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Abstract. We present a hybrid numerical method for simulating fluid flow through a

compliant, closed tube, driven by an internal source and sink. Fluid is assumed to be

highly viscous with its motion described by Stokes flow. Model geometry is assumed to

be axisymmetric, and the governing equations are implemented in axisymmetric cylin-

drical coordinates, which capture 3D flow dynamics with only 2D computations. We

solve the model equations using a hybrid approach: we decompose the pressure and

velocity fields into parts due to the surface forcings and due to the source and sink,

with each part handled separately by means of an appropriate method. Because the

singularly-supported surface forcings yield an unsmooth solution, that part of the solu-

tion is computed using the immersed interface method. Jump conditions are derived

for the axisymmetric cylindrical coordinates. The velocity due to the source and sink

is calculated along the tubular surface using boundary integrals. Numerical results are

presented that indicate second-order accuracy of the method.

AMS subject classifications: 76M20, 65M06, 76D07

Key words: Stokes flow, interface tracking, immersed interface methods, axisymmetric cylindrical
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1. Introduction

Many advanced computational techniques have been developed for simulating the mo-

tion of an incompressible fluid interacting with flexible immersed structures, often with

an eye toward biological applications. Much of the work has been inspired by Peskin’s

immersed boundary method [17], proposed originally for studying blood flow through a

beating heart [16]. The immersed boundary method has since been applied in a wide

variety of settings, e.g., [1,3–6,8,9].

The immersed boundary method transfers singular forces from a boundary, or other

structure, onto ambient fluid using smooth approximate Dirac delta functions, typically
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with O (h) support. Rather than capturing the jump discontinuity in the solution (e.g.,

pressure) at the immersed boundary, this approach approximates the solution as a contin-

uous function with large gradient. In general, the immersed boundary method computes

approximations with first-order spatial accuracy.

An alternative approach that captures the jumps in the solution and its derivatives

sharply, and that generates approximations with second-order accuracy, is the immersed

interface method developed by LeVeque and Li [11,12]. The immersed interface method is

similar to a method developed earlier by Mayo for solving elliptic problems on an irregular

domain [14,15]. Both methods are second-order Cartesian grid methods (though higher-

order immersed interface methods have been developed [7, 13]), with the key idea being

the incorporation of known jumps in the solution or its derivatives into the finite difference

schemes.

In this work we consider incompressible Stokes flow through a compliant, closed tube,

driven by an internal source and sink. The internal source and sink allow us to represent

inflow and outflow conditions while using techniques that apply to closed boundaries.

Motivated by applications to blood flow through vessels, we take the structure and flow to

be axisymmetric.

Our approach is to decompose the pressure and velocity fields into parts due to the tube

boundary and due to the source and sink, so that each may be treated with an appropriate

method. The tube surface creates a singularly-supported force on the fluid, resulting in an

unsmooth solution; we find this part of the solution using the immersed interface method.

Meanwhile, the smooth solution due to the source and sink is efficiently calculated along

the tube surface via a boundary integral.

This paper is organized as follows: The axisymmetric governing equations for the fluid

are detailed in Section 2 below. We describe our hybrid approach, incorporating the im-

mersed interface method and boundary integral method, in Section 3. The jump conditions

critical to the immersed interface method are derived for the axisymmetric setting in Sec-

tion 4, and numerical results are presented in Section 5. Summary and directions for future

work are presented in the Section 6.

2. Governing equations

Our aim is to simulate driven Stokes flow in a three-dimensional elastic tube. To take

advantage of boundary integral solutions, we model the tube wall, Γ, as a closed surface,

e.g., an ellipsoid or closed tube. To represent inflow and outflow conditions in this closed

domain, we incorporate an internal source and sink, located at the ends of the tube (see

Fig. 1). The impermeable tube is immersed in fluid in the computational domain Ω. In this

study, the characteristics of the fluid (i.e., the viscosity) are assumed to be identical inside

and outside of the tube.

