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Abstract. The numerical modeling of a binary solidification with a mushy layer mech-

anism is considered in this manuscript. The nonlinear coupled system of equations

describes the heat and mass diffusions of a one-dimensional spatial variable in the semi-

infinite interval. Also formulated is a transformed system in a finite interval. We propose

numerical methods for solving the nonlinear system using a threshold strategy based on

fixed computation-domain approach. Our calculated results and those from the LeadEx

field experiment are well-matched in their tendencies.
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1. Introduction

Binary solidification of liquids has received considerable attention in the literature due

to its wide applicability. If the liquid is an alloy (a mixture of two or more components), its

crystallization process completely differs from the solidification process of a pure liquid. In

particular, various distributions of impurity in the solid phase lead to different mechanical

and physical properties of ingots. This phenomenon arises due to the impurity displace-

ments in the melting process by the moving front of the solidification. If the impurity

displacement is rather large, the constitutional supercooling originates ahead of the planar

solid-liquid interface [23] and, generally speaking, the two-phase zone (mushy region)

appears. Moreover, solid nuclei in the form of newly born crystals may evolve in this zone.

Mathematical descriptions of crystallization processes play a very important role in

crystal growth [10, 26], engineering [33], oceanography [22] and metallurgy [12]. The

mathematical models allow for the accurate predictions of the many properties of solids
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produced by the melt cooling process. The authors of Ref. [21] developed a full set of

thermodynamic equations for a mushy zone, and approximately solved a mush-reduced set

of them for the constrained growth of a binary alloy. A more complete solution has since

been given in [1] for the steady-state solidification conditions. Nevertheless, solidification

with a constant rate is the specific regime.

Generally speaking, the rate of solidification is a function of all operating and phys-

ical parameters and also it is a time-dependent function. First of all, the structure of

this mushy region depends upon a relation between the kinetics of both the solid-phase

formation and the front motion. When the former is much slower than the latter and,

thus, the mushy region is almost free from solid elements, the classical Stefan problem

provides for a sufficiently acceptable approximation. In the opposite limiting case, the

two-phase zone structure is nearly at equilibrium so that its local temperature coincides

with the phase transition temperature at a given point. In that situation the solidification

is described with the help of Borisov’s quasiequilibrium mushy region model [8]. The sce-

nario suggested by Borisov is described by nonlinear heat and mass transfer equations and

boundary conditions accounting for moving boundaries [8,21].

Our previous study [1–5] considerably extended the range of the theoretical applica-

tion, by solving approximately the Stefan problem in terms of analytical formulae in the

special case of simple mushy region for the modeling of moving boundary processes fre-

quently met in geophysics and metallurgy [12, 30, 38]. The solidification problem can be

considered as a generalization of the classical two-phase Stefan problem [20]. Nonethe-

less, much of previous theoretical works have involved substantial approximations to facil-

itate the derivation of analytical solutions.

There exist various theoretical approaches to the classical Stefan problem in differ-

ent forms with variable coefficients. The analysis can be based on generailzed func-

tions [29], or Green’s function via the method of images [34], or an integral formulation

and Schauder’s fixed point theorem [25] or contraction mapping theory [16]. The argu-

ments of existence of a solution, in many works, rely on functional iterations by finite dif-

ferencing in the temporal variable. However, many of these assume that the temperatures

are kept at zero on the free boundary and the maximum principle applies. This is not true

in a mushy layer model, in which undercooling (or supercooling) is allowed. Furthermore,

heat and mass diffusions are coupled. To the author’s knowledge, there are no published

results in a journal regarding computer simulations of this real-life problem [30]. We refer

to [19,37] for further theoretical references in the classical Stefan problem.

Very recently, the advent of numerical methods such as level set methods [28, 31, 35]

and more powerful computers have provided for the opportunity to use DNS ( direct nu-

merical simulation ) of binary solidification. Due to the high nonlinearity shown in the

field experiments during the solidification process, we propose in this work numerical

procedures to simulate the dynamical evolution of the process based on the mushy layer

model [3]. The numerical computation of the Stefan problem has been studied by re-

searchers over decades, e.g., [13, 18, 24] and references therein. Even so, the sheer size

of the computational time-step remains the primary difficulty encountered in numerical

evolution. As depicted by many researchers, the size of a time-step is around 10−5 second
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and the time duration from the LeadEx experiment [30] is 3776 minutes. Therefore, we

need a very stable algorithm for longer time-frame simulation.

A classical two-phase Stefan problem with a similarity solution [20] is used as a pro-

totype problem to verify our methods and routines. More than five computational models

are thoroughly tested and compared in a preliminary study [27]. Finite-difference scheme

is adopted, accordingly, for final runs in our DNS described in the current work. Based on

the mushy layer model, our computation shows dynamic evolution which is qualitatively

consistent with the field experiment [30,38].

The idea of a model with a mushy layer is used by many authors in different applica-

tions from geophysics to metallurgy. For example, the Earth inner core represents a mushy

layer ( [14, 17]). The model we proposed and the numerical procedures we applied may

be helpful in similar applications.

2. The mushy layer model for physical problems

We consider the modeling of a binary solidification with a mushy layer mechanism.

The system of equations describes the heat and mass diffusions of one-dimensional spatial

variable in the semi-infinite interval in the subsection below, and in a finite interval in

a later subsection. The physical meanings of variables in the governing equations are

described in the nomenclature section.

2.1. Mushy layer model in the semi-infinite interval

Continued from the previous work [3], we propose a formulation of a mushy layer

model for the Stefan problem which consists of two phases with a mushy layer. The math-

ematical formulation here is new and suitable for theoretical analysis and computational

purpose.

Unknowns : T (x , t), C(x , t), ϕ(x , t), ϕa(t), ϕb(t), a(t), b(t)

Solid Phase , 0≤ x < a(t)

PDE: Tt(x , t) = α
I
Tx x (x , t). (2.1)

B.C.: T (x = 0, t) = T
Air
(t). (2.2)

Solid-Mush Boundary , x = a(t)

ODE : Lv(1−ϕa(t))at = k
I
Tx (a

−, t)−
�

k
I
ϕa(t) + k

W
(1−ϕa(t))

�

Tx(a
+, t),(2.3)

C(a+)(1−ϕa(t))at = −D
W
(1−ϕa(t))Cx (a

+). (2.4)

B.C. : ϕ(x = a(t), t) = ϕa(t). (2.5)
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Mushy Layer , a(t) < x < b(t)

PDE :

�

ρ
I
c

I
ϕ+ρ

W
c

W

�

1−ϕ
�

�

Tt =
∂

∂ x

�

�

k
I
ϕ+ k

W
(1−ϕ)
�

Tx

�

+ Lvϕt , (2.6)

