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Abstract. Image deconvolution problems with a symmetric point-spread function arise
in many areas of science and engineering. These problems often are solved by the
Richardson-Lucy method, a nonlinear iterative method. We first show a convergence
result for the Richardson-Lucy method. The proof sheds light on why the method may
converge slowly. Subsequently, we describe an iterative active set method that imposes
the same constraints on the computed solution as the Richardson-Lucy method. Com-
puted examples show the latter method to yield better restorations than the Richardson-
Lucy method and typically require less computational effort.
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1. Introduction

This paper is concerned with the restoration of images that have been contaminated
by blur and noise. We consider two-dimensional gray-scale images, whose brightness is
represented by a real-valued function defined on a square or rectangular region Ω ∈ R2.
Let the function bδ represent the available observed blur- and noise-contaminated image,
and let the function x̂ represent the unknown associated blur- and noise-free image that we
would like to recover. We assume the functions bδ and x̂ to be related by the degradation
model

bδ(s) =

∫

Ω

h(s, t) x̂(t)d t +ηδ(s), s ∈ Ω, (1.1)
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where ηδ represents additive noise (error) in the data bδ. The kernel h models the blur-
ring and is often referred to as the point-spread function (PSF). In many applications, the
integral is a symmetric convolution, i.e., the kernel h is of the form

h(s, t) = h(t, s) = k(s− t), s, t ∈ Ω, (1.2)

for some function k. This situation is of primary interest to us; however, the method
described in Section 3 can be applied to restoration problems with a more general kernel.
We also will assume that ∫

Ω

h(s, t)ds = 1, t ∈ Ω. (1.3)

Then the blurring does not change the total brightness of the image.
The PSF in typical image restoration problems is smooth or piecewise smooth with

jump discontinuities. The integral operator (1.1) then is compact and therefore its singular
values cluster at the origin. Consequently, the integral operator does not have a bounded
inverse.

We would like to determine an accurate approximation of the unknown blur- and noise-
free image x̂ when the observed image bδ and the kernel h are available. Straightforward
solution of ∫

Ω

h(s, t)x(t)d t = bδ(s), s ∈ Ω, (1.4)

for x generally does not yield a useful approximation of the desired blur- and noise-free
image x̂ because of the noise ηδ in bδ and the fact that the integral operator does not have
a bounded inverse. Due to the latter, the task of solving (1.4) is an ill-posed problem; see,
e.g., Engl et al. [4] for discussions on ill-posed problems and on numerical methods for
their solution.

We seek to determine an accurate approximation of x̂ by computing a suitable approxi-
mate solution of (1.4). It is generally beneficial to impose constraints known to be satisfied
by x̂ on the computed approximation during the solution process. Since x̂ represents the
brightness of the image, it is nonnegative. We would like the computed approximation
of x̂ to satisfy the same constraint, i.e., would like our solution method to determine an
approximate solution x of (1.4) that satisfies

x(t) ≥ 0, t ∈ Ω. (1.5)

Integrating (1.4) with respect to s and using (1.3) yields
∫

Ω

x(t)d t =

∫

Ω

bδ(s)ds. (1.6)

We also would like the computed approximate solution to satisfy this constraint.
The present paper discusses two methods for determining approximate solutions of

(1.4) that satisfy the constraints (1.5) and (1.6). The first method considered is the clas-
sical Richardson-Lucy method introduced by Richardson [15] and Lucy [8]. This method
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requires the kernel h to be nonnegative and of the form (1.2). It is a nonlinear iterative
method, whose convergence may be quite slow. Nevertheless, the method is popular; see,
e.g., [1, 3, 16–19] for a variety of recent applications. Richardson-Lucy iteration also is
applied to solve blind deconvolution problems; see [2,5]. We review the Richardson-Lucy
method in Section 2 and discuss some of its properties. In particular, we show convergence
for a special class of functions. The proof sheds light on why Richardson-Lucy iteration may
converge slowly. Section 3 describes an iterative active set method for the solution of (1.4).
This method uses Lanczos bidiagonalization to reduce the large restoration problem to a
smaller one, and applies an active set method to compute an approximation of x̂ that sat-
isfies the constraints (1.5) and (1.6). Section 4 presents a few computed examples that
compare Richardson-Lucy iteration with the active set method of Section 3. Concluding
remarks and comments on extensions can be found in Section 5.