In the immersed interface method, the fluid velocity and pressure are computed on

a fixed, Eulerian grid, while a moving, Lagrangian frame of reference is used to track

the location of the interface Γ over time. Our Eulerian grid is described by cylindrical,

axisymmetric coordinates. That is, we use coordinates (r,θ , z), but assume that the domain
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and flow are invariant with θ . In particular, we assume that velocity in the θ direction is

always zero. Therefore, the fluid domain reduces to two dimensions, with ~x = (r, z).

Furthermore, we compute variable values for the right half of the domain, r ≥ 0, and

enforce symmetry for the left half, r < 0. We denote the computed right-half of the domain

by Ω̂.

In the axisymmetric cylindrical equations that follow, the vector operator notation

refers to the following standard definitions:

∇p =
�∂ p

∂ r
,
1

r

∂ p

∂ θ
,
∂ p

∂ z

�

,

∇ · (u, v, w) =
�u

r
+
∂ u

∂ r

�

+
�1

r

∂ v

∂ θ

�

+
∂ w

∂ z
,

∆u=
1

r

∂

∂ r

�

r
∂ u

∂ r

�

+
1

r2

∂ 2u

∂ θ2
+
∂ 2u

∂ z2
.

2.1. Tube surface discretization

The axisymmetric assumption implies that we can represent surface Γ by its cross sec-

tion at a fixed value of θ , say, θ = 0. We will call the curve found at this cross section Γ

as well, with the distinction between curve Γ and surface Γ made clear by context. Curve

Γ is represented by markers that move independently of the fixed fluid grid, interpolated

by periodic cubic splines. Each marker is labeled by a fixed arclength value s, where s is

established as the distance between the marker and an arbitrary origin location under zero

source/sink equilibrium conditions. Then ~X =
�

R(s, t), Z(s, t)
�

is the position at time t in

(axisymmetric) cylindrical coordinates of the point on Γ whose arclength label is s. We as-

sume that the configuration described by ~X at any time t determines the forces supported
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on Γ. The use of splines in the immersed interface method is detailed by Leveque and Li

in [12].

2.2. Governing equations

In axisymmetric coordinates, the governing equations for Stokes flow are

µ
�

∆−
1

r2

�

u−
∂ p

∂ r
+ F1 = 0, (2.1a)

µ∆w −
∂ p

∂ z
+ F3 = 0, (2.1b)

∇ · ~v = g. (2.1c)

Here velocity ~v = (u, w), p is the pressure, µ is the viscosity (assumed to be constant), and
~F = (F1, F3) is given by a surface integral over Γ,

Fi =

∫∫

Γ

fi(s,θ , t)δ(~x − ~X (s,θ , t))dS

for i = 1,3, where ~f = ( f1, f3) denotes the body force (singularly supported) in the r and

z directions induced by Γ. Free space boundary conditions are assumed.

Applying the divergence operator to Eqs. (2.1a) and (2.1b), and substituting from

Eq. (2.1c), we can also write

∆(p−µg) =∇ · ~F . (2.2)

2.3. Definition of source and sink terms

Rather than enforcing incompressibility everywhere, Eq. (2.1c) describes the source

and sink that drive flow through the tube. For compact regions ~xsource and ~xsink, we have

g(~x , t) ≥ 0, for ~x ∈ ~xsource,

g(~x , t) ≤ 0, for ~x ∈ ~xsink,

g(~x , t) = 0, otherwise.

We let ~xsource be the cylindrical region centered at a point (r0, z0) (with r0 = 0 for

symmetry about the z axis) such that |r − r0| ≤ κ and |z − z0| ≤ κ (and 0 ≤ θ < 2π), for

fixed radius parameter κ. The region ~xsink is similarly defined.

For (r, z) ∈ ~xsource we define

g(t, r, z) = A(t)h1(r)h2(z) (2.3)

with the following properties:
∫ 2π

0

∫ κ

0

h1(r) · rd rdθ = 1, (2.4a)

∫ κ

−κ

h2(z)dz = 1. (2.4b)
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We use cosine functions scaled to meet these criteria:

h1(r) = β(κ)
�

1+ cos
�π(r − r0)

κ

��

, (2.5a)

h2(z) =
1

2κ

�

1+ cos
�π(z − z0)

κ

��

, (2.5b)

where constant β(κ) is chosen such that Eq. (2.4a) is satisfied. As an example of the

magnitude function A(t), in Section 5.2 we use

A(t) = 0.0025(1.0+ sin(ωt − 0.5π))

for various frequency values ω. We define g(~xsink, t) similarly but with opposite magni-

tude, so there is no net accumulation of fluid in the tube, and for other values of ~x we have

g(~x , t) = 0.