∂

∂ t

�

�

1−ϕ
�

C

�

=
∂

∂ x

�

D
W

�

1−ϕ
�

Cx

�

, (2.7)

T = −mC . (2.8)

Liquid-Mush Boundary , x = b(t)

ODE : Lvϕb(t)bt =

�

k
I
ϕb(t) + k

W
(1−ϕb(t))

�

Tx (b
−, t)− k

W
Tx (b

+, t), (2.9)

C(b−)ϕb(t)bt = D
W
(1−ϕb(t))Cx (b

−)− D
W

Cx(b
+), (2.10)

Tx = −mCx . (2.11)

B.C. : ϕ(x = b(t), t) = ϕb(t). (2.12)

Liquid Phase , b(t) < x < +∞

PDE : Tt = αW
Tx x , (2.13)

Ct = D
W

Cx x . (2.14)

B.C. : T (x = +∞, t) = T
Ocean
(t), (2.15)

C(x = +∞, t) = C
Ocean
(t). (2.16)

Including the two interface frontals, the above two-phase solidification problem with a

mushy layer consists of five subsystems of equations. We note the classical Stefan problem

involves the temperature only. While in the proposed mushy layer model, both the heat

and mass transfers are considered. The temperature and the salinity variables, T and

C , are coupled through the two frontals (a(t), b(t)) and solid fractions (ϕa(t) , ϕb(t)).

In a degenerate situation where exactly one of the frontals (a(t) or b(t)) is absent by

assuming, say, ϕ(x , t) = 1 or 0, the model is reduced to the classical Stefan two-phase

problem. The temperature T (x , t) and the interface a(t) (or b(t)) are uniquely solvable.

The mass diffusion, (2.14), can be determined thereafter with the aid of (2.16) and (2.8)

(or (2.11)). Therefore the salinity has no effect on the temperature at all. The mushy layer

model then becomes a significant extension of the classical Stefan two-phase problem.

Before we discuss numerical methods and experiments in later sections, an alternative

is worthy to mention.

2.2. Mushy layer model in a finite interval

Many numerical approximations and methods are designed for problems on finite do-

mains. Reusability of routines is very important in practical problem solving. Therefore

we convert the previous mushy layer model to one in a finite interval, as driven by our

previous investigation into the classical Stefan problem.
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We change the variable to convert the governing equations to a system defined in

the finite interval [−1,1) , resulting in the coordinate transformation and its inversion as

described by

ξ= ξ(x) , x = x(ξ) ,

where x denotes the spatial variable in the semi-infinite interval [0,+∞) and ξ in the

finite interval [−1,1). The temperature in the new system is denoted by V (ξ, t), i.e., the

relation V (ξ, t) = T (x , t) holds. An application of chain rule yields

Tt = Vt , Tx = ξx Vξ , Tx x = (ξx )
2Vξξ + ξx x Vξ .

One such coordinate transform will be discussed in details below.

With xref being a real positive parameter, the transformation and its inversion are given

by

ξ(x) =1−
2xref

x + xref

=
x − xref

x + xref

,

x(ξ) =xref

1+ ξ

1− ξ
.

This maps the triple x ∈ {0, xref,+∞} to ξ ∈ {−1,0,1}. We note for a uniform grid in the

finite interval [−1,1) with mesh size ǫ = 2/n , the right-most interior node, ξ = 1− ǫ,
corresponds to x = (n− 1)xref in the semi-infinite interval.

Using the relation V (ξ, t) = T (x , t) and noting that

Tx =
(1− ξ)2

2xref

Vξ,

Tx x =
(1− ξ)4

4x2
ref

Vξξ −
(1− ξ)3

2x2
ref

Vξ,

we obtain the transformed problem with the temporal variable τ instead of t.

Unknowns : V (ξ,τ), C(ξ,τ), ψ(ξ,τ), ψ
A
(τ), ψ

B
(τ), A(τ), B(τ).

Solid Phase , −1≤ ξ < A(τ)

PDE : Vτ(ξ,τ) = α
I

�

(1− ξ)4

4
Vξξ −

(1− ξ)3

2
Vξ

�

, (2.17)

B.C. : V (ξ= −1,τ) = V
Air
(τ). (2.18)
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Solid-Mush Boundary, ξ= A(τ)

ODE : Lv(1−ψA
(τ))Aτ =

(1−ξ)2

2

�

k
I
Vξ(A

−(τ),τ)−
�

k
I
ψ

A
(τ)

+k
W
(1−ψ

A
(τ))
�

Vξ(A
+(τ),τ)

�

, (2.19)

C(1−ψ
A
(τ))Aτ =−D

W
(1−ψ

A
(τ))

(1− ξ)2

2
Cξ(ξ,τ). (2.20)

B.C. : ψ(ξ= A(τ),τ) =ψ
A
(τ). (2.21)

Mushy Layer, A(τ)< ξ < B(τ)

PDE :

�

ρ
I
c

I
ψ+ρ

W
c

W

�

1−ψ
�

�

Vτ

=
(1−ξ)2

2

∂

∂ ξ

�

[k
I
ψ+ k

W
(1−ψ)]

(1− ξ)2

2
Vξ

�

+ Lvψτ, (2.22)

∂

∂ τ

��

1−ψ
�

C
�

=
(1− ξ)2

2

∂

∂ ξ

�

D
W

�

1−ψ
� (1− ξ)2

2
Cξ

�

, (2.23)

V =−mC . (2.24)

Liquid-Mush Boundary, ξ = B(τ)

ODE : LvψB
(τ)Bτ =

(1− ξ)2

2

�

�

k
I
ψ

B
(τ) + k

W
(1−ψ

B
(τ))
�

Vξ(B
−,τ)

− k
W

Vξ(B
+,τ)

�

, (2.25)

Cψ
B
(τ)Bτ = D

W
(1−ψ

B
(τ))

(1−ξ)2

2
Cξ(B

−,τ)− D
W

(1−ξ)2

2
Cξ(B

+,τ), (2.26)

Vξ =−mCξ. (2.27)

B.C. : ψ(ξ= B(τ),τ) =ψ
B
(τ). (2.28)

Liquid Phase, B(τ)< ξ < 1

PDE : Vτ = αW

�

(1−ξ)4

4
Vξξ −

(1− ξ)3

2
Vξ

�

, (2.29)

Cτ = D
W

�

(1− ξ)4

4
Cξξ −

(1−ξ)3

2
Cξ

�

. (2.30)

B.C. : V (ξ= 1,τ) = V
Ocean
(τ), (2.31)

C(ξ= 1,τ) = C
Ocean
(τ). (2.32)

Here, A(τ) and B(τ) denote the frontal positions corresponding to the solid-mush bound-

ary a(t) and liquid-mush boundary b(t), respectively. The associated solid fractions are

ψ
A
(τ) and ψ

B
(τ).

