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Abstract. We consider the linear and non-linear enhancement of diffusion weighted

magnetic resonance images (DW-MRI) to use contextual information in denoising and

inferring fiber crossings. We describe the space of DW-MRI images in a moving frame

of reference, attached to fiber fragments which allows for convection-diffusion along

the fibers. Because of this approach, our method is naturally able to handle crossings

in data. We will perform experiments showing the ability of the enhancement to in-

fer information about crossing structures, even in diffusion tensor images (DTI) which

are incapable of representing crossings themselves. We will present a novel non-linear

enhancement technique which performs better than linear methods in areas around

ventricles, thereby eliminating the need for additional preprocessing steps to segment

out the ventricles. We pay special attention to the details of implementation of the

various numeric schemes.

AMS subject classifications: 65M10, 78A48
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1. Introduction

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is an MRI techniques for

non-invasively measuring local water diffusion inside tissue. It has been stipulated that the

water diffusion profiles of the imaged area allow inference of the underlying tissue struc-

ture. For instance in brain white matter, diffusion is less constrained parallel to nerve fibers
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than perpendicular to them and so the water diffusion gives information about the fiber

structures present. This allows for the extraction of anatomical information concerning

biological fiber structures from DW-MRI scans.

The diffusion of water molecules in tissue over some time interval t can be described by

a diffusion propagator which is the probability density function x 7→ pt(X t = x+r | X0 = x)

of finding a particular water molecule at time t ≥ 0 displaced by r ∈ R3 from its initial

position x ∈ R3 at t = 0. Here the family of random variables (X t)t≥0 describes the

distribution of water molecules over time. The function pt can be related to MRI signal

attenuation of diffusion weighted image sequences through the Fourier transform and so

can be estimated given enough measurements [28]. The exact methods to do this are

described by e.g., Alexander [2].

The most common DW-MRI scans is Diffusion Tensor Imaging (DTI), which measures

for each position a 3×3, symmetric positive definite tensor called the diffusion tensor [3].

DTI makes the assumption that locally the diffusion propagator is given by an anisotropic

Gaussian function, characterized by this diffusion tensor. Other, more recent techniques

collectively called High Angular Resolution Diffusion Imaging (HARDI), allows more gen-

eral shapes for the diffusion propagator [8,32].

Often, pt is not reconstructed completely from measurements, since this would involve

long scanning times. Instead, the Orientation Distribution Function(ODF) can be obtained

using less measurements [1]. The ODF gives the probability density that a water particle

diffuses in a certain direction n, regardless of distance traveled. It is defined by:

ODF(x,n) =

∫ ∞

0

pt(X t = x+αn | X0 = x)α2dα. (1.1)

This ODF is an example of a function of position and orientation. A general function

U : R3 × S2 7→ R+ of positions and orientations can be visualized by a field of surfaces

Sµ(U)(x) =
�
x+µU(x,n)n | n ∈ S2

	 ⊂ R3, (1.2)

which are called glyphs. A figure is generated by visualizing all these surfaces for different,

sampled x and with a suitable value for µ > 0 that determines the size of the glyphs.

An example of such a visualization can be found in the top left of Fig. 1. Note that for

DTI data a different visualization based on ellipsoids is commonly used. Such an ellipsoid

visualization can not handle our enhanced DW-MRI images, which can represent crossings,

which explains our choice for visualization. To reduce noise and to infer information about

fiber crossings, contextual information can be used [25, 26]. This enhancement is useful

both for visualization purposes and as a preprocessing step for other algorithms, such

as fiber tracking algorithms, which may have difficulty in noisy or incoherent regions.

Recent studies indicate the increasing relevance for enhancement techniques in clinical

applications [5,19,21,30,31].

We perform the enhancements on modeled DWI images. We use two models: diffusion

tensors and orientation distribution functions. We want to stress that the algorithms can

be applied to any other model, as long as it can be converted to a function of positions and

orientations. We will use the term DWI data in this paper to refer to both these models.
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Figure 1: Top row: DTI data of the 
orpus 
allosum and 
orona radiata visualized by Eq. (1.2) without(left) and with Ri
ian noise (right). Bottom row: the same data with a normalization de�ned inSe
tion 7.2 (left) and the result of linear enhan
ement (right). The red 
ir
le shows areas in whi
h theventri
les indu
e anatomi
ally in
orre
t 
rossing stru
tures in the surrounding �bers. The green 
ir
leshows anatomi
ally expe
ted 
rossings between the 
orpus 
allosum and 
orona radiata.
These enhancements, done in this paper with left-invariant linear and nonlinear adap-

tive convection-diffusion processes, is the main focus of this paper. An example of the

denoising properties of a linear enhancement process can be found in Fig. 1, in which

most of the artificially added noise has been removed. The benefit of this framework is

that it performs diffusion both on positions and orientations at the same time. This allows

it to handle crossing structures in a natural way, since crossing fibers are separated from

each other in the domain. Other methods often use spatial and angular diffusion sepa-

rately [5, 15, 16], thereby having more difficulties handling complex fiber structures such

as crossing fibers. Special attention is given to implementation of these algorithms through

the use of finite difference schemes.

Linear convection-diffusion processes have some disadvantages. One is that linear dif-

fusion can occur across regions where the gradient is very large. In particular, the neural

tracts of the brain are sometimes located near the ventricles of the brain. These ventricles

are structures that contain cerebrospinal fluid which shows up in DW-MRI as unrestricted,

isotropic diffusion profiles much larger in magnitude than the restricted, anisotropic dif-

fusion profiles of the neural tracts. It is undesirable that these large isotropic diffusion

profiles start to interfere with the oriented structures of the neural tracts when we apply a
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diffusion scheme, because they are likely to destroy the fiber structures. This effect can be

seen in the bottom right of Fig. 1.

By means of the introduced nonlinear left-invariant diffusion scheme, we prevent diffu-

sion from the ventricles to the fibers. This eliminates the need for additional preprocessing

steps to reduce the effect of isotropic areas (such as the ventricles or the grey matter) on

the rest of the data, as was done in e.g., our previous work [22]. This preprocessing typi-

cally involves segmenting out these areas by hand or with hard thresholds (on diffusivity

or FA) or by registration with anatomical (T1 or T2 weighted) images.