2.4. Domain boundary conditions

Free space boundary conditions are assumed for the Stokes flow. To discretize the

model equations, we impose the following conditions on the half-plane computational

domain Ω̂.

Across the z axis, homogeneous Neumann boundary conditions are implemented for

pressure and for velocity in the z direction,

∂ p

∂ r
= 0 and

∂ w

∂ r
= 0 at r = 0, (2.6)

and for velocity in the r direction we have

u= 0 at r = 0. (2.7)

The other three sides of the domain have Dirichlet boundary conditions for p,u, and w,

with values obtained from boundary integrals (Eqs. (3.5), (3.6)) below.

3. Problem decomposition and solution methods

We decompose the pressure and velocity into parts induced by the tube boundary and

induced by the source and sink,

p = pbd + ps, (3.1a)

~v = ~vbd + ~vs, (3.1b)

so that each may be treated with an appropriate method. The tube boundary creates a

singularly-supported force; this part of the solution is addressed by the immersed interface

method. The smooth solution due to the source and sink is calculated with a boundary

integral method.
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3.1. Solution induced by the tube boundary

The pressure and velocity due to the immersed tube boundary, pbd and ~vbd , satisfy the

equations of Stokes flow, Eqs. (2.1a), (2.1b), and (2.1c), in the absence of source and sink

terms, i.e., with g(~x , t) ≡ 0. That is,

µ
�

∆−
1

r2

�

ubd −
∂ pbd

∂ r
+ F1 = 0, (3.2a)

µ∆wbd −
∂ pbd

∂ z
+ F3 = 0, (3.2b)

∇ · ~vbd = 0. (3.2c)

Forcing terms that are singularly supported on the tube boundary make this system suitable

for the immersed interface method.

3.1.1. Immersed interface method

For the immersed interface method the Stokes equations are recast as a sequence of three

Poisson problems. Each is solved by a standard finite difference method, with the dis-

cretized right-hand side of each problem determined by jump conditions.

Taking the divergence of Eqs. (3.2a), (3.2b) and applying Eq. (3.2c), pbd satisfies

∆pbd =∇ · ~F , (3.3)

which is discretized using a standard five-point stencil,

1

h2

�

pbd i+1, j + pbd i−1, j + pbd i, j+1 + pbd i, j−1 − 4pbd i, j

�

= bi, j. (3.4)

Away from the immersed boundary, right-hand side bi, j = 0, and when the stencil includes

points from both sides of the boundary, the immersed interface method prescribes values

of bi, j based on jump conditions, as detailed in [11] and [12]. We derive jump conditions

for the axisymmetric setting in Section 4; see Eqs. (4.8a) and (4.8b) below.

With values of pbd given, Eqs. (3.2a) and (3.2b) are also Poisson problems with singu-

larly supported right-hand side (F1 and F3, respectively), subject to the same finite differ-

ence approach incorporating jump conditions. The jump conditions for velocity are given

in Eqs. (4.14) and (4.15).

3.1.2. Boundary conditions

Boundary conditions are needed to solve the Poisson problems given above.

Eq. (3.3) has a boundary integral solution, given by

pbd =

∫∫

Γ

−
1

4π
~f · ∇
�1

r

�

dS, (3.5)

where Γ denotes the (two-dimensional) immersed surface and dS is the surface element.
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We make use of the boundary integrals in 3-D Cartesian coordinates to compute so-

lutions for Eqs. (3.2a) and (3.2b). Relating the r component of velocity in cylindrical

coordinates to the x and y components of velocity in 3-D Cartesian coordinates, we have

ucylindrical = uCartesian cos(θ) + vCartesian sin(θ).

When θ = 0, the statement reduces to

ucylindrical = uCartesian.