More detailed information regarding transformations can be found in [9, 11, 36] . We
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Table 1: Physical Properties : (unit in cm/day)

Parameters Values

T
Ocean

−1.7 ◦C

Tb −1.97◦C

Lv 3.5556 · 10−3 W · day · cm−3

k 0.68

k
I

2.026 · 10−2 W · cm−1 ·◦C−1

k
W

5.596682 · 10−3 W · cm−1 ·◦C−1

D
W

1.0368 cm2 · day−1

m 0.05236 ◦C−1 · psu−1

ρ
I

9.17 · 10−4 kg · cm−3

ρ
W

1.0 · 10−3 kg · cm−3

C
Ocean
= C∞ 34.5 psu

c
I

0.023 W · day · kg−1 ·◦C−1

c
W

0.048 W · day · kg−1 ·◦C−1

have assumed constant boundary values at the far field (2.15), (2.16), (2.31) and (2.32)

for our current work. Other expressions may be used in different applications.

3. Computational models and numerical procedures

For a clear picture of data flow in the computations, we summarize the subsystems

and variables in Table 2. Many details are implied therein and will be explained in the

following.

3.1. Variants of computational models

In computation of the model in a semi-infinite interval, we choose to truncate the

physical domain to a finite interval and apply approximate boundary values at the far end.

In contrast, the right-end computational boundary in the finite interval model represents

a regular singular point (Eqs. (2.29) and (2.30)). In addition to choosing between the

semi-infinite or finite interval (continuous) models, the discretized system can be based

on either a fixed or moving coordinate. The former could be further divided into static or

dynamic grid subcases. All of these were thoroughly tested and compared in [27] for the

prototype problem using FD (finite difference) or DM (differentiation matrix). In Table 3,

we summarize the computational models and discretizations in our previous work on the

prototype problem.

Once the discretizations of the geometry and the equations are specified, we consider

the following issues in solving the resulting discrete algebraic system:

1. Block-iterative methods. This can be performed in a forward, backward or parallel

manner.



164 D. Lee, D.V. Alexandrov AND H.-N. Huang

Table 2: Five subsystems, equations, primitive and derived variables. A derived variable

may be needed as input or updated as output.

Subsystem D.E. Primitive Derived B.V. or I.V.

solid Eq. (2.1) T Ta Eq. (2.2) and Ta

solid-mush Eqs. (2.3-4) a,ϕa Tx(a
−), Tx (a

+), Ca+ , Cx (a
+) Eq. (2.5)

mush Eqs. (2.6-8) T, C ,ϕ Ta, Tb,ϕa+ ,ϕb− , Ca+ , Cb− the six derived

liquid-mush Eqs. (2.9-10) b,ϕb Tx(b
−), Tx (b

+), Cx (b
−), Cx(b

+), Cb− Eqs. (2.11-12)

liquid Eqs. (2.13-14) T, C Tb, Cb+ Eqs. (2.15-16) and two derived

2. Types of spatial finite differences. Both explicit and implicit differences (or spectral

differentiations) are allowed.

3. The linear solver of each block. The options are tridiagonal Guassian Elimination and

tridiagonal iterative methods. In the spectral DM approach, the BCGstab method in

dense matrix version is taken.

Further details and trade-offs about various orders of interpolations and extrapolations can

be found in [27].

We note more variants were implemented and tested than listed in Table 3, but only

the more successful ones are reported. This cited reference discussed the first five cases

( in semi-infinite interval ) in detail. The computations in the finite interval models are

less accurate than computations in the semi-infinite interval models. Although, the DM

approach yields more accurate results than other models in the finite interval.

It was observed in [27] that, temporal and spatial FD method on fixed coordinates and

static grid with a proposed threshold strategy, in the semi-infinite interval, out-performed

all the other combinations. Indeed, we were successful in obtaining stable long-term simu-

lation results in the current mushy layer evolution using this combination of computational

model only. All of the other combinations failed.

However, the design and implementation of the same idea in the current study is more

complicated than those in the prototype problem.

Table 3: Discretization of the geometry and equations of experiments in a prototype study.

Domain Coordinate Grid Discretization of Eqs Spatial Differentiation

semi-infinite fixed static, uniform FD-FD implicit

semi-infinite fixed dynamic, sub-uniform FD-FD implicit

semi-infinite fixed dynamic, sub-uniform FD-FD explicit

semi-infinite moving uniform FD-FD explicit

semi-infinite fixed dynamic, sub-uniform FD-DM implicit

finite fixed dynamic, sub-uniform FD-DM implicit

finite fixed dynamic, sub-uniform FD-FD implicit

finite fixed dynamic, sub-uniform FD-FD explicit
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Next we describe the discretizations of the geometry and equations in the current study

followed by methods of solving the discrete system later.

3.2. The grid arrangement

The computational domain is denoted by [zmin, zmax]. Piecewise-uniform nodes are

deployed in the time-march procedure. The following relations are maintained.

zmin = z0 < z1 < ... < zn1
< a(t),

a(t) < zn1+1 < ... < zn1+n2
< b(t),

b(t) < zn1+n2+1 < ... < zn1+n2+n3
< zn+1 = zmax ,

in the solid zone, the mush layer and the liquid zone, respectively. These, including the two

frontals, are the computational nodes in the FD or the DM approach. The three subsystems

of PDEs are each treated as a two-point boundary value problem with Dirichlet data. The

FD nodes are almost uniform in each region, except near the two frontals a(t) and b(t).

The number of interior nodes are n1, n2 and n3 for the three regions, respectively. The

total number of interior nodes is kept a constant, n = n1 + n2 + n3 , through the whole

simulation. The memory for the two frontals are allocated separately. However, the size of

each subsystem may vary as one of the frontals crosses a node. Another two subsystems of

a DAE type govern the evolutions of the positions and temperatures at the two frontals. As

time marches, the frontal(s) may move too close to a node. This yields a loss of significant

digits in the computations of some interpolated values. The proposed threshold strategy is

to re-set the frontal position properly in such a critical situation.

The continuous system, in the semi-infinite or finite interval, can be solved by numer-

ical procedures in an algorithmically unified manner. See the following subsection for

derivation.

3.3. Numerical methods and procedures

The application consists of five subsystems (Table 2 ) : the solid (ice) zone, the solid-

mush interface, the mushy layer, the liquid-mush interface and the liquid (water) zone.