The structure of this paper is as follows: in Section 2 we will briefly discuss the basics

of the theory and of notation. Subsequently in Section 3 we will discuss linear convection-

diffusion processes, paying special attention to discretization and finite difference schemes.

In Sections 4 and 5 we will elaborate on two special cases of linear convection-diffusion

processes. After that, in Section 6, we introduce a novel nonlinear diffusion scheme. We

conclude our paper with experiments on real DTI data from healthy volunteers in Section 7.

2. Preliminaries

2.1. The Euclidean motion group SE(3)

For the enhancement of data, it is crucial to determine which fiber fragments are well

aligned with each other. To enhance (neuronal) fibers, it is vital that fiber fragments that

are well aligned exchange information. To find out which fiber fragments are well aligned,

you must consider the spatial and orientational information together, as they interact with

each other. Fig. 2 shows how (x0,n0) and (x1,n1) are better aligned (by forming a more

natural connecting curve) than (x0,n0) and (x2,n1) are, even though both pairs have the

same spatial distance from each other and the same difference in angles. This shows us that

the space of positions and orientations is coupled and it is therefore conceptually wrong to

consider the space of positions and orientations as a flat Euclidean space.

To align fiber fragments one needs rigid body motions. The non-commutative group

product of rigid body motions induces the required coupling between positions and ori-

entations. Unfortunately, R3 × S2 does not form a group† and thus we need to embed

it into a larger space with group structure. For this we use the Euclidean motion group,

i.e., the group of rigid body motions SE(3) = R3
⋊ SO(3), where SO(3) represents the

(noncommutative) group of 3D rotations defined as a matrix group by

SO(3) =
�
R | R ∈ R3×3,RT = R−1, det(R) = 1

	
.

Expressed in Euler angles, this becomes

R(α,β ,γ) = Rex
γ R

ey

β
Rez
α , (2.1)

where e1 = ex , e2 = ey and e3 = ez are the unit vectors in the Cartesian coordinate

frame and R
ei
α denotes a counterclockwise rotation of α around vector ei. Here, an Euler

†S2 is not a proper Lie group, since if it were its left invariant vector fields would violate Brouwer’s theo-

rem/Hairy Ball theorem [12]
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Figure 2: A �gure demonstrating the 
oupling of position and orientation. (x0,n0) is better aligned with
(x1,n1) than with (x2,n1) despite having equal spatial distan
e and the same angle between ve
tors.
angle parametrization is used that has a discontinuity at n= (±1,0,0), so that the tangent

space of SE(3) is well parameterized at the unity element (0, I) corresponding to element

(0,ez) ∈ R3
⋊ S2. Standard Euler angle parametrization, such as used in [10] do not lead

to well defined tangent space in the identity element, which explains our choice for this

Euler Angle parametrization.

For g = (x,R) ∈ SE(3) and g′ = (x′,R′) ∈ SE(3) the group product and inverse element

are given by

g g′ = (x+R · x′,RR′),

g−1 = (−R−1x,R−1).

In order to embed S2 into SO(3) we introduce equivalence classes on SO(3). Two

group elements g,h ∈ SO(3) are equivalent if g−1h= R
ez
α for some angle α ∈ [0,2π). This

equivalence relation induces sections of equivalent group members, called the left cosets of

SO(3). If we associate SO(2) with rotations around the z-axis, then formally we can use

this equivalence to write S2 ≡ SO(3)/SO(2) to denote these left cosets.

If we extend this equivalence relation to SE(3), i.e., g,h ∈ SE(3), g is equivalent to h
if g−1h = (0,R

ez
α ), we obtain the left coset of SE(3) which equals the space of positions

and orientations. To stress that this space has been embedded in SE(3) and to stress the

induced (quotient) group structure we write the space of positions and orientations as

R
3
⋊ S2 := (R3

⋊ SO(3))/({0} × SO(2)). (2.2)

Now, we can express any function of position and orientation U : R3
⋊ S2→ R with an

equivalent function of SE(3) Ũ : R3
⋊ SO(3)→ R, where for all x,y ∈ R3 we have

Ũ(x,R) = U(x,Rez), (2.3a)

U(y,n) = Ũ(y,Rn), (2.3b)
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where Rn is any rotation matrix that maps ez to n. Note that Ũ has the following symmetry

restriction

Ũ(x,R) = Ũ(x,RRez
α ) for all α ∈ [0,2π), (2.4)

which means that Ũ should be constant within equivalence classes. We note that the

ambiguity in the choice of Rn is harmless provided that we make sure Eq. (2.4) is satisfied.

Every group element from SE(3) can be associated with a representation [6], i.e., an

action of a group element on a function. Representations of SE(3) can be used to rotate

and translate functions and will be used later to define a rotating frame of reference to

describe oriented water particles. We define the action of the group SE(3) on R3
⋊ S2 by:

(x,R) · (y,n) = (Ry+ x,Rn). (2.5)

We use this action to associate to every g = (x,R) ∈ SE(3) the corresponding rotated and

translated DW-MRI dataset by

(LgU)(y,n) = U
�

g−1 · (y,n)
�
= U(R−1(y− x),R−1n). (2.6)

We also need group actions of SE(3) on the functions Ũ defined on the group itself,

which we define next. For each g0 = (x0,R0) ∈ SE(3) and h = (x,Rn) ∈ SE(3), Ũ ∈
L2(SE(3)), the left- and right-regular representations of SE(3) on L2(SE(3)) are given by

(Lg0
◦ Ũ)(h) = Ũ(g−1

0 h) = Ũ(R−1
0 (x− x0),R

−1
0 Rn), (2.7a)

(Rg0
◦ Ũ)(h) = Ũ(hg0) = Ũ(x+Rnx0,RnR0). (2.7b)

Note that using the right-regular action we can rewrite the restriction of Eq. (2.4) as

R(0,R
ez
α )

Ũ = Ũ . (2.8)

Since we use left-cosets as equivalence classes and since we have LgRh = RhLg , we

have with our equivalence classes that

ßLgU = Lg Ũ , (2.9)

where the tilde has been used to convert LgU to its equivalent function of SE(3). The right

action does not admit such a well-defined extension on R3
⋊ S2, so one should take care

when applying right actions and make sure that when converting functions from SE(3) to

R
3
⋊ S2 that the symmetry relation of Eq. (2.4) still holds.