Therefore, we can make use of the boundary integral solution for Cartesian coordinates to

obtain the boundary value of u, as well as w (which is unchanged in Cartesian coordinates).

Using the notation ~x ′ = (x ′1, x ′2, x ′3), we have

~vCartesian
bd =

∫∫

Γ

1

8πµ

�δi j

r
+

x ′i x
′
j

r3

�

f jdS(x ′). (3.6)

3.2. Solution induced by the source and sink

The part of the pressure solution due to the source and sink is determined by comparing

Eqs. (3.3) and (2.2):

pbd = p−µg, (3.7)

so

ps = µg.

For velocity, our decomposition produces

�

∆−
1

r2

�

us =
1

µ

∂ ps

∂ r
=
∂ g

∂ r
, (3.8a)

∆ws =
1

µ

∂ ps

∂ z
=
∂ g

∂ z
. (3.8b)

These equations have smooth solutions which would typically be computed with a

finite difference approach. However, the 1/r2 term in Eq. (3.8a) grows large as r → 0.

Furthermore, when g ’s radius parameter κ is on the order of grid spacing h, ∂ ps/∂ r is also

large near r = 0. This is because the maximum of g is found at r = 0 and g(t, r, z) ≈ 0 for

r = κ. These two large terms generate large numerical errors in a finite difference scheme;

instead we use a boundary integral method to evaluate ~vs on the immersed interface. We

don’t have the boundary integral solution for us directly from Eq. (3.8a), but we can refer

to the solution for Cartesian coordinates as we did for Eq. (3.2a) above.

The relevant equation in 3-D Cartesian coordinates is

∆~vs =∇g, (3.9)
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which has boundary integral solution

~vCartesian
s =

∫∫∫

Ω

1

4π

∇g(x ′)

r
dV (x ′), (3.10)

where Ω is the (three-dimensional) computational domain and dV denotes the volume ele-

ment. To evaluate Eq. (3.10) we need the source/sink function g in Cartesian coordinates;

in Eq. (2.3), g is given in axisymmetric coordinates. We simply use a Cartesian grid with

x axis and z axis identical to the r and z axes of our axisymmetric cylindrical fluid grid.

3.3. Overview of hybrid computational approach

We briefly summarize the approach detailed in the previous sections. At time tn, ap-

proximate values are known for marker locations ~X (s, tn), establishing the configuration

of tube surface Γ. To advance the system to time tn+1:

1. Dirichlet boundary conditions: Compute pbd , ubd and wbd (values due to tube bound-

ary force) on the boundary of domain Ω using boundary integrals (3.5) and the first

and third components of (3.6).

2. Advance ~vbd and pbd via immersed interface method:

(a) Using a cubic spline representation of the boundary force ~f along Γ, calcu-

late jump condition corrections from Eqs. (4.8a) and (4.8b) for pressure, and

Eqs. (4.14) and (4.15) for velocity.

(b) Incorporate jump conditions into finite difference approximations for pn+1
bd

and

~vn+1
bd

on the fluid grid.

3. Find velocity due to source and sink via boundary integral: Use Eq. (3.10) to find ~vn+1
s

(velocity field due to source and sink) on the tube boundary markers.

4. Advance location of tube surface Γ:

(a) Advance tube boundary markers, i.e., find ~X (s, tn+1), according to the total

velocity field, ~v = ~vbd + ~vs:

~X (s, tn+1) = ~X (s, tn) +∆t
�3

2
~v
�

~X (s, tn), tn
�

−
1

2
~v
�

~X (s, tn−1), tn−1
�

�

. (3.11)

Boundary velocity is extrapolated from previous time-levels because while vn+1

is known at grid points, X n+1 has yet to be computed.

(b) Update ~vn+1
bd

on boundary marker locations, using a second order interpolation

scheme that incorporates the jump in velocity across the immersed boundary

(see [12]).
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4. Derivation of jump conditions for axisymmetric coordinate system

Next we derive the jump conditions for pressure and velocity for Stokes flow in the

axisymmetric cylindrical coordinate system. Note that the divergence-free flow described

in this section corresponds to the part of the solution due to the immersed boundary dis-

cussed in Section 3.1. For ease of notation, however, rather than using the variables pbd

and ~vbd in this section, we use generic p, u, v, w without the subscript bd .