We propose three solution methods. The time marching technique is adopted with a

two-level explicit or implicit FD in the temporal variable. The spatial derivatives can be

resolved by either finite differences or spectral differentiations. At each time step, the cou-

pled nonlinear system of differential equations yields a nonlinear algebraic system through

either continuous linear spline model via finite differencing or spectral differentiation at

Chebyshev nodes. Three solution methods are possible for general use. A delineation of

the algorithms follows:



166 D. Lee, D.V. Alexandrov AND H.-N. Huang

Algorithm 1:

1. Forward shoot.

Solve the coupled subsystems {solid, interface a} and {mush, interface b}, and

the liquid zone in order.

The two coupled subsystems are solved iteratively up to a specified tolerance or

maximum iteration count.

The liquid zone equations are solved once.

2. Backward shoot.

Solve the coupled subsystems {liquid, interface b} , {mush, interface a}, and the

solid zone in order.

The two coupled subsystems are solved iteratively up to a specified tolerance or

maximum iteration count.

The solid zone equation is solved once.

3. Parallel shoot.

Solve {solid, mush, liquid} and {interfaces a, b} iteratively.

More details of the calculation at a single time step are described below.

3.3.1. Parallel shoot

This is similar to a block version of Jacobi iterations.

First stage. Solve in data-parallel fashion three out of the five subsystems.

• Solid phase. Here we have a linear diffusion, Eq. (2.1) , with constant coeffi-

cients and Dirichlet data. New temperatures are obtained at interior nodes and

the quantity Tx(a
−) is calculated as a post-processing.

• Liquid phase. The subsystem consists of two decoupled linear diffusion equa-

tions, (2.13) and (2.14), representing the heat and mass transfers respectively.

New values of the two primitive variables are obtained by solving two tri-

diagonal systems. Post-process to update Tx (b
+) and Cx(b

+) .

• Mush layer. We assume the problem is non-degenerate such that the relation

0< ϕ(x , t) < 1 in a(t) < x < b(t)

is valid at all times. This implies

0 < min(ρ
I
c

I
,ρ

W
c

W
) ≤ ρ

I
c

I
ϕ+ρ

W
c

W
(1−ϕ) ≤ max(ρ

I
c

I
,ρ

W
c

W
)
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Therefore Eqs. (2.6) and (2.7) are explicit in the temporal derivatives and we

can apply spatial central differences with modifications near the two frontals.

The three primitive variables are thus updated at interior nodes. Post-processings

are carried out to derive approximate values of ϕa+ , ϕb− , Ca+ and Cb− as tabu-

lated in Table 2.

At the end of the first stage, new values of the temperatures Ta and Tb are calculated

by two-sided interpolations.

Second stage. The two frontals and the solid fractions ( a(t), b(t), ϕa, ϕb ) are to be

determined.

• Evolution at the solid-mush boundary a(t). First note 0< 1−ϕa < 1 and that

the subsystem equations (2.3) and (2.4) can be treated as algebraic equations

with all the needed derived variables already updated. Actually, the quantities

at and ϕa(t) can be obtained in closed form expressions.

• Evolution at the liquid-mush boundary b(t). The situation here is similar to

the above. With the required derived variables ready, a linear combination of

the ODEs (see (2.10) and (2.11)) eliminates the bt term and yields a closed

form expression of ϕb(t). The variable bt is also obtained explicitly.

At the end of the second stage, we calculate the new frontals a(t+△t) and b(t+△t)

. Methods other than the Euler’s may be applied as well. One may optionally repeat

the two stages until tolerance is achieved. However, full implicitness is very costly.

At this moment, it is of the utmost importance to decide whether or not to call for

the threshold strategy, which resembles at the very least a linear-order continuation

of the continuous process.

At the end of a time step, we update all the relevant geometric and physical variables.

An expensive reset of the whole grid is necessary if at least one of the frontals crosses

a node as implied by the threshold strategy.

We give brief descriptions of the other two solution methods below.

3.3.2. Forward shoot

The five components are grouped and solved in a forward order.

• Step 1: Use possibly time-dependent boundary data at the sea level and freeze

the boundary values on the solid-mush interface, perform the following until

conditions are satisfied.

Step 1a: Solve the solid zone Eq. (2.1). Post-process to calculate one-sided

gradients of the temperatures and concentrations.

Step 1b: Solve Eqs. (2.3) and (2.4) in the solid-mush interface to update

at and ϕa. Post-process to update the frontal a.
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• Step 2: With the existing boundary values on the liquid-mush interface and the

calculated boundary values on the solid-mush interface from Step 1b, we go on

to do the following.

Step 2a : Solve the mushy layer Eqs. (2.6)– (2.8).

Step 2b : Solve the liquid-mush interface Eqs. (2.9)– (2.11).

• Step 3: Solve the liquid zone Eqs. (2.13) and (2.14) using the boundary values

which can be derived after Step 2b.

3.3.3. Backward shoot

The five components are grouped and solved in a backward order.

• Step 1: Use possibly time-dependent boundary data at the far field and freeze

the boundary values on the liquid-mush interface, perform the following until

satisfaction:

Step 1a: Solve, iteratively, the liquid zone Eqs. (2.13) and (2.14). Post-

process to calculate one-sided gradients of the temperatures and concentrations

at frontal b.

Step 1b: Solve the liquid-mush interface Eqs. (2.9), (2.10), and (2.11) , to

update bt and ϕb. Post-process to update the frontal b.

• Step 2: With the existing boundary values on the solid-mush interface and the

calculated boundary values on the liquid-mush interface from Step 1b, we go

on to do the following.

Step 2a : Solve the mushy layer Eqs. (2.6), (2.7) and (2.8) .

Step 2b : Solve the solid-mush interface Eqs. (2.3) and (2.4).

• Step 3: Solve the solid zone Eq. (2.1) using the boundary values which can be

derived after Step 2b.

3.3.4. Pros and cons of the three solution methods

If full implicitness is implemented, the three methods seem to produce identical

results up to truncation errors. However, we observed in a trial run that the wall-

clock cpu-time took as many as fifty times more than using the simple one-sweep

shooting. In view of the computational cost, the authors conducted the simulations

with one sweep of each method for the final run. The (incomplete) parallel shoot was

prefered for a theoretical reason. In the situation of the prototype problem, the one-

point free boundary can be expressed as a solution to an equivalent integral equation

in terms of the temperature distribution (together with the initial and boundary

data), while the temperature itself is derived by a limit process with refined temporal

meshes [15]. In our numerical study, the one-sweep parallel shoot also shows better

stability than the forward and backward shoot.
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We note the different groupings of combinations of the five subsystems are natural with

regard to data (boundary values) communications in the context of domain decomposition

and parallel computing. The boundary conditions, i.e., Eqs. ((2.2), (2.5), (2.12), (2.8),

(2.11), (2.15), and (2.16)) are applied when needed and updated when appropriate.

3.3.5. A threshold strategy

The usual computation via static grid in a fixed coordinate approach is prone to error [13].