Duits and Franken [10, Theorem 1] demonstrated that every reasonable linear opera-

tion on functions of SE(3) must be left-invariant by showing that the orientation marginal∫
S2 U(y,n)dσ(n) commutes with rotations and translations under such operations. This

and the ill-posedness of the right-regular action on the space R3
⋊ S2 explains our choice

for left-invariant processes in this paper. Formally an operator Φ : L2(SE(3))→ L2(SE(3))
is left invariant iff

∀g ∈ SE(3), Ũ ∈ L2(SE(3)) : (Lg ◦Φ ◦ Ũ) = (Φ ◦Lg ◦ Ũ). (2.10)

It should be noted that because of the non commutative structure of SE(3) the left-regular

representation Lg is not left-invariant. The right-regular representation Rg is left-invariant

and can thus be used to generate left-invariant derivatives, as is shown in the next section.
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2.2. Left-invariant derivatives

By viewing functions of R3
⋊ S2 as probability density functions of oriented particles,

it becomes a natural idea to describe these particles in a moving coordinate system. This

is done by attaching a coordinate system to each point (x,R) ∈ SE(3) such that one of the

spatial axes points in the direction of n = Rnez. In this section we will introduce diffusion

equations for these oriented particles and for these processes this coordinate system is

the natural choice to easily differentiate between motion forward, sideways and rotations.

We can obtain such a coordinate system by starting at the identity element (0, I) of SE(3),
which corresponds to (0,ez) and attaching a suitable coordinate system using Euler angles.

We express a basis of tangent vectors at the unity element by

A1 = ∂x , A2 = ∂y , A3 = ∂z, A4 = ∂γ, A5 = ∂β , A6 = ∂α, (2.11)

where we use the coordinate system in the parametrization of SE(3): (x,R) =
(x , y, z,R(α,β ,γ)) (see Eq. (2.1)). Note that Ai ∈ T(0,I)(SE(3)) can be viewed both as tangent

vectors and as differential operators on locally defined smooth functions.

We construct a moving frame of reference attached to fibers in the space R3
⋊ S2 by

using the derivative of the right-regular representation R:

Ai|g Ũ = (dR(Ai)Ũ)(g) = lim
t↓0

Ũ(getAi)− Ũ(g)

t
, i = 1,2,3,4,5,6, (2.12)

where R is defined by Eq. (2.7) and etAi is the exponential map in SE(3) [10], which can

be seen as the group element obtained by traveling distance t in the Ai direction from the

identity element. We note that A6Ũ = 0, because Ũ(x,R) is constant within equivalence

classes and that A1,A2, A4 and A5 are well-defined on SE(3) and not on R3
⋊ S2. We

therefore use combinations of these operators that are well-defined on R3
⋊ S2 in the

diffusion generator (see Section 2.3). For instance, A4 and A5 are not well defined on

R
3
⋊S2 since they depend on a particular value of α, however (A4)

2+(A5)
2 is well defined

on R3
⋊ S2. A full classification of such well-defined second order differential operators

can be found in [10].

We use Eq. (2.12) to define the left invariant derivatives on R3 × S2 by

A1U(y,n) = lim
h→0

U(y+ hRnex ,n)− U(y,n)

h
, (2.13a)

A2U(y,n) = lim
h→0

U(y+ hRney ,n)− U(y,n)

h
, (2.13b)

A3U(y,n) = lim
h→0

U(y+ hRnez ,n)− U(y,n)

h
, (2.13c)

A4U(y,n) = lim
ha→0

U(y,RnR
ex

ha
ez)− U(y,n)

ha
, (2.13d)

A5U(y,n) = lim
ha→0

U(y,RnR
ey

ha
ez)− U(y,n)

ha
, (2.13e)
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where Rn is a fixed (α-dependent) rotation mapping ez to n, where we (arbitrarily) choose

α = 0. We would like to stress that here we use Ai both as a coordinate frame and as

differential operators on smooth functions. In further sections of this paper, we will use

them as differential operators exclusively.

Analytical formulas for these left-invariant derivatives, expressed in charts of Euler an-

gles can be found in [10]where they are used to analytically approximate Green’s functions

of convection diffusion processes. Here, we focus on the numerical aspects and instead give

only the left-invariant finite difference schemes (Section 3.2) that do not suffer from the

discontinuities of the Euler angle parametrization.

2.3. Linear convection-diffusion processes on R3
⋊ S2

The left-invariant derivatives given in the previous section can be used to write the

equations for diffusion processes on SE(3) [10], which are processes which can remove

noise from the data while preserving complex structures such as crossings and junc-

tions [22].

The general convection-diffusion equation with diffusion matrix D and convection pa-

rameters a is given by:

¨
∂tW (y,n, t) = QD,a(A1,A2, · · · ,A5)W (y,n, t),

W (y,n, 0) = U(y,n),
(2.14)

where the convection-diffusion generator QD,a is given by

QD,a(A1,A2, · · · ,A5) =

5∑

i=1

�
− aiAi +

5∑

j=1

AiDi jA j

�
(2.15)

and ai are convection parameters and Di j diffusion coefficients. There are conditions on

QD,a in order to be well defined on R3
⋊ S2, see [10]. We make sure these conditions have

been satisfied by setting D11 = D22 = 0, D44 = D55 = constant, a1 = a2 = a4 = a5 = 0

and all other Di j = 0 for i 6= j. Note that there is no restriction on a3 and D33, since

A3 is always well defined on R3
⋊ S2. Also note that although we set D11 = D22 = 0,

there is implicit smoothing in the {A1,A2}-plane due to the commutator relations of the

left-invariant vector fields, cf. [10].

In the linear case, ai and Di j are chosen constant and the solution to these evolution

equations can be obtained by an SE(3)-convolution of the initial data with the appropriate

Green’s function or by using finite difference methods to directly simulate the PDEs. For a

general comparison of finite difference schemes and kernel implementations, see [10,23].