We consider momentarily the governing equations in fully three-dimensional cylindri-

cal coordinates, then apply the assumption of invariance with θ to derive jump conditions

for the axisymmetric setting.

The equations governing Stokes flow in 3-D cylindrical coordinates are

µ
�

∆−
1

r2

�

u−
2µ

r2

∂ v

∂ θ
−
∂ p

∂ r
+ F1 = 0, (4.1a)

µ
�

∆−
1

r2

�

v +
2µ

r2

∂ u

∂ θ
−

1

r

∂ p

∂ θ
+ F2 = 0, (4.1b)

µ∆w −
∂ p

∂ z
+ F3 = 0, (4.1c)

∇ · ~v = 0, (4.1d)

where ~x = (r,θ , z), ~v = (u, v, w), and ~F = (F1, F2, F3), with

Fi =

∫∫

Γ

fi(s,θ , t)δ(~x − ~X (s,θ , t))dS (4.2)

for i = 1,2,3. Taking the divergence of Eqs. (4.1a), (4.1b), (4.1c) yields a Poisson equation

for pressure,

∆p =∇ · ~F . (4.3)

Let ψ(r,θ , z) be an arbitrary twice continuously differentiable test function. Multiply-

ing ψ on the right hand side of Eq. (4.3), and applying Green’s theorem, we have

∫∫∫

Ω

(∇ · ~F)ψ(r,θ , z)dV =

∫∫∫

Ω

�
∫∫

Γ

(∇ · ~f (s,θ , t)δ(~x − ~X (s,θ , t))dS

�

ψ(r,θ , z)dV

=−

∫∫

Γ

�

f1
∂ ψ

∂ r
+

f2

r

∂ψ

∂ θ
+ f3

∂ψ

∂ z

�

dS. (4.4)

By using (s,θ) coordinates to parameterize surface Γ, the surface element is dS = rdsdθ .

Let Γ+ be a region that encloses the boundary surface Γ, and let the distance between

Γ+ and Γ shrink to zero. As Γ+→ Γ, multiplyingψ(r,θ , z) on the left hand side of Eq. (4.3)

and applying Green’s theorem again, we have

∫∫∫

Γ+
(∆p)ψdV → 2π

�
∫

Γ

h∂ p

∂ n

i

ψrds−

∫

Γ

[p]ψnrds

�

. (4.5)
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Here n is the outward normal direction and ds is the arclength element.

Now we make explicit our axisymmetric assumptions, that ψ and f are independent

of θ . Then Eq. (4.4) can finally be written as

∫∫∫

Ω

(∇ · ~F)ψ(x , y)dV = −2π

∫

Γ

�

f1
∂ψ

∂ r
+ f3

∂ψ

∂ z

�

rds. (4.6)

Here Γ denotes the boundary of the cross section of the surface for fixed θ .

Now we split the force due to the boundary into components tangent to and normal to

the boundary. Because

f1
∂ψ

∂ r
+ f3

∂ψ

∂ z
= fn

∂ψ

∂ r
+ fs

∂ψ

∂ s
,

the right hand side of Eq. (4.6) can be written as

∫

Γ

�

f1
∂ψ

∂ r
+ f3

∂ ψ

∂ z

�

rds =

∫

Γ

�

fn

∂ ψ

∂ n
+ fs

∂ψ

∂ s

�

rds =

∫

Γ

�

fnr
∂ψ

∂ n
−
∂ ( fsr)

∂ s
ψ
�

ds. (4.7)

The second step of Eq. (4.7) is obtained by integration by parts on s. Finally, using the fact

ψ is arbitrary and combining Eq. (4.6) and Eq. (4.7), the jump conditions for pressure are

[p] = fn, (4.8a)
h∂ p

∂ n

i

=
1

r

∂ ( fsr)

∂ s
. (4.8b)

To obtain the jump condition for velocity, we can multiply test function ψ on Eq. (4.1a),

and integrate:

∫∫∫

Γ+
µ(∆u)ψdV −

∫∫∫

Γ+
µ
� u

r2

�

ψdV −

∫∫∫

Γ+

∂ p

∂ r
ψdV = −

∫∫

Γ

f1ψdS. (4.9)

Next we examine each term on the left-hand side of Eq. (4.9) as Γ+ → Γ. For the first

term of Eq. (4.9) we have

∫∫∫

Γ+
µ(∆u)ψdV →

∫∫

Γ

h

µ
∂ u

∂ n

i

ψdS. (4.10)

The second term of Eq. (4.9) is

∫∫∫

Γ+
µ
� u

r2

�

ψdV =

∫∫∫

Γ+
µ
� u

r2

�

ψrd rdθdz =

∫∫∫

Γ+
µ
�u

r

�

ψdrdθdz. (4.11)

Now we enforce our axisymmetric assumptions and conclude that the second term vanishes

as Γ+→ Γ: if r → 0, then u→ 0 in the axisymmetric cylindrical coordinate system. On the

other hand, when r remains finite, |u/r| → |∂ u/∂ r|, which remains bounded Therefore,

as Γ+→ Γ, the second term of Eq. (4.9) vanishes, whether r → 0 or not.
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The third term of Eq. (4.9) is
∫∫∫

Γ+

∂ p

∂ r
ψdV =

∫∫

Γ+
ψ
�

∇ · [p, 0]−
p

r

�

dV. (4.12)

As Γ+→ Γ,
∫∫∫

Γ+
ψ∇ · [p, 0]dS→

∫∫

Γ

ψ[p] cos(α)dS, (4.13a)

∫∫∫

Γ+
ψ

p

r
dS→ 0. (4.13b)

Here α is the angle between the normal and r direction. Therefore, we have the jump for

u,

h

µ
∂ u

∂ n

i

= [p] cosα−
f1

| f1|
= fs sinα. (4.14)

Similarly, we can derive the jump for w, which is

h

µ
∂ w

∂ n

i

= [p] sinα−
f3

| f3|
= − fs cosα. (4.15)

5. Numerical results

Our method has second order spatial accuracy in the absence of source and sink, shown

below in Section 5.1, and the simulated flow is found to be approximately Poiseulle (Sec-

tion 5.2.1). We also study the behavior of the fluid field under oscillating inflow and

outflow. Although complicated fluid behavior has previously been observed for pumped

Navier-Stokes flow, (e.g., [8]), in our Stokes flow study the amplitude of pressure and ve-

locity fluctuations decrease as the forcing oscillations increase in frequency (Section 5.2.2).

We also investigate inflow/outflow oscillations of increasing frequency under controlled,

steady pressure.

5.1. Convergence test

To demonstrate the second order spatial accuracy of our method, we consider a spher-

ical elastic surface deformed into an ellipsoid shape. (This stationary example does not

include a source and sink.) At the plane θ = 0, the cross section of the ellipsoid is de-

scribed parametrically as (0.8 cos(φ), 0.6 sin(φ)). The equilibrium shape for this surface

cross section is a circle with radius 0.7, centered at origin. In this example, the fluid do-

main is [−1.8,1.8]× [−1.8,1.8], and the fluid field is computed for N = 40,80,160, and

320, with uniform grid spacing h = 3.6/N in each case. The immersed boundary is dis-

cretized using 240 markers. We use the solution computed on a high-resolution 640×640

grid as the reference solution to estimate errors. Table 1 displays the convergence results,

where the velocity columns average the results in the r and z directions.
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e results for p and ~v. Approximations exhibit se
ond-order 
onvergen
e.
p ~v

N L1 error/h2 Linf error/h2 L1 error/h2 Linf error/h2

40 1.012e-2 8.932e-1 1.600e-2 1.362e-1

80 1.098e-2 6.470e-1 1.420e-2 1.058e-1

160 8.221e-3 9.818e-1 1.109e-2 1.045e-1

320 4.849e-3 1.405 9.415e-3 1.036e-1

5.2. Oscillating inflow

Here we simulate the motion of a compliant tube with an internal source and sink that

introduce an oscillating pumping force. In this example, the tube wall is subject to elastic

tension and tether forces.