When an interface front approaches a computational node, some approximations (finite

differences or interpolations) become close to being singular and are sensitive to trunca-

tion errors. The propagation of errors can be fatal in a task of long-term simulation. To

handle this problem, we designed a threshold strategy in which a frontal position, when

approaching a computational node and getting close within a threshold, is re-assigned

across the node appropriately in the direction of current frontal velocity. House-keepings

are carried out accordingly, i.e., all relevant variables including the clock time are modi-

fied properly after a time march. This may yield, at the time step, a linearly compatible

continuation of the physical process, provided that the threshold is roughly at the scale of

the motion at one computational time step. We mention that the implementation of the

threshold strategy is much more involved than that of the classical Stefan problem [27],

and that the scheme is a simple variant of the general level set method [28].

3.3.6. Some other issues

Here we mention several things which may also be important.

• Extrapolation When solving the two frontal dynamics, we need one-sided deriva-

tives in the Stefan condition at the two interfaces. Various one-sided schemes are

designed for this purpose. However, it was observed in the prototype study that a

four-point third-order scheme was preferred for the semi-infinite interval equations,

while linear order extrapolation works best for the current mush layer model. This

indicates that numerical stability is, above all, the most critical issue.

• Interpolation In the moving and the dynamic fixed grid approaches, interpolations

are needed at the end of each time step. It is also needed in case of a node-cross

in a static fixed grid approach. Both the natural and the not-a-knot cubic spline

interpolations are designed for the current second-order PDE system. The latter are

fourth-order accurate in theory, as proved by de Boor [6, 7]. Although, we found

no significant differences in choosing either of the spline interpolants in long-term

simulations with fine spatial meshes deployed. Numerical data discussed later were

obtained via not-a-knot cubic spline.

We mention that high order ENO or WENO type scheme [32] may be worth a try, at

the trade-offs of code efficiency. Based on our preliminary study, we focus below on spatial

FD in the semi-infinite interval with a fixed coordinate and static grid.
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4. Simulations and Discussions

Twenty-one DNS’, as described in Table 4, are carried out using the semi-infinite in-

terval model in a fixed coordinate via a static grid with the proposed threshold strategy.

Results from these simulations are compared in various ways, as shown in subsequent ta-

bles. Input data can be found in Figs. 1 and 2, while calculated evolutions of the two

frontal positions and temperatures in Figs. 3 and 4, and evolutions of temperatures at var-

ious depths in Fig. 5, which match qualitatively the previous experimental report [30,38].

Final time profiles of the temperature, the concentration and the solid-fraction are shown

in Fig. 6. The threshold used in simulations reported here is 5.0e−08. The details are laid

out in the subsections.

4.1. The computation

We truncated the semi-infinite interval and worked on a finite interval of length 30 cen-

timeters. Various simulations were done with spatial resolution of 0.1 and 0.05 centime-

Table 4: Direct numerical simulations and parameters. Here UD (CD) denotes upwind

(central) difference, and method F (B,P) denotes forward (backward,parallel) shoot.

Run nz nt FD Initial solid fraction Extrapolation order Solution Method

1 300 2e+07 UD profile 1 1 F, B, P

2 300 2e+07 UD profile 2 1 F, B, P

3 300 2e+07 UD profile 3 1 F, B, P

4 300 2e+07 UD profile 4 1 F, B, P

5 300 2e+07 UD profile 3 2 F, B, P

6 600 8e+07 UD profile 3 1 F, B, P

7 300 2e+07 CD profile 3 1 F, B, P

Table 5: Max deviations of the evolutions of first frontal position with four different initial-

izations and three methods.

Ini t1 Ini t2 Ini t3 Ini t4

1F 1B 1P 2F 2B 2P 3F 3B 3P 4F 4B 4P

0.0e-0 1.4e-8 1.3e-9

1.4e-8 0.0e-0 1.5e-8 3.3e-3 4.4e-3 9.2e-3

1.3e-9 1.5e-8 0.0e-0

0.0e-0 1.4e-8 1.3e-9

3.3e-3 1.4e-8 0.0e-0 1.5e-8 1.1e-3 5.8e-3

1.3e-9 1.5e-8 0.0e-0

0.0e-0 1.5e-8 1.3e-9

4.4e-3 1.1e-3 1.5e-8 0.0e-0 1.6e-8 5.8e-3

1.3e-9 1.6e-8 0.0e-0

0.0e-00 1.0e-08 9.0e-10

9.2e-3 5.8e-3 5.8e-3 1.0e-08 0.0e-00 1.1e-08

9.0e-10 1.1e-08 0.0e-00
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Table 6: Max deviations of the evolutions of second frontal position with four different

initializations and three methods.

Init1 Init2 Init3 Init4

1F 1B 1P 2F 2B 2P 3F 3B 3P 4F 4B 4P

0.0e-0 1.9e-7 6.2e-8

1.9e-7 0.0e-0 1.3e-7 4.9e-3 8.7e-3 6.6e-3

6.2e-8 1.3e-7 0.0e-0

0.0e-0 2.0e-7 6.8e-8

4.9e-3 2.0e-7 0.0e-0 1.4e-7 4.1e-3 6.1e-3

6.8e-8 1.4e-7 0.0e-0

0.0e-0 2.1e-7 7.0e-8

8.7e-3 4.1e-3 2.1e-7 0.0e-0 1.4e-7 7.1e-3

7.0e-8 1.4e-7 0.0e-0

0.0e-0 1.9e-7 6.3e-8

6.6e-3 6.1e-3 7.1e-3 1.9e-7 0.0e-0 1.3e-7

6.3e-8 1.3e-7 0.0e-0

ters. The number of computational spatial nodes, denoted by nz in tables, were roughly

300 and 600, and the total time steps in marching, denoted by nt , were twenty- and

eighty-million, respectively. The corresponding results are reported in columns labeled as

1F, 1B, 1P, . . . , 7F, 7B, and 7P. The boundary temperature at the sea level, from [30, 38],

are shown in Fig. 2. Initial data are assumed linear or piecewise linear as shown in Fig. 1.

We have enforced obvious algebraic consistencies derived from the associated differential

relations.

At the interfaces, the computed frontal positions and the frontal temperatures are com-

pared among the different simulations. Various discrete norms of deviations in the com-

Table 7: Max deviations of the evolutions of first frontal temperature with four different

initializations and three methods.