We focus in this paper on the finite difference methods, as they are easier to extend to

non-linear, adaptive convection-diffusion processes.

The advantage of this approach is that the convection-diffusion generator is expressed

in a moving frame of reference attached to fiber fragments (see Fig. 3). This allows us

to diffuse along the fibers (even across crossings) and gives a geometric interpretation to

the convection-diffusion process. One could express these equations in a fixed coordinate
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Figure 3: A �gure showing the �xed 
oordinate system (Ai) and the one rotated along a �ber fragment(Ai) for a 
ertain 
hoi
e of parameter α. The left image shows the spatial part and the right image theangular part of the same 
urve.
system (using two charts for S2) by substituting the formula’s for the left-invariant vector

fields [10, Eqs. (24) and (25)]. However, this leads to cumbersome bookkeeping and

lengthy formulas unsuitable for finite difference implementations.

We will discuss two special cases of linear convection-diffusion equations. The first is

contour enhancement, which is a diffusion process based on Brownian motion of oriented

particles [10], which is useful for denoising and inferring crossings. The second is 3D

contour completion [10], which is an extension of 2D contour completion [6, 11, 18].

Contour completion also incorporates a convection term and can be used to fill in missing

data. First, however, we will focus on discretizing the space of R3
⋊ S2 and the finite

difference operators of Eq. (2.14), so that we can simulate them numerically.

3. Discretization of R3
⋊ S2 and finite difference schemes

3.1. Discretization of R3
⋊ S2

So far, functions U : R3
⋊ S2→ R+ were assumed to be continuously differentiable. In

practice we have discretized functions U[i, j, k, l], where i ∈ {1, · · · , N1}, j ∈ {1, · · · , N2}
and k ∈ {1, · · · , N3} enumerate the discrete spatial grid and l ∈ {1, · · · , No} refers to an

orientation nl from a sampling of the sphere. These sampling points then correspond to the

spatial point yi jk = (y
1
i , y2

j , y3
k ) ∈ R3 with y1

i = (i−1)∆x , y2
j = ( j−1)∆y, y3

k = (k−1)∆z,

where ∆x ,∆y and ∆z are the sampling interval in x , y and z direction respectively. The

spherical tessellation used in this paper is obtained by taking an icosahedron and regularly

subdividing each face into 16 triangles before projecting the vertices back to the sphere.

Every vertex of this shape becomes a sampling orientation and thus in our case No = 162.

For some proofs and to be able to write linear operations as matrix-column mul-

tiplications, it is often convenient to represent U[i, j, k, l] as a column vector u =

(up)p∈{1,··· ,N1N2N3No}. In this paper, we use two different ways to convert 4 indices to one,
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related by a simple transformation matrix. To do this, we first combine the spatial coor-

dinates i, j, k to a linear index q ∈ {1, · · · , N1N2N3} by first iterating over the x direction,

then the y-direction and finally the z direction. This is described by function Ψ[i, j, k] and

its inverse Ψ−1[q] defined by:

q = Ψ[i, j, k] = (i − 1) + N1( j− 1)+ N1N2(k− 1)+ 1, (3.1a)

i = (Ψ−1[q])1 = (q− 1)mod (N1) + 1, (3.1b)

j = (Ψ−1[q])2 = ⌊
q− 1

N1

⌋mod (N2) + 1, (3.1c)

k = (Ψ−1[q])3 = ⌊
q− 1

N1N2

⌋+ 1. (3.1d)

We now combine the two indices l,q into a single index p ∈ {1, · · · , N1N2N3No} by first

iterating over the orientations l and then the linear index q, so we have

up = U[yq=⌊ p−1

No
⌋+1

,nl=(p−1)mod (No)+1], (3.2)

where we denote yq := yΨ−1[q]. If we instead iterate over the linear index q first and the

orientations l last we obtain vector û indexed by p̂ ∈ {1, · · · , N1N2N3No} defined by

ûp̂ = U
�

yq=(p̂−1)mod (N1N2N3)+1,nl=⌊ p̂−1

N1N2N3
⌋+1

�
. (3.3)

Using the relations

p = l + (q− 1)No, p̂ = (l − 1)N1N2N3+ q, (3.4a)

l = (p− 1)mod (No) + 1= ⌊ p̂− 1

N1N2N3

⌋+ 1, (3.4b)

q = ⌊ p− 1

No
⌋+ 1= (p̂− 1)mod (N1N2N3) + 1, (3.4c)

we can relate p and p̂ by

p̂ = (p− 1)mod (No) · N1N2N3+ ⌊
p− 1

No
⌋+ 1 (3.5)

and therefore we can write û = Pu, where

Pp̂p = δp̂,(p−1)mod (No)N1N2N3+⌊ p−1

No
⌋+1

with P= [Pp̂p] ∈ RN1N2N3No×N1N2N3No , (3.6)

and P−1 = PT to convert between the different indexing methods.

A visual summary of the different vectors and transformations between them is given

in Fig. 4.
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Figure 4: Graphi
al overview of the dis
retization pro
ess. The top row visualizes the di�erent indi
esused to dis
retize the domain of fun
tion U on position and orientation. The bottom row fo
usses onthe range of su
h fun
tions.
3.2. Finite difference schemes for left-invariant derivatives

To approximate the left-invariant derivatives of the previous section, we use finite dif-
ference approximations [10] of Eq. (2.12). These derivatives are approximated in the usual
way, with the (conceptually) small difference that the steps are taken in the Ai direction
on R3 × S2. The forward finite difference approximation of the left-invariant derivatives
are given by

A
f
1 U(y,n) =

U(y+ hRnex ,n)− U(y,n)

h
, A

f
2 U(y,n) =

U(y+ hRney ,n)− U(y,n)

h
, (3.7a)

A
f
3 U(y,n) =

U(y+ hRnez ,n)− U(y,n)

h
, A

f
4 U(y,n) =

U(y,RnRex

ha
ez)− U(y,n)

ha

, (3.7b)

A
f
5 U(y,n) =

U(y,RnR
ey

ha
ez)− U(y,n)

ha

, (3.7c)

where h is the spatial step size and ha the angular step size in radians.