The fluid domain is [−0.45,0.45]× [−3.6,3.6], with the r ≥ 0 half of the domain

discretized on a 40× 640 grid (and the r < 0 half reflected), so grid spacing h= 0.01125.

The time step for the simulation is h/20.

Fig. 2 shows the configuration of the tube. The source and sink are centered at (r, z) =

(0.0,2.0) and (r, z) = (0.0,−2.0), respectively, with radius parameter κ = h = 0.0225. At

equilibrium, the top of the tube is the upper half of the circle with radius 0.2 centered at

the source, described by

r2 + (z − 2.0)2 = 0.22.

Similarly, the bottom of the tube is the lower half of the circle with radius 0.2 centered at

the sink:

r2 + (z + 2.0)2 = 0.22.

Each half circle is discretized by 8 markers. The left and right walls of the tube are straight

lines at equilibrium, r = 0.2 and r = −0.2 between z = −2.0 and z = 2.0, with 36

markers on each side. Of the 88 markers, the positions of the 44 on the right half of the

domain are computed, while the corresponding markers on the left half of the domain

move according to symmetry. We use the notation ~X (s, t) to denote the position (r, z) of

the marker associated with equilibrium arclength value s, at time t, and we use ~X (sopp, t)

to denote the position of the mirrored twin marker.

The boundary force along the tube surface is composed of two parts,

~f = ~fe + ~ft .

The elastic tension force is given by

~fe =
∂ T

∂ ~τ
~τ− 2Tκ~n,

where ~τ(s, t) is the tangent vector to the tube surface, T (s, t) is the tension

T (s, t) = T0

�
�

�

�

∂ ~X

∂ s0

�

�

�− 1
�

,
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Figure 2: Markers delineate the boundary of an elasti
 tube.
where s0 denotes the material coordinate (we use elasticity constant T0 = 0.2). κ denotes

the mean curvature, taken positive for a sphere. A derivation for the tension force in

cylindrical coordinates can be found in [10].

The tether force ~ft is defined in two ways. Along the top and bottom semi-circular

regions of Γ,

~ft = −k(~X − ~X eq),

with spring force k = 100 and ~X eq the equilibrium position described above.

Along the side regions of the tube, the r and z components of the tether force are

defined independently:

~ft =

�

fr t

fzt

�

, (5.1)

where fzt is the z component of the tether force defined above, and fr t arises from a

boundary point’s elastic connection to its neighbors along the circumference of the tube.
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This width-restoring force is defined as

fr t = m
�
�

�~X (s, t)− ~X (sopp, t)
�

�− LT

�

. (5.2)

Here LT is the equilibrium width of the tube, and m is the force constant. In this example,

LT = 0.4 and m= 50.

The fluctuating magnitude for the source is

A(t) = 0.0025
�

1.0+ sin(ωt − 0.5π)
�

. (5.3)

The magnitude for the sink is −A(t). We examine the flow subject to varying fluctuation

frequencies ω in Section 5.2.2 below.

5.2.1. Velocity and shear stress

In this example, we choose inflow/outflow oscillation frequency ω = 5. After the system

reaches equilibrium, we plot the z direction velocity and shear stress along the cross section

z = 0.99 (results are qualitatively similar at other cross sections). From the parabolic shape

of the z-velocity (Fig. 3(a)), and the v-shaped shear stress (Fig. 3(b)), we can see that the

flow is approximately Poiseuille flow, as could be expected for laminar flow through a

roughly circular pipe.

To illustrate aspects of the fluid dynamics, we plot in Fig. 4 snapshots of the z-

component of the fluid velocity, computed at z = 0.99, at five time points. These time

points were chosen to be approximately π/ω apart with a period of the inflow/outflow

oscillations. The magnitude of the r-component of the fluid velocity is at least an order of

magnitude smaller.

z component

of velocity

-0.3 -0.15 0 0.15 0.3 0.45
r

-0.03

-0.02

-0.01

0

w

(a) Velocity in the z direction at z = 0.99. Approxi-

mately parabolic profile is characteristic of Poiseuille

flow.