Init1 Init2 Init3 Init4

1F 1B 1P 2F 2B 2P 3F 3B 3P 4F 4B 4P

0.0e-0 8.2e-6 2.5e-7

8.2e-6 0.0e-0 8.2e-6 2.5e-2 4.5e-2 8.7e-2

2.5e-7 8.2e-6 0.0e-0

0.0e-0 8.6e-6 5.0e-7

2.5e-2 8.6e-6 0.0e-0 8.3e-6 2.2e-2 8.2e-2

5.0e-7 8.3e-6 0.0e-0

0.0e-0 8.3e-6 2.3e-6

4.5e-2 2.2e-2 8.3e-6 0.0e-0 8.3e-6 9.5e-2

2.3e-6 8.3e-6 0.0e-0

0.0e-0 8.3e-6 9.6e-7

8.7e-2 8.2e-2 9.5e-2 8.3e-6 0.0e-0 8.3e-6

9.6e-7 8.3e-6 0.0e-0
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Figure 1: Input data of the direct numerical simulations.

puted results, at two-hundred intermediate time steps, are recorded with some selected

data shown in tables. The Figs. 3 to 6 are results from test run 6 with one-sweep parallel

shoot. We note there are no wiggles near the frontals with our usage of upwind differences.

In case of central differencing, wiggles did appear in our previous experiment. Fig. 5 shows

the data of computational results and LeadEx experiment at various depths. Although the

deviation grows as the depth increases, their tendencies are well-matched.
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Figure 3: Evolution of the two frontal positions.

4.2. Observations

Results of the first twelve simulations in Table 4, with four different initializations and

three solution methods, are compared pairwisely. The time march procedure takes twenty-

million time steps in a single run. Calculated results including the two frontal positions and

temperatures are recorded at two-hundred intermediate time steps. Deviations of these

quantities are then measured in the discrete maximum, normalized 1- and 2-norms. Some

are shown in Tables 5 to 8 with rounding at the first digit in float precision format. These

matrices are twelve-by-twelve, and better viewed as four-by-four block matrices with each

block an ordinary three-by-three matrix. These main-diagonal blocks reveal the following.
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Table 8: Max deviations of the evolutions of second frontal temperature with four different

initializations and three methods.

Init1 Init2 Init3 Init4

1F 1B 1P 2F 2B 2P 3F 3B 3P 4F 4B 4P

0.0e-0 1.6e-5 5.2e-6

1.6e-5 0.0e-0 1.0e-5 1.9e-1 2.2e-1 2.2e-1

5.2e-6 1.0e-5 0.0e-0

0.0e-0 1.6e-5 5.5e-6

1.9e-1 1.6e-5 0.0e-0 1.5e-5 1.4e-1 2.1e-1

5.5e-6 1.5e-5 0.0e-0

0.0e-0 1.6e-5 5.8e-6

2.2e-1 1.4e-1 1.6e-5 0.0e-0 1.1e-5 2.4e-1

5.8e-6 1.1e-5 0.0e-0

0.0e-0 1.6e-5 5.3e-6

2.2e-1 2.1e-1 2.4e-1 1.6e-5 0.0e-0 1.1e-5

5.3e-6 1.1e-5 0.0e-0

Table 9: Convergence of 2-norm deviations of the evolution of first frontal position with

initialization 3.

nz = 300 nz = 600

dist2 3F 3B 3P 6F 6B 6P

3F 0.0e-00 3.6e-09 5.9e-10

3B 3.6e-09 0.0e-00 4.0e-09 9.8e-03

3P 5.9e-10 4.0e-09 0.0e-00

6F 0.0e-00 5.2e-10 5.6e-10

6B 9.8e-03 5.2e-10 0.0e-00 8.1e-10

6P 5.6e-10 8.1e-10 0.0e-00

4.2.1. Computational accuracy

The evolution of the first frontal match among the three methods at about eight digits

(Table 5), and seven digits (Table 6) for the second frontal. It is six and five digits with the

frontal temperatures (Tables 7 and 8). We note the 1-norm and 2-norm results are about

one magnitude smaller than the maximum one. These two are recorded but not shown

because of limitation of space. It can be concluded at this point that, if further knowledge

about the initial data is known, our continuous and computational models can provide

with results accurate in about six or seven digits for simulation purposes. These include

predictions, parameter sensitivity analysis and some type of inverse problems.

4.2.2. Grid-independence

Comparisons between test runs 3 and 6 ( Table 4 ) indicate a grid-independence in the

computed results. The matrices in Tables 9 to 12 are better viewed as two-by-two block
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Table 10: Convergence of 2-norm deviations of the evolution of second frontal position

with initialization 3.

nz = 300 nz = 600

dist2 3F 3B 3P 6F 6B 6P

3F 0.0e-0 9.9e-8 3.4e-8

3B 9.9e-8 0.0e-0 6.6e-8 1.3e-2

3P 3.4e-8 6.6e-8 0.0e-0

6F 0.0e-0 2.3e-8 7.0e-9

6B 1.3e-2 2.3e-8 0.0e-0 1.7e-8

6P 7.0e-9 1.7e-8 0.0e-0

Table 11: Convergence of 2-norm deviations of the evolution of first frontal temperature

with initialization 3.

nz = 300 nz = 600

dist2 3F 3B 3P 6F 6B 6P

3F 0.00e-0 1.97e-6 3.65e-7

3B 1.97e-6 0.00e-0 1.75e-6 5.05e-2

3P 3.65e-7 1.75e-6 0.00e-0

6F 0.00e-0 4.47e-7 1.31e-7

6B 5.05e-2 4.47e-7 0.00e-0 5.37e-7

6P 1.31e-7 5.37e-7 0.00e-0
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Figure 4: Evolution of the two frontal temperatures.

matrices. With regards to the calculation of the first frontal position, comparison of blocks

(1,1) and (2,2) in Table 9 suggests a second order (Cauchy-) convergence in the spatial
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Table 12: Convergence of 2-norm deviations of the evolution of second frontal temperature

with initialization 3.

nz = 300 nz = 600

dist2 3F 3B 3P 6F 6B 6P

3F 0.00e-0 4.79e-6 1.77e-6

3B 4.79e-6 0.00e-0 3.05e-6 1.68e-1

3P 1.77e-6 3.05e-6 0.00e-0

6F 0.00e-0 1.22e-6 3.46e-7

6B 1.68e-1 1.22e-6 0.00e-0 9.00e-7

6P 3.46e-7 9.00e-7 0.00e-0

Table 13: Order of convergence of calculations with grid sizes 300 and 600. Here dist∞
(dist1, dist2) refers to the discrete maximum (normalized 1-, 2-) norm of computed results

on all spatial nodes. For dist2 case, the denominator and numerator of each ratio are from

main-diagonals in Tables 9-12.