Analogously, the backward and central finite difference approximations can be ob-
tained

A
b
1
U(y,n) =

U(y,n)− U(y− hRnex ,n)

h
, A

b
2
U(y,n) =

U(y,n)− U(y− hRney ,n)

h
, (3.8a)
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A
b
3
U(y,n) =

U(y,n)− U(y− hRnez,n)

h
, A

b
4
U(y,n) =

U(y,n)− U(y,RnR
ex

−ha
ez)

ha
, (3.8b)

A
b
5
U(y,n) =

U(y,n)− U(y,RnR
ey

−ha
ez)

ha

, (3.8c)

and

A
c
1
U(y,n) =

U(y+ hRnex ,n)− U(y− hRnex ,n)

2h
, (3.9a)

A
c
2
U(y,n) =

U(y+ hRney ,n)− U(y− hRney ,n)

2h
, (3.9b)

A
c
3
U(y,n) =

U(y+ hRnez ,n)− U(y− hRnez ,n)

2h
, (3.9c)

A
c
4
U(y,n) =

U(y,RnR
ex

ha
ez)− U(y,RnR

ex

−ha
ez)

2ha

, (3.9d)

A
c
5
U(y,n) =

U(y,RnR
ey

ha
ez)− U(y,RnR

ey

−ha
ez)

2ha
. (3.9e)

We take second order centered finite differences by applying the discrete operators

in the righthand side of Eq. (3.9) twice (where we replaced 2h 7→ h), e.g., we have for

ρ = 1,2,3:

((Ac
ρ)

2U)(y,n) =
U(y+ hRneρ,n)− 2U(y,n) + U(y− hRneρ,n)

h2
, (3.10a)

((Ac
ρ+3)

2U)(y,n) =
U(y,RnR

eρ

ha
ez)− 2U(y,n) + U(y,RnR

eρ

−ha
ez)

ha
2

. (3.10b)

3.3. Efficient computation of left-invariant finite differences

The finite difference approximations of the previous section requires sampling off-grid,

which requires interpolation. Spatially, any regular 3D interpolation scheme such as linear

interpolation or spline interpolation can be used. Since the approximations in Eq. (3.7)

are only first order accurate, we use linear interpolation.

The three spatial derivatives only require neighboring samples with the same n. They

can therefore be efficiently computed through a regular R3 correlation (or convolution)

for each orientation separately. We approximate the spatial derivatives by

(A f
ρU)[i, j, k, l] ≈ −1

h
U[i, j, k, l] +

1

h

∑

i′, j′,k′
Kρ,h

l [i − i′, j− j′, k− k′]U[i′, j′, k′, l],

with ρ ∈ {1,2,3} and l-indexed discrete spatial kernel Kρ,h
l given by

Kρ,h
l [i

1, i2, i3] =

3∏

m=1

v(yρ,l )
m[im], (3.11)



150 E. J. Creusen, R. Duits, A. Vilanova and L. M. J. Florack

where (yρ,l)
m is the m-th component of the vector yρ,l := hRnl

eρ, ρ ∈ {1,2,3}. Linear

interpolation kernel va : Z→ [0,1] is given by

va[b] =





1− |a|, if b = 0,

H(ab)|a|, if b ∈ {−1,1},
0, else,

(3.12)

with heaviside function u 7→ H(u) while assuming |a| < 1.

For angular interpolation, either linear interpolation or spherical harmonics can be

used. Spherical harmonics were used in previous work by Franken et al. [13], but we

now use linear interpolation. In terms of stability in the diffusion process, both perform

equally well (see Section 4), but Franken had to add an angular diffusion term treg which in

practice was rather sensitive: when set too large the data becomes too isotropic (destroying

fiber structures) and when set too small the algorithm becomes unstable. As we will show

next, linear interpolation is also computationally cheaper.

The angular derivatives only require samples of neighbors with the same y and can

therefore be computed by a matrix multiplication for each point y:

A
f
ρ+3

U[i, j, k, l] ≈ 1

ha

�
− U[i, j, k, l] +

No∑

l ′=1

M f ,ha ,ρ+3

l l ′ U[i, j, k, l′]
�

, (3.13)

with ρ ∈ {1,2,3} and where M f ,ha,ρ+3 = [M
f ,ha ,ρ+3

l l ′ ] is the interpolation matrix to inter-

polate nρ,l = Rnl
Reρ ,ha

ez and is given by

M
f ,ha ,ρ+3

l l ′ =





1−
∑

n j∈Aρ,l

(nρ,l − nl ′) · (n j − nl ′), if nl ′ ∈ Aρ,l ,

0, otherwise,

(3.14)

where Aρ,l is the triangle within the spherical sampling that contains point nρ,l . The

matrix M f ,ha,ρ+3 is sparse due to the linear interpolation which enables Eq. (3.13) to be

computed in O (N1N2N3No). If M f ,ha ,ρ+3 is created using spherical harmonics then it be-

comes a full matrix and thus Eq. (3.13) becomes computationally more expensive and

takes O (N1N2N3N2
o ).

3.4. Matrix representation of left-invariant derivatives

We will derive the N1N2N3No × N1N2N3No matrix form of the forward approximation

Eq. (3.7) of the left-invariant vector fields. Here we assume the data has been discretized

and put in vector form as is described in Section 3.1. Note that the matrix-form of the

backward and central differences can be derived analogously.

If we store U[i, j, k, l] in one long column vector u as described in Section 3.1, we can

represent the (forward) left-invariant vector fields by the matrix:

A
f
ρU[i, j, k, l] = A f

ρu, (3.15)
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with ρ ∈ {1,2,3,4,5}.
The (forward) angular left-invariant vector fields are then given by

A
f
ρ+3 :=

1

ha

� N1N2N3⊕

q=1

(M f ,ha,ρ+3− INo
)

�

=
1

ha

�
IN1N2N3

⊗M f ,ha,ρ+3− IN1N2N3No

�
(3.16)

with ρ ∈ {1,2,3}, ⊕ the direct sum of matrices, ⊗ the Kronecker product and with

M f ,ha,ρ+3 ∈ RNo×No the matrix with entries given by Eq. (3.14) and where IN ∈ RN×N

denotes the identity matrix.