In the computed examples of this paper, we will assume that a bound for the norm
of the error ηδ is available. This allows us to terminate the iterations with the aid of
the discrepancy principle. However, the solution methods discussed also can be applied
with other stopping criteria, such as generalized cross validation; see, e.g., [14] for an
illustration. A variety of so-called heuristic parameter choice rules and their properties
have recently been investigated in [7].

2. The Richardson-Lucy method

We define the Richardson-Lucy method for Ω = Rp with p ≥ 1 an integer. This choice of
Ω avoids boundary effects. Richardson [15] and Lucy [8] proposed the following nonlinear
iterative method to determine a sequence of approximations xr of the blur- and noise-free
image x̂:

xr+1(u) = xr(u)

∫

Rp

k(s− u)bδ(s)∫
Rp k(s− t)xr(t)d t

ds, u ∈ Rp, r = 0,1, · · · , (2.1)

with x0 = bδ. We refer to (2.1) as the Richardson-Lucy method, or briefly as the RL
method. It is easy to verify that the iterates xr are nonnegative,

xr(t) ≥ 0, t ∈ Rp, r = 1,2, · · · ,
provided that

k(t) ≥ 0, x0(t) ≥ 0, t ∈ Rp.

We assume the latter inequalities to hold. Moreover, the xr satisfy
∫

Rp

xr(s)ds =

∫

Rp

bδ(t)d t, r = 0,1, · · · .

Thus, the RL iterates xr satisfy the conditions (1.5) and (1.6).
The main drawback of the RL method is that for many restoration problems a fairly

large number of iterations are required to determine an accurate approximation of x̂; see,
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e.g., Section 4. After discretization, each iteration requires the evaluation of two matrix-
vector products with the blurring matrix.

The remainder of this section discusses some properties of the RL method, which shed
light on the convergence behavior. For notational simplicity, we let Ω = R. However, our
discussion, suitably modified, can be extended to higher space-dimensions.

We first note that there are problems for which the RL method convergences rapidly.
Let Ω = R and let k(t) be a symmetric probability kernel (density with respect to the
measure ν) with mean one. Then for any linear signal x(t) = c0 + c1 t, the convolution
transform reproduces the signal, i.e.,

∫

R

k(s− t)x(t)dν(t) = x(s), s ∈ R.

Therefore, if the RL method is started with a linear signal x0 = bδ, then the method con-
verges in one step. Thus, the linear functions are eigenfunctions of the integral operator
associated with the eigenvalue one. This observation suggests that we may gain insight
into the convergence properties of the RL method by identifying invariant sets of the con-
volution transform.

Consider the Gaussian kernel in one space-dimension

k(t) =
1p
2π

exp
�−t2

2

�
, t ∈ R

and the associated convolution transform
∫

R

1

σ
k((t − u)/σ)x(u)du, (2.2)

where the parameter σ > 0 determines the spread of the kernel. It follows from the
above discussion that the linear functions are eigenfunctions of the transform (2.2) with
eigenvalue one. The theorem below describes a nontrivial invariant set for this transform
and discusses convergence.

Theorem 2.1. The space of bell-shaped functions

x(t) = ba exp
�
c0 t − c1 t2�, (2.3)

where ba, c0, c1 are real constants with c1 > 0, forms an invariant set for the Gaussian con-

volution transform (2.2). The RL method, when started with an observed signal of the form

(2.3), converges point-wise to the input signal.

Proof. The functions (2.3) can be expressed as

x(t) = a exp
�− c(t −µ)2� (2.4)
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for certain constants c > 0 and a, µ ∈ R. Let f be a function of the form (2.4) and
introduce the "blurred" observed signal

H(t) =

∫

R

1

σ
k((t − u)/σ) f (u)du

associated with the original "unknown" signal f . The observed signal can be expressed as

x0(t) =H(t) = a

∫

R

1

σ
k((t −µ− u)/σ)exp(−cu2)du

=
a
p

1+ 2cσ2
exp
�
− c(t −µ)2

1+ 2cσ2

�
= a0 exp
�− c0(t −µ)2
�
,

where
a0 =

a
p

1+ 2cσ2
, c0 =

c

1+ 2cσ2 . (2.5)

Using x0 as the initial function for the RL method, the next iterate can be written as

x1(t) =x0(t)

∫

R

1
σ

k((t − u)/σ)H(u)du
∫
R

1
σ

k((u− v)/σ)x0(v)dv

=e−c0(t−µ)2
∫

R

1
σ

k((t − u)/σ) a0e−c0(u−µ)2 du
∫
R

1
σ

k((u− v)/σ)e−c0(v−µ)2 dv

=e−c0(t−µ)2
∫

R

1
σ

k((t − u)/σ)a0e−c0(u−µ)2 du

1p
1+2c0σ

2
e−c0(u−µ)2/(1+2c0σ

2)
.

