N
Iy =Y At (B (pj ' (u) = Pyp™ ' (u) + Pyp" ' (u) = p" " () ,Quu" — u})

n=1

N N
<C(8) > At|lppw) — Pt @)|” + C(@R D Atllp" w12
n=1 n=1

N
+ 52At ||Qhu” — UZHZ

n=1

<C(8)MIprs) = Pup (113 2y + CEOR PN gy, + 6111Quts = gl 2

<C(8) (h* + (A0)*) + 61/1Quu — uplII3 2y- (4.11)
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Note that
N
=Y At (B (p" () - p"(w)) , Quu" — u})
v
<cyac| o] dcfon )
n=1 th1
<CEN AP (W)l 2y + SIIQu = upllZ 2,
and

N
I =Ch2AtZ ™y f|Quu™ = up
n=1

N N
<C(&I* D At [ul2+6 D At [|Qu —ufl])”
n=1 n=1

<CEMNulllZ gz, + B11IQut — I3 2
By letting 6 be small enough, (4.1) follows from (4.7)-(4.13).

583

(4.12)

(4.13)
O

Theorem 4.2. Let (y,p,u) and (¥, pn,uy) be the solutions (2.4)-(2.6) and (2.8)-(2.10),

respectively. Assume that all the conditions in Theorem 4.1 are valid. Then

3
1Py = Yalllizgy + 11Pwp = palllizgrny < € (h2 +At).

Proof. From (2.4) and (2.8), we have the following error equation:

(y[‘ — dty]':,wh) +a (y” —J’;T,Wh) = (B (u” - u;‘) ,wh) s

Vw,eWh n=1,--- N.

By choosing wy, = P,y" — y;' and using the definition of Pj,, we get

(dePoy™ = deyy Poy™ = yi) +a (Poy" = ¥ Poy™ = i)

= (dtPhy” —d,y"+d,y"—y'+B (Qhu” - uZ) +B (u" —Quu") ,Pyy" — y,’:) .

Note that

(8 (=0 By = ) = € Ju =0 [y -

2
<Ch?|lu™|ly ||Poy™ = y71||, < CEORHE + 8 ||Poy™ — ¥71|[3 -
Similar to Lemma 3.2, by using (4.1) and (4.16)-(4.17), we derive
3

1Py = yilllegr < € (h: +At).

Similarly, we get that
3

11w = prlllzgny <C (h7 +At).

From (4.18) and (4.19), we derive (4.14).

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

(4.19)
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5. A posteriori error estimates

We introduce recovery operators R, and Gy, for the control and the state and the ad-
joint state, respectively. Let R,V be a continuous piecewise linear function (without zero
boundary constraint). Similar to the Z-Z patch recovery in [37,38], the value of R;v on
the nodes are defined by least-squares argument on an element patches surrounding the
nodes. The gradient recovery operator Gyv = (thxl’RhVXz)’ where Ry, is the recovery
operator defined above for the recovery of the control. The details can be found in [21].

Theorem 5.1. Let u and uy, be the solutions of (2.4)-(2.6) and (2.8)-(2.10), respectively.
Assume that all the conditions in Theorem 4.1 are valid. Moreover, we suppose that u €
L®(J; Wh®(Q)) and Q is convex. Then

11Ryuy, — ulll22) < C (h% +At). (5.1)
Proof. It follows from Lemma 4.2 in [21] that
Ryt — || < ||Rntef — RpQuut”|| + ||RpQute™ — Rp™|| + ||Rpu™ —
< ||Rat — RiQuu"|| + |RQuu" — Rys”|| + Ch2. (5.2)
By using the definition of R, we have

Ruu" = RyQuu", (5.3)
|[Ryup = RpQuut”|| < € [[up — Quu™|)- (5.4)

From Theorem 4.1 and (5.2)-(5.4), we obtain

[11Rntty, = ull [y ,2) < Ch® + CllIQuu = uplll ) < € (K +(A0)%). (5.5)

2
12(L?)

Then (5.1) follows from (5.5). O

Theorem 5.2. Let (y,p,u) and (¥, pn, Up) be the solutions of (2.4)-(2.6) and (2.8)-(2.10),
respectively. suppose that all the conditions in Theorem 4.2 are valid and y,p € ll% (J; H3(Q)).
Then, we have

3
116y = V¥ lllzgz) +11Gup = VPl < € (hE +At). (5.6)

Proof. Let y; be the piecewise linear Lagrange interpolation of y. According to Theorem
2.1.1 in [22], we have

1Py = yilli < CR|lyll5. (5.7)
From the standard interpolation error estimate technique (see, e.g., [15]) that

IGryr — Vyll < CR?|yls. (5.8)
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By using (5.7)-(5.8), we get

[Gryi = V" || =(|Gryit = GrPay™ || +[|GrPay™ = Gy}t || + || Gayf = V¥
<C|lyi = Puy"{|, + € [|Pay™ = ¥7{|; + || Gyt = V|

<C|lyp = Pay"||; + CR2lly - (5.9)
Therefore,
Z n nl|2 Z n n||2 4 = n||2
D oa|Gur - vy|F < e YAy - Puym|[; +cr D a]y;- (5.10)
n=1 n=1 n=1

From Lemma 4.2 and (5.10), we derive
3
16y = Vyllleq < € (A + At). (5.1)
Similarly, we can prove that
3
[1Grpy — VPllli22) < C (hz + At) ) (5.12)

Then (5.6) follows from (5.11)-(5.12). O

By using the above superconvergence results, we obtain the following a posteriori er-
ror estimates of fully discrete finite element approximation for parabolic optimal control
problems.