The (forward) spatial left-invariant vector fields can be represented by the matrix

A f
ρ :=

1

h
(M f ,ρ,h− IN1N2N3No

) (3.17)

with ρ ∈ {1,2,3} and M f ,ρ,h = [M f ,ρ,h
p′p ] ∈ RN1N2N3No×N1N2N3No defined by

M f ,ρ,h
p′p =

(
Kρ,h

lp
[Ψ−1[qp]−Ψ−1[q′

p′]], if lp = l′
p′ ,

0, otherwise,
(3.18)

where qp and lp are related to p by qp = ⌊ p−1

No
⌋ + 1 and lp = (p − 1)mod (No) + 1 and

identical relations for q′p′ and l′p′ (see Eq. (3.4)) andΨ and its inverse are given in Eq. (3.1).

If however, we use û for discretization instead (see Eq. (3.4)) then M f ,ρ,h,l becomes a block

matrix‡. Using transformation matrix P−1 we can relate this block matrix to the original

index p, by means of

M f ,ρ,h = P−1

No⊕

l=1

Kρ,h
l [Ψ

−1[q]−Ψ−1[q′]], (3.19)

with q,q′ ∈ {1, · · · , N1N2N3}. This matrix cannot be further simplified using the Kronecker

product, since matrix Kρ,h
l is dependent on orientation l. This dependency on orientation

is the direct consequence of the non-commutative structure of the Euclidean motion group.

In a similar way, one defines matrices for central and backward differences, denoted by Ac
ρ

and Ab
ρ.

4. Numerical schemes for contour enhancement

The contour enhancement process on R3
⋊S2 can be obtained from Eq. (2.14) by setting

ai = 0 (no convection), D33 ≥ 0, D44 = D55 ≥ 0 and other diffusion coefficients Di j are set

‡Note that only spatial neighbors with the same nl are required for the spatial derivatives. Points with the

same nl are stored adjacent to each other in û, explaining the block structure of matrix M f ,ρ,h.
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to zero. These settings yield the following evolution equation

¨
∂tW (y,n, t) =
�

D33(A3)
2+ D44((A4)

2+ (A5)
2)
�
W (y,n, t),

W (y,n, 0) = U(y,n).
(4.1)

This process can intuitively be understood as a description of the Brownian motion of

oriented particles both in space (diffusion along direction n) and orientation (changing

direction) [10]. We first elaborate on explicit methods and derive stability bounds for them

and then implement an implicit integration schemes and compare the different methods.

4.1. Explicit scheme for linear contour enhancement

The simulation of the contour enhancement PDE given by Eq. (4.1) is done by tak-

ing standard centered second order finite differences according to Eq. (3.10) and using a

forward Euler scheme for the time discretization:

¨
W (y,n, t +∆t) =W (y,n, t) +∆t

�
D33(A

c
3)

2+ D44((A
c
4)

2+ (Ac
5)

2)
�
W (y,n, t),

W (y,n, 0) = U(y,n).

We will now derive the equivalent equation on discretized functions. First we represent

the generator of the (hypo)-elliptic diffusion, Eq. (4.1) in matrix form by using Section 3.4,

so we obtain

JR
3

:= D33A
f
3
Ab

3 + D11

�
A

f
1
Ab

1 +A
f
2
Ab

2

�
, (4.2a)

JS2

:= D44

�
A

f
4Ab

4 +A
f
5Ab

5

�
, (4.2b)

with JR
3

+ JS2 ∈ RN1N2N3No×N1N2N3No .

Then, using the discretization from Section 3.1, we define the solution of the contour

enhancement process at t = (s− 1)∆t, s ∈ {1,2, · · · } by ws with w1 = u, the initial state.

With full discretization of R3
⋊ S2 and of the operators, the equations then become

¨
ws+1 = (I +∆t(JR

3

+ JS2

))ws,

w1 = u.
(4.3)

Of these parameters, D44 and simulation time t are most important. D33 may be set to

1, as changing D33 is equivalent to scaling D44 and t, while ∆t needs only be sufficiently

small for the algorithm to remain stable (see Section 4.2) and accurate.

4.2. Stability criterion for contour enhancement using explicit euler

The stability limit of the finite difference schemes for the linear contour enhancement

of Eq. (4.1) using linear interpolation can be found in a similar way as was done in pre-

vious work [10]. The difference is that here we use linear interpolation for the angular

derivatives and therefore arrive at a different stability bound.
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Using the vector form, discretization and notation from Section 3.1, we define the

solution of the contour enhancement process at t = (s − 1)∆t, s ∈ {1,2, · · · } by ws, with

w1 = u, the initial state. Then

ws+1 = (I +∆t(JR
3

+ JS2

))ws, (4.4)

where JR
3

is the spatial increment matrix and JS2

is the angular increment matrix defined

in Eq. (4.2) that specify how much ws+1 grows relative to ws due to spatial or angular

effects. Such a system is stable if

‖I+∆t(JR
3

+ JS2

)‖= sup
‖w‖=1

‖(I +∆t(JR
3

+ JS2

))w‖ < 1. (4.5)

Since I+∆t(JR
3

+ JS2

) = (νI+∆tJR
3

)+ ((1− ν)I+∆tJS2

) with ν ∈ (0,1), such a system

will be stable if 


I+ ∆t

ν
JR

3



< 1 and




I+ ∆t

1− ν JS2



< 1. (4.6)

To obtain stability bounds for these two equations, we use Gerschgorin Circle Theo-

rem [14], which states that for any Hermitian matrix M, the eigenvalues are contained in

the interval with center Mii and radius ri =
∑

j 6=i |Mi j |, the sum of the absolute values of

the off diagonal values. This means that M is stable if

Mii − ri ≥ −1 and Mii + ri ≤ 1, ∀i. (4.7)

The first inequality of Eq. (4.6) can be solved by realizing that JR
3

is the matrix repre-

sentation of the spatial second order differential operators

D11

�
(A1)

2 + (A2)
2
�
+ D33(A3)

2,

where each of the (Aρ)
2 has been discretized by a {1,−2,1}-stencil for differentiation (see