Further calculations show that

x1(t) = a1 exp(−c1(t −µ)2),
where

a1 =
a0

p
1+ 2c0σ

2

Ç
1+ 2σ2
�

c0 −
c0

1+ 2c0σ
2

� , c1 = c0 +

c0 −
c0

1+ 2σ2c0

1+ 2σ2
�

c0 −
c0

1+ 2σ2c0

� .

Repeating the iterations, we obtain

xr(t) = ar exp(−cr(t −µ)2), r = 2,3, · · · ,
with

ar+1 =
a0

p
1+ 2crσ

2

Ç
1+ 2σ2
�

c0 −
cr

1+ 2crσ
2

� , cr+1 = cr +

c0 −
cr

1+ 2σ2cr

1+ 2σ2
�

c0 −
cr

1+ 2σ2cr

� . (2.6)
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This establishes that the functions (2.3) form an invariant set.
We turn to the convergence of the coefficients cr . Introduce the function

h(u) =
u

1+ 2σ2u
,

which satisfies

h(u)<min
n

u,
1

2σ2

o
, (2.7a)

0< h′(u)< 1, (2.7b)

for 0< u<∞. The recursion formula (2.6) for the coefficients cr can be written as

cr+1 = cr +
c0 − h(cr)

1+ 2σ2(c0 − h(cr))
, r = 0,1, · · · . (2.8)

Assume for a moment that the sequence c0, c1, · · · has the limit α. Then

α = α+
c0 − h(α)

1+ 2σ2(c0 − h(α))
.

Solving for α yields

α=
c0

1− 2σ2c0
= c,

where the right-hand side equality follows from (2.5). Moreover,

0< h(α) = c0 < c. (2.9)

We will show that the coefficients cr , r = 1,2, · · · , converge monotonically to c.
Assume that 0 < cr < α. These inequalities hold for c0. It follows from (2.8) that

cr+1 > cr . Writing (2.8) as

cr+1 = cr + h(c0 − h(cr))

and using (2.7a), (2.9), and (2.7b), in order, yields

cr+1 < cr + c0 − h(cr) = cr + (h(α)− h(cr)) = cr + h′(ξ)(α− cr)< α,

for some cr < ξ < α. Thus, cr < cr+1 < α. These inequalities hold for r = 0,1, · · · , and
show the monotonic convergence of the coefficients cr . Convergence of the cr , r = 1,2, . . . ,
secures that the coefficients ar , r = 1,2, · · · , in (2.6) converge as well. This, in turn, implies
point-wise convergence of the iterates x1, x2, x3, · · · to the function f . �

The above proof shows that convergence of the RL method may be slow when σ is
large, because then the corrections cr+1 − cr are "tiny".
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3. An iterative active set method

The method of this section is based on the iterative active set scheme described in [10]
for finite dimensional problems. We therefore consider a discretization

Ax = bδ (3.1)

of (1.4).
Let the available image that we would like to restore be represented by an n× n array

of pixels. Ordering these pixels column-wise yields the right-hand side bδ ∈ Rm of (3.1)
with m = n2. The matrix A ∈ Rm×m in (3.1) represents a discretization of the integral
operator in (1.4) and the entries of x ∈ Rm are pixel values, ordered column-wise of an
approximation of the desired blur- and noise-free image.

The entries of bδ are contaminated by noise. Let b ∈ Rm be the associated vector with
the unknown noise-free entries, i.e.,

bδ = b+ηδ, (3.2)

where the vector ηδ represents the noise. In the present section and in the computed
examples, we will assume that a fairly accurate bound

‖ηδ‖ ≤ δ (3.3)

is known, where ‖ · ‖ denotes the Euclidean vector norm, and that the linear system of
equations with the noise-free right-hand side,

Ax = b (3.4)

is consistent.
Let x̂ ∈ Rm denote the solution of minimal Euclidean norm of (3.4). We are interested

in computing an approximation of x̂ that satisfies discrete analogues of the constraints
(1.5) and (1.6).