Theorem 5.3. Assume that all the conditions in Theorems 5.1 and 5.2 are valid. Then
N1 = [|[Rptpy — upllliz2y = lllu — uplllizg2y + 0 (h% + At) : (5.13)
N2 = 1Gryn = Vyulllzazy = IV (v = yi) 22y + € (h% + At) , (514
N3 = [1Grpn — VPrllliz2y = IV (P — pi) llliz2) + @ (hg + At) - (5.15)

Proof. From Theorems 5.1 and 5.2, it is easy to obtain the above results. O

6. Numerical experiments

For a constrained parabolic optimal control problem:

inJ
min (w),

where J(u) is a convex functional on X and K is a close convex subset of X, the iterative
scheme reads (n=0,1,2,---):
{ bty 1,v) = b(up,v) — pp (J'(wy),v), VveUh,
2

(6.1)
Upt1 = PKb(urH_%))
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where b(-,:) = fOT(-, -) is a symmetric and positive definite bilinear form, p,, is a step size
of iteration and the projection operator PI? can be computed in the similar way as [21].

The bilinear form b(-,-) provides a suitable precondition for the projection algorithm.
For an acceptable error Tol, by applying (6.1) and to the discretized parabolic optimal
control problem (2.7), we present the following projection gradient algorithm:

Algorithm 6.1. Projection gradient algorithm
Step 1. Solve the following equations:

b(un+%,v) = b(u,,v) — p, fOT (h' (u,) +B*pp,v), Upy1,Uy € uh,vveuh,
(y%_Ayr;__l',W) +a (y,‘;,w) = (fi +Bu;,w) . YLytewh vwewh,
(p”Ajp",q) +a(apt) = (g (vi).9), PLP €W YaeWr Uy =P(u,,),

where we have omitted the subscript h;
Step 2. Calculate the iterative error: E, 1 = |||up1q — tyllli22y
Step 3. If E, 1 < Tol, stop, else go to Step 1.

Similar to [21], by selecting different meshes for the control and the state and the
adjoint state and using 1; and 7, + 15 as meshes refinement indicators for the control and
the state and the adjoint state, respectively. For an acceptable error Tol’, we construct the
following fully discrete adaptive finite element algorithm:

Algorithm 6.2. Adaptive algorithm

Step 1. Solve the discretized optimization problem with the Projection gradient al-
gorithm on the current meshes get numerical solution u/ and calculate the error
estimators 1;;

Step 2. Adjust the meshes by using the estimators 7); and update the numerical solu-
tion u), and obtain uj,, on new meshes;

Step 3. Calculate the iterative error: E ;= [||lu),, —uylll;212)

Step 4. If E; ., < Tol’, stop, else go to Step 1.

The following numerical examples were solved with codes developed based on AFEPack.
The details can be found at http://www.acm.caltech.edu/~rli/AFEPack/. Just for simplic-
ity, we let I be the 2 X 2 identity matrix and denote ||| - |||;2;2y by ||| - |||. The discretization
was described in Section 2: the state and the adjoint state are approximated by piece-
wise linear functions and the control is approximated by piecewise constant functions. Let
Q =1[0,1] x [0,1], T = 1 and B be the identity operator. We solve the following type of
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Table 1: The error of the control variable, Example 1.

h At [l —unlll | 11Qnu — upll | [l = Ryu|ll
1.0E-1 |1/10 | 7.22E-1 3.61E-2 5.48E-2
5.0E2 | 1/30 | 3.67E-2 8.82E-3 1.78E-2
2.5E-2 | 1/90 | 1.80E-2 3.01E-3 5.74E-3
1.25E-2 | 1/270 | 9.01E-3 9.00E-4 1.93E-3

parabolic optimal control problems:
fr 2 2
min EL (Hy(x, t) — yalx, t)” +Hu(x, t) —ug(x, t)” )dt ,

{ ¥ (x, 1) —div(A(x)Vy(x,t)) = f(x,t) + Bu(x,t), x€Q, te€J,
y(x,t) =0, xe€dQ, ted,

¥(x,0) = yo(x), x €.