Eq. (3.9)). This means that

JR
3

ii =
−4D11 − 2D33

h2
and
∑

j 6=i

|JR3

i j | =
4D11 + 2D33

h2

for all i ∈ {1, · · · , N1N2N3No} (assuming cyclic boundary conditions). This means that the

rightmost inequality of Eq. (4.7) is always satisfied. The left inequality is satisfied if

1− 2
∆t

ν

4D11+ 2D33

h2
> −1,

which leads to the following bound

∆t ≤ νh2

4D11 + 2D33

. (4.8)
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To solve the second inequality of Eq. (4.6), we use the same ideas and realize that

JS2

is the matrix representation of D44((A4)
2 + (A5)

2), which is again obtained with a

{1,−2,1}-stencil. This leads to the stability criterion for the angular increments matrix

∆t ≤ (1− ν)h
2
a

4D44

. (4.9)

Eqs. (4.8) and (4.9) now give us two bounds for the time step. Naturally, the smallest

one of the two is the stability bound for the whole process. Since both limits are a function

of ν , we can optimize to find the maximum value for ∆t

∆t ≤max
ν

min

�
νh2

4D11 + 2D33

,
(1− ν)h2

a

4D44

�
=

�
(4D11 + 2D33)

h2
+

4D44

h2
a

�−1

. (4.10)

This result is very similar to the result obtained in [10, Eq.(89)], where the authors

derived the following stability bound:

∆t ≤
�

4D11 + 2D33

h2
+ D44

L(L + 1)

2etreg L(L+1)

�−1

, if treg L(L+ 1)≤ 1, (4.11a)

∆t ≤
�

4D11 + 2D33

h2
+ D44

1

2etreg

�−1

, if treg L(L+ 1)> 1, (4.11b)

where they computed the angular derivatives in the spherical harmonics domain with

spherical harmonics up to order L and had to add a regularization parameter treg that

was necessary to obtain stable algorithms, but which essentially induces additional spher-

ical diffusion.

Both stability criteria have parameters that may be tuned to optimize the stability. Both

use h, the spatial step size of the spatial derivatives. Eq. (4.11) uses treg, a regularization

parameter and L, the maximum number of spherical harmonics, while Eq. (4.10) uses ha,

the step size of the angular derivatives. Because both have regularizing parameters, both

methods can be made equally stable and thus there is no real difference between them in

terms of stability. We give preference to linear interpolation over the spherical harmonics

implementation, as it only requires choosing one parameter (ha) instead of two (L and

t reg). Linear interpolation is furthermore computationally cheaper, see Section 3.3.

4.3. Implicit scheme for linear contour enhancement

The implicit scheme for contour enhancement is obtained in the usual way from

Eq. (4.1),
¨

W (y,n, t +∆t) =W (y,n, t) +∆t
�

D33(A
c
3)

2+ D44((A
c
4)

2 + (Ac
5)

2)
�
W (y,n, t +∆t),

W (y,n, 0) = U(y,n),

which after discretization yields
¨

ws+1 =ws +∆t(JR
3

+ JS2

)ws+1 =ws +Qws+1,

w1 = u,
(4.12)
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where Q = ∆t(JR
3

+ JS2

) defined in Eq. (4.2). To solve this equation, the linear system

(I−Q)ws+1 =ws must be solved for each time step. To do this, we can employ any of the

plethora of methods known for solving linear systems. In our case, we use the conjugate

gradient method (see for example [17, Section 11.5.5]) to iteratively solve this system.

Because it only requires evaluations of Qv and not matrix Q explicitly, this method allows

the use of the Finite differences techniques of Section 3.3 to evaluate Qv without explicitly

having to form matrix Q.

This algorithm is unconditionally stable, regardless of the value of∆t and is thus useful

for solving Eq. (4.12) with large time steps.

The number of iterations kmax needs to be set for the conjugate gradient method (or a

stopping criterion should be specified). To get a sense of how many iterations are necessary,

we look at the relation between error and computation time for implicit methods with

different amount of iterations and for explicit methods. To do this, we generate a synthetic

5× 5× 5 dataset, consisting of a single, isotropic ball in the center and perform contour

enhancement on it with t = 1, D33 = 1, D44 = 0.1. Different combinations of relative error

and computation time are generated by using varying values of ∆t, which varies from

0.001 to 1. For a measure of the error, we use the relative∞-norm, defined by

‖w‖rel
∞ =
‖w−wg t‖∞
‖wg t‖∞

, (4.13)

where w is the result of numerical simulations and wg t is the ground truth, which is

generated by using an explicit scheme with ∆t = 10−5. The results can be found in Fig. 5.

Fig. 5 shows that the conjugate gradient algorithm converges very fast and typically

2 iterations are sufficient, since more iterations only take up time without improving the

accuracy. The left side of the graph corresponds to very large ∆t, higher than the stability

Figure 5: A graph showing the total 
omputation time vs the relative error in ∞-norm.
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bound given in Section 4.2, which explains the very high relative errors for the explicit

method. We can conclude that the explicit method is better than the implicit method,

provided that the explicit method is stable.

5. Numerical schemes for contour completion

By setting a3 = 1, D44 = D55 ≥ 0 in the convection-diffusion generator of Eq. (2.15)

and the other constants equal to zero, we obtain a convection-diffusion process given by:
¨
∂tW (y,n, t) =
�−A3+ D44(A4)

2+ (A5)
2
�
W (y,n, t),

W (y,n, 0) = U(y,n),
(5.1)

which can be interpreted in much the same way as the contour enhancement equation,

only with the diffusion part in the spatial domain replaced with a convection term. This

means that the oriented particles are now propelled forwards, rather than being allowed

to diffuse naturally.

For the numerics, we will be more brief and simply state that we use backwards finite

difference approximation for A3 (see Eq. (3.8)) according to the upwind principle, cen-

tered finite differences for (A4)
2 + (A5)

2 (see 3.10) and explicit Euler time integration

(see Section 4.1).

Special care should be given to choosing the time step ∆t for simulating this equation,

as convection terms and diffusion terms typically put different constraints on the size of∆t.
For this reason, we apply the convection and diffusion steps separately and use different

∆t for both processes. For details, see Section 5.1.