The iterative active set method in [10] is designed to determine an approximate solu-
tion of the constraint minimization problem

min
x∈S
‖Ax − bδ‖,

where S⊂ Rm is a convex set of feasible solutions defined by box constraints.
A vector x ∈ Rm is said to satisfy the discrepancy principle if

‖Ax − bδ‖ ≤ γδ, (3.5)

where γ > 1 is a user-chosen constant. The size of γ depends on the accuracy in the
estimate δ. If δ is know to be a tight bound for the norm of the noise, then γ is generally
chosen to be close to unity. We note that the vector x̂ satisfies (3.5).
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The active set method [10] first determines an approximate solution of (3.1) with the
LSQR iterative method. This is a minimal residual Krylov subspace method; see [13] for
details. We use the initial iterate x0 = 0 and terminate the iterations as soon as an iterate
xk that satisfies the discrepancy principle (3.5) has been found.

The vector xk is not guaranteed live in S. The scheme [10] therefore projects xk orthog-
onally into S and if necessary applies an active set method to determine an approximate
solution of (3.1) that lies in S and satisfies the discrepancy principle. The active set method
uses LSQR. We have found it useful to iterate with LSQR until the discrepancy principle
(3.5) is satisfied after each update of the active set. Each update generally affects several
of the components of the computed approximate solutions; see [10]. A related method
and theoretical results are shown in [9]; we will comment on the latter method below.

We now describe how the outlined active set method can be applied to enforce a con-
straint analogous to (1.6). Define the norm

‖x‖1 =
m∑

j=1

|x j|, x = [x1, x2, · · · , xm]
T .

Let e = [1,1, · · · , 1]T ∈ Rm and assume that x ≥ 0. Here and below vector inequalities are
understood element-wise. Then the constraint

‖x‖1 = ‖bδ‖1
can be expressed as the linear constraint

eT x = ‖bδ‖1, (3.6)

which is a discrete analogue of (1.6). Introduce the orthogonal projectors

Pe =
1

m
eeT , P⊥e = I − Pe, PAe =

Ae(Ae)T

‖Ae‖2 , P⊥Ae = I − PAe.

We use these projectors to split the computed approximate solution into

x = P⊥e x + Pe x . (3.7)

The condition (3.6) can be expressed as

Pe x =
1

m
‖bδ‖1e. (3.8)

We would like to determine an approximate solution x of (3.1) that satisfies (3.8). The
linear system of equations (3.1) can be written as

PAeAPe x + PAeAP⊥e x = PAe bδ,

P⊥AeAPe x + P⊥AeAP⊥e x = P⊥Ae bδ.
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It is easy to see that P⊥AeAPe = 0. Therefore, the second equation simplifies to

P⊥AeAP⊥e x = P⊥Ae bδ. (3.9)

Using (3.8), the nonnegativity constraint (1.5) can be expressed as

0≤ Pe x + P⊥e x =
1

m
‖bδ‖1e+ P⊥e x ,

which yields

P⊥e x ≥ − 1

m
‖bδ‖1e. (3.10)

The images in the computed examples of Section 4 are represented by 8-bit pixels.
Therefore, each entry of the solution of (3.1) should not exceed 28 − 1 = 255. Conse-
quently, the entries of P⊥e x should satisfy the upper bound

P⊥e x ≤
�

255− 1

m
‖bδ‖1
�

e. (3.11)

We apply the active set method [10] to the solution of (3.9) with the set S determined
by the constraints (3.10) and (3.11). This yields the component of the solution orthogonal
to the vector e, that is P⊥e x . The desired approximate solution of (3.1) is obtained accord-
ing to (3.7), where Pe x is given by (3.8). The following section illustrates the performance
of this solution method.

4. Computed examples

This section demonstrates the performance of the active set method of Section 3 when
applied to both synthetic and real images that have been contaminated by blur and noise.
We compare the performance with that of the RL method described in Section 2.