Ratio Frontal a Frontal b Temperature at a Temperature at b

dist1(6F,6B)/dist1(3F,3B) 34

220
= 0.154 19

83
= 0.228 32

146
= 0.219 95

378
= 0.251

dist2(6F,6B)/dist2(3F,3B) 52

360
= 0.144 23

99
= 0.232 447

1970
= 0.226 122

479
= 0.254

dist∞(6F,6B)/dist∞(3F,3B) 24

150
= 0.160 67

210
= 0.319 218

829
= 0.262 469

1630
= 0.287

dist1(6F,6P)/dist1(3F,3P) 50

51
= 0.980 48

290
= 0.165 835

1670
= 0.500 253

1380
= 0.183

dist2(6F,6P)/dist2(3F,3P) 56

59
= 0.949 7

34
= 0.205 131

365
= 0.358 346

1770
= 0.195

dist∞(6F,6P)/dist∞(3F,3P) 11

13
= 0.846 22

70
= 0.314 46

228
= 0.201 157

577
= 0.272

dist1(6B,6P)/dist1(3B,3P) 68

240
= 0.283 15

55
= 0.272 399

1300
= 0.306 703

2390
= 0.294

dist2(6B,6P)/dist2(3B,3P) 81

400
= 0.202 17

66
= 0.257 537

1750
= 0.306 90

305
= 0.295

dist∞(6B,6P)/dist∞(3B,3P) 27

160
= 0.168 45

140
= 0.321 216

829
= 0.260 312

1090
= 0.286

variable for each of the three solution methods, except for cases with a possible satura-

tion of accuracy. Actually, this holds for all the two frontal positions and temperatures,

measured by normalized 2-norm (Tables 9 to 12 ). Similar results in the maximum and

normalized 1-norm are not shown because of limitation of space. These numbers are

demonstrated collectively in Table 13.

4.2.3. Characteristics of incomplete shootings

Some comments may be mentioned on the three shooting methods. For practical reasons,

we carried out only one sweep of the shooting for each time step in the time march for

the final runs (Table 4). This makes the three less ideal. In a different application, the

incomplete forward (or backward) shoot may be advantageous in the case where the sea
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Table 14: First-order vs second-order extrapolation on max deviations of the evolution of

first frontal position.

nz = 300, ex tra1 nz = 300, ex tra2

3F 3B 3P 5F 5B 5P

0.0e-0 1.5e-8 1.3e-9

1.5e-8 0.0e-0 1.6e-8 9.6e-4

1.3e-9 1.6e-8 0.0e-0

0.0e-0 1.5e-8 1.4e-9

9.6e-4 1.5e-8 0.0e-0 1.6e-8

1.4e-9 1.6e-8 0.0e-0

level (or deep ocean) temperature plays a dominant role. However, we can confirm that the

computation involving the parallel shoot is more stable in the current application because

of smaller residuals. In fact, the current problem seems to be diffusion-dominant.

4.2.4. Other factors

Choice of an extrapolation scheme is critical in our pre-study in the classical Stefan prob-

lem. With the mushy layer mechanism, the current system is much more sensitive and

we found that linear extrapolation is better suited in numerical experiments than second

order extrapolation. Results in Tables 14 through 17 indicate that the accuracies are about

the same. Nevertheless linear extrapolation is favored for stability reason. The abbrevia-

tions ex tra1 and ex tra2 in these tables stand for linear and second order extrapolation,

respectively. The results with central and upwind differences are comparable, see Tables
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Figure 5: Temperatures at various depths.
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Figure 6: Profiles at final time.

18 through 21. The latter is preferred, due to a possible occurrence of a boundary layer

near an interface.

4.3. Other computational models

We make some comments on the trade-offs between choosing static grid or dynamic

grid. The latter is much easier to implement than the former. However, computation with

the dynamic grid demands many of interpolations at each time step. This may deteriorate

the stability in a long-term simulation. We encountered this difficulty in our previous

experiments. On the other hand, static grid approach is difficult to implement and prone

to errors. After careful design, it works fine and produces results comparable to the field

data in long-term simulations, based on the semi-infinite interval model with the proposed

threshold strategy.

As far as the finite interval model is concerned, it consists of nonlinear equations and

the execution time required is much more than that of the model in the semi-infinite in-

terval. This is because the spatial resolution suitable for the current application is about

one magnitude finer, and several billions of time steps are required. Numerical stability is
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Table 15: First-order vs second-order extrapolation on max deviations of the evolution of

second frontal position.

nz = 300, ex tra1 nz = 300, ex tra2

3F 3B 3P 5F 5B 5P

0.0e-0 2.1e-7 7.0e-8

2.1e-7 0.0e-0 1.4e-7 6.6e-3

7.0e-8 1.4e-7 0.0e-0

0.0e-0 2.2e-7 7.1e-8

6.6e-3 2.2e-7 0.0e-0 1.5e-7

7.1e-8 1.5e-7 0.0e-0

Table 16: First-order vs second-order extrapolation on max deviations of the evolution of

first frontal temperature.

nz = 300, ex tra1 nz = 300, ex tra2

3F 3B 3P 5F 5B 5P

0.00e-0 8.29e-6 2.28e-6

8.29e-6 0.00e-0 8.29e-6 2.23e-2

2.28e-6 8.29e-6 0.00e-0

0.00e-0 8.72e-6 1.73e-6

2.23e-2 8.72e-6 0.00e-0 8.30e-6

1.73e-6 8.30e-6 0.00e-0

therefore extremely critical.

4.4. Things that may go wrong

The practical salinity unit ( psu ) is a dimensionless ratio. It describes the concentra-

tion of dissolved salts in the water. Open ocean salinity is generally in the range from 32

to 37. The medium value ( COcean = 34.5 ) is used in our computation. This constantly

causes error in the boundary data. The relative error is 7.2% in the worst case. Actually,

the relative accuracies in the physical parameters ( Table 1 ) are only around 10−5 to 10−3.

One other uncertainty is regarding the initial profiles of all primitive variables. Linear

initial profiles are assumed for the solid and liquid zones, while four different piecewise

linear distributions of the primitive variables with possible jump discontinuities are initially

deployed in the mush layer. We noted two things. Firstly, the calculated results were com-

pared on a coarse and a fine grid, all of the four cases yielded second order convergences at

the level of 10−8 as observed in Table 13. Secondly, the deviations among the results of the

four cases are at the level of 10−3 in the calculated frontal positions. These indicate that,

our continuous model and problem-solving procedures ( and software implementation )
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Table 17: First-order vs second-order extrapolation on max deviations of the evolution of

second frontal temperature.

nz = 300, ex tra1 nz = 300, ex tra2

3F 3B 3P 5F 5B 5P

0.00e-0 1.63e-5 5.77e-6

1.63e-5 0.00e-0 1.09e-5 1.07e-1

5.77e-6 1.09e-5 0.00e-0

0.00e-0 1.64e-5 5.47e-6

1.07e-1 1.64e-5 0.00e-0 1.10e-5

5.47e-6 1.10e-5 0.00e-0

Table 18: Max deviations of the evolution of first frontal position with UD or CD.