Shear stress

-0.3 -0.15 0 0.15 0.3 0.45
r

0

0.01

0.02

0.03

(b) Shear stress at z = 0.99. V -shape is characteris-

tic of Poiseuille flow.Figure 3: Chara
teristi
s of Poiseuille �ow.
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-0.45 -0.3 -0.15 0 0.15 0.3 0.45
-0.04

-0.02

0

0.02

0.04

Figure 4: Snapshots of z-
omponent of velo
ity at z = 0.99, sampled at �ve time-points with a for
ingperiod, ordered in time from bottom to top.
5.2.2. Frequencies and amplitude

Other studies (e.g., [8]) have demonstrated pumped flow that changes nonlinearly with

forcing function frequency, even reversing direction for certain frequency ranges. In the

current, simple case of Stokes flow, however, we see pressure and flow fields that settle

(fluctuation amplitudes decrease) as the pumping speed increases. The data in this set of

experiments was collected at z = 1.8 and z = 0.99, but results are qualitatively similar at

other locations.

Fig. 5(a) shows the maximum and minimum pressure values recorded over an equi-

librium temporal cycle at point (r, z) = (0,1.8), for increasing pumping frequency. For

pumping frequencies 5≤ω ≤ 80, the amplitude of the pressure cycle decreases monoton-

ically.

Fig. 5(b) shows the maximum and minimum flow values obtained by integrating the

vertical velocity field at z = 0.99 throughout an equilibrium temporal cycle. For all

pumping frequencies, fluid flows in the downward direction. For pumping frequencies
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(a) Minimum and maximum of pressure cycle at

(r, z) = (0, 1.8); pumping frequency 5 ≤ω ≤ 80.

æ

æ æ

æ
æ

æ

æ

æ
æ

à

à

à
à

à
à

à

à
à

Minimumand
maximumflow

5 10 20 30 40 50 60 70 80
Ω-0.0055

-0.00525

-0.005

-0.00475
q

(b) Minimum and maximum of flow across z = 0.99

for pumping frequency 5≤ω≤ 80.Figure 5: Flow settles as pumping speed in
reases.
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Figure 6: Under in
reasing pumping frequen
y and approximately steady pressure, the average �ow at
z = 0.99 in
reases in absolute value.
5≤ω ≤ 40, the amplitude of the flow cycle decreases monotonically. For higher pumping

frequencies, the amplitude of the flow cycle stays within 0.25% of the mean flow.

Finally, for a more biologically or physically relevant experiment to investigate the ef-

fect of pressure fluctuation frequency on flow rate, we varied the frequency of pumping

(and therefore the frequency of pressure oscillations) while holding the pressure ampli-

tude approximately fixed (≈ 1.378× 10−2). To obtain steady pressure amplitude near the

source, we adjust the magnitude of inflow/outflow function A(t) (see Eq. (5.3)) as we

vary ω. Fig. 6 shows that, under increasing pumping frequency and approximately steady

pressure, the average flow at z = 0.99 increases in absolute value.

6. Discussion

We have developed a numerical method for simulating Stokes flows along a compli-

ant, closed tube. Fluid motion is described in cylindrical coordinates and is assumed to

be axisymmetric. Our approach is based on the immersed interface method and bound-

ary integrals, and robustly captures the jumps in the solution and its derivatives. Jump

conditions were derived for the axisymmetric cylindrical coordinates. We used the method

to simulate fluid flow through an elastic tube driven by oscillatory forcings, and we stud-

ied how the pressure and velocity oscillation amplitudes vary as functions of the forcing

frequency.

The present method was developed for Stokes flow and is applicable to creeping flows

or fluid with sufficiently high viscosity. However, blood flow in arteries and arterioles has

medium to high Reynolds numbers, and thus is more appropriately described as Navier-

Stokes flow. To extend the present method to the Navier-Stokes equations, one may use

the velocity decomposition approach developed by Layton and Beale [2]. That method,

developed for Cartesian coordinates, decomposes the overall solution to the Navier-Stokes

equations into a singular piece that satisfies the Stokes equations with singular forces, and

a remainder piece that is sufficiently regular to be solved using standard finite difference

methods. The singular piece can be computed using the method introduced in the present

study.
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