Let x̃ be an available approximation of the desired blur- and noise-free image x̂ . The
Peak Signal-to-Noise Ratio (PSNR),

PSNR( x̃ , x̂) = 20 log10

255

‖ x̃ − x̂‖dB

provides a quantitative measure of the quality of x̃ . The norm ‖ x̃ − x̂‖ is the Root Mean
Squared Error (RMSE) of x̃ − x̂ . The numerator, 255, is the largest pixel-value that can be
represented with 8 bits. A large PSNR-value indicates that x̃ is an accurate approximation
of x̂; however, the PSNR-values are not always in agreement with visual perception. All
computations are carried out in MATLAB with about 16 significant decimal digits.

We assume an accurate estimate of the noise-level

ν =
‖ηδ‖
‖b‖
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to be available in all examples of this section, cf. (3.2)-(3.3), and therefore choose the
parameter γ in (3.5) close to unity; we set γ = 1.001. The noise is white and Gaussian in
all examples.

The matrix A in (3.1) in all examples is a symmetric block Toeplitz matrix with Toeplitz
blocks and models a Gaussian blurring operator. It is determined with the MATLAB func-
tion blur.m from Regularization Tools [6]. This function has two parameters band andsigma. The former specifies the half-bandwidth of the Toeplitz blocks and the latter the
variance of the Gaussian point spread function. The larger sigma, the more blurring.
Enlarging band increases the storage requirement, the arithmetic work required for the
evaluation of matrix-vector products with A, and to some extent the blurring.

Example 4.1. We consider the restoration of a blur- and noise-contaminated 
orner
image represented by 512 × 512 pixels. Thus, the order of the blurring matrix A is
m = 262144. The desired blur- and noise-free image is depicted in Fig. 1(a). A version
of the image that has been contaminated by Gaussian blur, determined by the parameters
band = 15 and sigma = 7 and by 10% noise is displayed in Fig. 1(b).

The second column of Table 1, with header PSNRi, reports PSNR-values for images
orner that have been corrupted by Gaussian blur, characterized by band = 15 andsigma = 7, and by noise of different noise-levels ν . The latter are shown in the first
column. Column three, labeled PSNRASM, shows the PSNR-values for restorations deter-

(a) (b)

(c) (d)Figure 1: Example 4.1. 
orner images: (a) blur- and noise-free image; (b) the 
orrupted imageprodu
ed by Gaussian blur, de�ned by the parameters band = 15 and sigma= 7, and by 10% noise; (
)restoration with largest PSNR-value determined by the RL method; (d) restored image determined bythe a
tive set method.
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orner images that have been 
orrupted by signi�
antGaussian blur, de�ned by band= 15 and sigma= 7, and by noise 
orresponding to noise-level ν .
ν PSNRi PSNRASM mvpASM PSNRRLd mvpRLd PSNRRL mvpRL

0.05 20.28 26.44 68 22.22 8 25.60 80
0.10 19.80 24.40 48 20.85 2 23.34 48
0.30 16.59 19.29 20 18.03 2 18.45 16

mined by the active set method of Section 3. The column with header mvpASM displays the
number of matrix-vector product evaluations with the matrix A required by the active set
method. The iterations with this method are terminated by using the discrepancy principle
(3.5).

When the iterations with the RL method are terminated with the discrepancy principle,
using the same value of γ, restorations with PSNR-values reported in column five of Table
1 are obtained. The required number of matrix-vector products are reported in column
sixth under the header mvpRLd. The RL method is seen to carry out only few iterations and
produce restorations of lower quality than the active set method.

Running the RL method for 300 iterations, we noticed that the PSNR-values first in-
creased and then decreased; see Fig. 2. The seventh column of Table 1, labeled PSNRRL,
reports the largest PSNR-values achieved by the RL method during continued iterations,
and column eight displays the number of matrix-vector product evaluations required to
obtain a restoration with maximal PSNR-value. Comparing columns 3 and 7 of Table 1
shows that the active set method of Section 3 with the discrepancy principle determines
restorations with larger PSNR-values evaluations than any restoration determined by the
RL method. A comparison of columns 4 and 8 of Table 1 shows the active set method to
require fewer matrix-vector product evaluations than the RL method when the noise-level
ν is small. The saving in the number of matrix-vector product evaluations is the largest
when ν is the smallest and the largest number of iterations are required. We recall that
both the active set and RL methods require two matrix-vector product evaluations with A

per iteration.