Upwind Difference Central Difference

3F 3B 3P 7F 7B 7P

0.0e-00 1.5e-08 1.3e-09

1.5e-08 0.0e-00 1.6e-08 5.9e-03

1.3e-09 1.6e-08 0.0e-00

0.0e-00 1.4e-08 1.4e-09

5.9e-03 1.4e-08 0.0e-00 1.6e-08

1.4e-09 1.6e-08 0.0e-00

are reliable, and that, more complete input data are essential for achieving more accurate

calculated results.

5. Conclusion

Physical insights about the model. These are connected with the nonlinear heat and

mass transfer in a mushy layer representing a region of a liquid and solid material in the

form of dendrites and growing solid particles (like a porous medium). The model under

consideration describes the processes when the latent heat of crystallization practically

compensates the constitutional supercooling. This is the main feature of the model equa-

tions detailed in the paper. A mushy layer model (e.g. the model under consideration)

with moving boundaries of the phase transition cannot be solved by conventional numeri-

cal methods. This is due to nonlinearities in the model equations and boundary conditions

imposed at the moving phase transition boundaries with unknown velocities. Therefore,

numerical approaches under consideration are very useful and important, not only from

the point of view of new developed procedures and numerical schemes, but also from the

development of new ideas for calculation of such problems to model different problems

with moving phase transition domains arising in applied science.
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Table 19: Max deviations of the evolution of second frontal position with UD or CD.

Upwind Difference Central Difference

3F 3B 3P 7F 7B 7P

0.0e-00 2.1e-07 7.0e-08

2.1e-07 0.0e-00 1.4e-07 2.9e-02

7.0e-08 1.4e-07 0.0e-00

0.0e-00 2.2e-07 7.1e-08

2.9e-02 2.2e-07 0.0e-00 1.4e-07

7.1e-08 1.4e-07 0.0e-00

Table 20: Max deviations of the evolution of first frontal temperature with UD or CD.

Upwind Difference Central Difference

3F 3B 3P 7F 7B 7P

0.00e-00 8.29e-06 2.28e-06

8.29e-06 0.00e-00 8.29e-06 1.11e-01

2.28e-06 8.29e-06 0.00e-00

0.00e-00 8.32e-06 9.20e-07

1.11e-01 8.32e-06 0.00e-00 8.32e-06

9.20e-07 8.32e-06 0.00e-00

Impact of these simulations on the model. The present simulations describe the

problems of the sea ice growth, crystallization in magma chambers, solidification at the

inner core boundary of the Earth, crystal growth of dendritic structures, and solidifica-

tion in metallurgy, where the phase transition takes place in the framework of the mushy

layer model. The observed accuracy and (Cauchy-) convergence justifies our continuous

and computational models, the numerical problem-solving procedures and software imple-

mentation.

In summary, we consider in this work a two-phase Stefan problem with a mushy layer.

Formulations for the semi-infinite and a finite interval are both presented. The continu-

ous system consists of five nonlinear coupled subsystems involving two moving interfaces.

Three shooting type solution methods are proposed for numerical modeling of the contin-

uous system based on finite difference discretization. They are designed on a static grid

with a threshold strategy. The computation with our proposed numerical methods can

yield values of the primitive variables accurate up to eight digits, provided that exact ini-

tial data are known. This is justified by calculations using four different initial data and

three solution methods. Computed results reported here favor the parallel shoot method

in stability, and are consistent with the results from previous LeadEx experiment [30,38].
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Table 21: Max deviations of the evolution of second frontal temperature with UD or CD.
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1.11e-01 8.32e-06 0.00e-00 8.32e-06

9.20e-07 8.32e-06 0.00e-00

the following grants and programs for financial support: the Federal Target Program "Sci-

entific and Academic - Teaching Staff of Innovative Russia" in 2009 - 2013 and Russian

Foundation for Basic Research (project No 11-01-00137).

Nomenclature

a – solid-mush boundary, m

b – liquid-mush boundary, m

A – transformed image in finite interval of a, m

B – transformed image in finite interval of b, m

c
I

– specific heat of the solid phase (ice), W · s · kg−1 ·◦C−1

c
W

– specific heat of the liquid phase (water), W · s · kg−1 ·◦C−1

C – salinity distribution, psu ( practical salinity unit )

C
Ocean

– salinity at the far field (ocean), psu

D
W

– diffusion coefficient of water, m2 · s−1

k
I

– thermal conductivity of the solid phase (sea ice), W ·m−1 ·◦C−1

k
W

– thermal conductivity of the liquid phase (sea water), W ·m−1 ·◦C−1

Lv – latent heat of solidification, W · s ·m−3

m – liquidus slope, ◦C · psu−1

nt – number of computational divisions in time

nz – number of computational divisions in the spatial coordinate

t – time, s

T – temperature distribution, ◦C

Ta – temperature at the solid-mush boundary, ◦C

Tb – temperature at the liquid-mush boundary, ◦C

T
Air

– temperature at the solid wall (atmosphere - sea ice boundary), ◦C

T
Ocean

– boundary temperature at far field (of the isothermal ocean), ◦C

V – transformed image in finite interval of T , ◦C

V
A

– transformed image in finite interval of Ta, ◦C

V
B

– transformed image in finite interval of Tb, ◦C
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V
Air

– transformed image in finite interval of T
Air

, ◦C

V
Ocean

– transformed image in finite interval of T
Ocean

, ◦C

x – spatial coordinate, m

xref – the reference point in the spatial coordinate, m

Greek symbols

α
I

– thermal diffusivity of ice, m2 · s−1 ( =
k

I

ρ
I
c

I

)

α
W

– thermal diffusivity of water, m2 · s−1 ( =
k

W

ρ
W

c
W

)

ρ
I

– density of the solid phase (ice), kg ·m−3

ρ
W

– density of the liquid phase (water), kg ·m−3

ϕ – solid fraction

ϕa – solid fraction at the solid-mush boundary

ϕb – solid fraction at the liquid-mush boundary

ψ – transformed image in finite interval of ϕ

ψ
A

– transformed image in finite interval of ϕa

ψ
B

– transformed image in finite interval of ϕb

Subscripts

a – solid-mush boundary in semi-infinite interval

A – solid-mush boundary in finite interval

b – liquid-mush boundary in semi-infinite interval

B – liquid-mush boundary in finite interval

I – solid zone (ice)

m – mushy layer

W – liquid zone (water)

t – temporal derivatives in semi-infinite interval

τ – temporal derivatives in finite interval

x – spatial derivatives in semi-infinite interval

ξ – spatial derivatives in finite interval
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