Moreover, we assume that
K={v(x,t) € L*(J;L2(Q):a<v(x,t)<b, (x,)eQxJ}.
Example 1. The data are as follows:

a=-04, b=0.4,

_ [ sin(mx,/2) 0
Alx) = ( 0 ' sin(7xy/2) )
p(x,t) =sin(27x;) sin(27wx,)(1 — t),
y(x,t) =sin(27x;) sin(27x,y)t,

ug(x,t) =2sin(2mx,)sin(2mx,)t,
u(x, t) = max ( — 0.4, min (0.4, uy(x,t) — p(x, t))),

flx,t) =y (x,t) —div(A(x)Vy(x,t)) — Bu(x, t),
Ya(x, ) =y(x,t) +p.(x, t) +div(A* (x)Vp(x, t)).

This example is solved by the Projection gradient algorithm. The relevant errors |||u —
uplll, 111Quu — upll] and |||u — Ryuyl|| on a sequence of uniformly refined meshes are shown
in Table 1. It is easy to see |||lu — up||| = @(h+ At), [||Quu — || = @(h®/? + At) and
[[lu = Rpuylll = 0(h*/? + At) which confirm our theoretical results. In Fig. 1, we plot the
profile of the numerical solution uy at t = 0.5 when h = 1.25E — 2 and At = 1/270.
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01 il

Figure 1: The numerical solution u;, at t = 0.5 when h=1.25E — 2 and At =1/270 for Example 1.

Table 2: Numerical results for Example 2 on uniform meshes.

uniform 1 2 3 4 5
nodes (u, y,p) 121 441 1681 6561 25921
[lu— | 1.12E-1 | 7.09E-2 | 6.39E-2 | 4.99E-2 | 3.51E-2

IIVy = Vyulll | 2.45E-1 | 1.23E-1 | 6.17E-2 | 3.10E-2 | 1.58E-2
[IVp —Vpulll | 2.48E-1 | 1.30E-1 | 7.60E-2 | 5.44E-2 | 4.74E-2
1Ryt — upll 1.47E-1 | 1.09E-1 | 6.80E-2 | 4.46E-2 | 3.18E-2
Gy — Vyalll | 2.49E-1 | 1.24E-1 | 6.17E-2 | 3.08E-2 | 1.54E-2
I11Grpy — Vpulll | 2.48E-1 | 1.24E-1 | 6.17E-2 | 3.08E-2 | 1.54E-2

Example 2. The data are as follows:
A(x)=1I, a=05, b=1.5,
p(x,t) =sin(mtx;) sin(7x,) sin(7t),
y(x, t) = sin(7mx;) sin(mx,) sin(7t),

ug(x,t) = {

2sin(7x;) sin(wax,) sin(7we), x;+x9 <1,

2sin(mx;) sin(may)sin(we) +1, x;+x, > 1,
u(x,t) = max (O.S,min (1.5,uq(x,t) — p(x, t))),

flx,t) =y, (x,t) —div(A(x)Vy(x,t)) — Bu(x,t),

Ya(x,t) = y(x,t) +p,(x,t) + div(A* (x)Vp(x,1)).

We take a small time size At = 1072 and solve this example by using the Projection
gradient algorithm and the Adaptive algorithm.

Numerical results based on a sequence of uniformly refined meshes and adaptive
meshes are listed in Table 2 and Table 3, respectively. It is clear that the adaptive meshes
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Table 3: Numerical results for Example 2 on adaptive meshes.

adaptive 1 2 3 4 5
nodes (u) 139 422 725 1179 1915
nodes (y,p) 139 513 1943 3283 4439
[lu —upll| 7.25E-2 | 5.79E-2 | 4.31E-2 | 3.02E-2 | 2.24E-2
IIVy —Vyulll | 1.74E-1 | 8.75E-2 | 4.42E-2 | 3.80E-2 | 3.67E-2
[IIVp —Vpulll | 1.79E-1 | 9.79E-2 | 6.28E-2 | 5.86E-2 | 5.78E-2
[l|Rputy, — up]|| 1.00E-1 | 6.82E-2 | 4.71E-2 | 3.50E-2 | 2.59E-2
1Gryn — Vynlll | 1.82E-1 | 8.87E-2 | 4.44E-2 | 3.79E-2 | 3.66E-2
11Gnpn — V!l | 1.82E-1 | 8.87E-2 | 4.44E-2 | 3.80E-2 | 3.66E-2

Figure 2: The adaptive mesh of u when nodes = 1915 for Example 2.

589

Figure 3: The numerical solution u, at t = 0.5 on adaptive mesh (nodes = 1915) for Example 2.

generated via the error estimators 7); are able to save substantial computational work, in
comparison with the uniform meshes. In Fig. 2, it is easy to see that the mesh of u adapts
very well to the neighborhood of the discontinuous line x; + x5 = 1, and a higher density
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of node points are indeed distributed along the line. In Fig. 3, we plot the profile of the
numerical solution uy at t = 0.5 on adaptive mesh when nodes = 1915.
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