0 50 100 150 200 250 300
21

21.5

22

22.5

23

23.5

24

steps

P
S

N
R

Figure 2: Example 4.1. Plot of the PSNR-value as a fun
tion of the number of RL iterations.



Iterative Methods of Richardson-Lucy-Type for Image Deblurring 273

Fig. 1(c) shows the best restoration of the image in Fig. 1(b) achieved with the RL
method. Thus, this restoration was obtained after 24 iterations, which required 48 matrix-
vector product evaluations. Fig. 1(d) displays the restoration computed with the active set
method.

This example illustrates that it is important to terminate the iterations with the RL
method before the quality of the computed restorations deteriorates. Moreover, the dis-
crepancy principle is seen not to be a suitable stopping criterion for the method.

Example 4.2. The noise- and blur-free image satellite used in this example is shown
in Fig. 3(a). It is represented by 256× 256 pixels. It follows that the order of the blurring
matrix A is m = 65536. The corresponding image corrupted by Gaussian blur, defined by
band = 9 and sigma = 7, and by 10% noise, is shown in Fig. 3(b).

Table 2 reports PSNR-values for the contaminated images and for restorations deter-
mined by the RL method and the active set method. The table is analogous to Table 1.
When the noise-level is ν = 0.05, the RL method supplied with the discrepancy principle
as stopping criterion does not terminate within 500 iterations. Table 2 shows the active set
method with the discrepancy principle to determine restorations with larger PSNR-values
and to require fewer matrix-vector product evaluations than Richardson-Lucy for every
noise-level. Fig. 3(c) shows the best restoration of the image of Fig. 3(b) determined by
the RL method. Its computation required 42 matrix-vector product evaluations. Fig. 3(d)
shows the corresponding restoration computed with the active set method.

(a) (b)

(c) (d)Figure 3: Example 4.2. satellite images: (a) blur- and noise-free image; (b) the 
orrupted imageprodu
ed by Gaussian blur, de�ned by the parameters band = 9 and sigma = 7, and by 10% noise; (
)restoration with largest PSNR-value determined by the RL method; (d) restored image determined bythe a
tive set method.
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orrupted bysigni�
ant Gaussian blur, de�ned by band = 9 and sigma = 7, and by noise 
orresponding to noise-level
ν .

ν PSNRi PSNRASM mvpASM PSNRRLd mvpRLd PSNRRL mvpRL

0.05 19.55 24.47 62 17.57 >1000 20.46 66
0.10 19.45 22.32 26 20.06 8 20.35 42
0.30 18.48 19.65 10 19.12 2 19.40 16Table 3: Example 4.2. Results for restorations of satellite images that have been 
orrupted bysymmetri
 Gaussian blur asso
iated with several values of the parameters band and sigma, and noiseof level ν = 0.1. band sigma PSNRi PSNRASM mvpASM PSNRRL mvpRL

21 9 17.87 20.24 74 19.07 162
15 9 18.45 20.90 46 19.81 96
15 7 18.55 20.74 46 19.70 90
9 7 19.45 22.32 26 20.35 42
5 3 20.89 23.64 18 21.32 12
3 3 22.22 24.80 14 22.67 10

Finally, Table 3 compares the PSNR-values for restorations computed with the RL and
active set methods for Gaussian blurs associated with different values of the parametersband and sigma, and 10% noise. We report the largest achievable PSNR-values for the RL
method and show the associated number of matrix-vector product evaluations required.
Our analysis of Section 2 suggests that the RL method converges slower the larger the
value of the parameter sigma. This is in agreement with the results reported in Table 3.

5. Conclusions and extensions

The computed examples show the proposed active set method with the discrepancy
principle as stopping criterion to yield restorations of higher quality than any restoration
determined by Richardson-Lucy. Moreover, for most examples the computation of the best
restoration with the latter method required more matrix-vector product evaluations than
the active set method with the discrepancy principle. The fact that the active set method
performs well with the discrepancy principle makes the method easy to apply when an
estimate of the norm of the error in the data is available or can be computed. However,
we note that the active set method also can be used in conjunction with other stopping
criteria. In view of the superior performance of the active set method, it may be interesting
to investigate the performance of other implementations, such as an implementation based
on a multilevel approach [9, 11, 12]. We also plan to investigate the performance of the
active set method when applied to the solution of other ill-posed problems that often are
solved by the Richardson-Lucy method.
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