We obtain the resolvent of this convection-diffusion process by integrating this process

over time and weighing each time with a probability density function specifying the likeli-

hood of having that traveling time. This process is called the contour completion process,

which is given by:

R(y,n) =

∫ ∞

0

W (y,n, t) · p(t)d t, (5.2)

where p(t) is a chosen probability function of the traveling time and W (y,n, t) is described

by the convection-diffusion process of Eq. (5.1). Here, we call the solution to Eq. (5.1)

the convection-diffusion process and Eq. (5.2) the contour completion process. A natural

choice for p(t) is the exponential distribution (which was Duits and Franken’s choice [10])

because it is the only probability distribution with the memoryless property and is given

by:

p(t) =

¨
λe−λt , t ≥ 0,

0, t < 0,
(5.3)

with rate parameter λ which specifies how quickly the particles stop moving.

Contour completion is a process that can be used if parts of the data are missing by

reconstructing these missing parts from contextual information. Fig. 6 shows the effect of

contour completion on a synthetic test dataset with a hole in the center of a fiber.
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Figure 6: Initial, syntheti
 data showing a �ber with missing data (left) as well as the result of 
ontour
ompletion (right). a3 = 1,D44 = 0.01, λ = 0.25.
5.1. Splitting scheme for solving convection-diffusion equations

To solve the general convection diffusion equations on R3
⋊S2, we need a scheme that

can handle both convection and diffusion. Unfortunately, convection and diffusion impose

different constraints on the required time step for the finite difference scheme. Numerical

convection requires time steps equal to the spatial grid size (in 1D ∆t = ∆x) to prevent

blurring due to interpolation, while the diffusion steps require∆t small for stability and ac-

curacy. This is problematic when simulating both processes at the same time. To cope with

this problem, we use a scheme in which diffusion steps and convection steps are applied

alternately, which essentially means that we ignore the fact that convection and diffusion

influence each other and is therefore only first order accurate. This scheme was first pro-

posed by Strang [29] and later applied to convection diffusion equations by Yanenko [34].

It is also used more recently in related problems [24].

Consider the following evolution equation:

¨
∂tW (x,n, t) = (A+ B)W (x,n, t),
W (x,n, 0) = U(x,n),

(5.4)

where A = (A4)
2 + (A5)

2 = ∆LB the spherical diffusion operator and B = −A3 the con-

vection operator (although the proof holds true for any two linear operators). The so-

lution to this equation at time ∆t can symbolically be denoted by S∆t
A+BU(x,n), where

S∆t
A+B = e∆t(A+B) (although the idea holds true for any two linear operators). It should be

stressed that A and B have a nonzero commutator, so [A, B] = AB − BA 6= 0. Since the

exact solution is difficult to calculate, we instead approximate this by splitting the two

operators, so instead we solve S∆t
A+B ≈ S∆t

A S∆t
B . The error of this approximation becomes

apparent when considering the Taylor series of the exponential function:

e∆t(A+B) = I +∆t(A+ B) +∆t2(A+ B)2 + O (∆t3), (5.5a)

e∆tA = I +∆tA+∆t2A2+ O (∆t3), (5.5b)
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from which it follows that

e∆t(A+B) − e∆tAe∆tB

=
∆t2

2
(BA− AB) + O (∆t3) =

∆t2

2
[B,A] + O (∆t3), (5.6)

and hence this scheme is only first order accurate.

There is a simple trick to easily get such a scheme one order more accurate [4,29] by

splitting the diffusion step in two halves: S∆t
A+B ≈ S∆t/2

A S∆t
B S∆t/2

A . The error of this method

can be evaluated straightforwardly in the same way:

e∆t(A+B) − e
∆t
2

Ae∆tBe
∆t
2

A = O (∆t3), (5.7)

where the O (∆t2)-term from Eq. (5.6) has been removed due to the splitting of A into two

parts.

In practice this means that the convection step uses a time step close to the grid size

∆x , while the diffusion step can be split up into multiple smaller steps for stability, where

half of these diffusion steps are performed before the convection step and half after. This

means that there is no additional computational complexity for performing this splitting

scheme.

In our case, we set a3 = 1 without loss of generality (using other values for a3 is

equivalent to rescaling the total simulation time t and D44), The integral in Eq. (5.2) can

then easily be solved numerically by converting it to a sum over the convection time steps

R(y,n) =

∫ ∞

0

W (y,n, t) · p(t)d t ≈
tmax∑

t=0

W (y,n, t) · p(t), (5.8)

where tmax is a value such that p(tmax) is sufficiently small. In our experiments we have

used tmax = 10.

6. Non-linear diffusion processes on R3
⋊ S2

Recall from the introduction that we aim to restrict diffusion from the ventricles, which

show up as large isotropic diffusion profiles to the neuronal fibers, which show up as

smaller, anisotropic diffusion profiles which are sometimes located very close to each other.

A Perona-Malik [20] type scheme for diffusion can separate these two regions and

apply the diffusion within the neural tracts and within the ventricles, but prevents transport

from one to the other by hindering diffusion in areas of large gradient.

Other reasonable extensions (not considered here) to nonlinear data adaptive diffusion

processes on R3
⋊S2 are coherence enhancing diffusion (CED) [5,33] and Laplace-Beltrami

(LB) diffusion [27]. In the case of CED one replaces D = [Di j], D > 0, DT = D by a data

dependent D(W (·, ·, t)) = [Di j(W (·, ·, t))] in order to adapt the conductivity to the data.
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In the case of Laplace-Beltrami-framework one adapts the metric tensor g to the data. In

this framework, the equivalent generator becomes

1p
det(g)

∑

i, j

Ai(
p

det(g)g i j
A j) =
∑

i, j

1

2

Ai(det(g))p
det(g)

g i j
A j + g i j

AiA j, (6.1)

where g i j are components of the inverse metric tensor g−1 =
∑

i, j g i jAi ⊗ A j and are

data dependent: so g i j = g i j(W (·, ·, t) ∈ R. In short, LB diffusion produces an extra term

in the generator compared to the convection-diffusion generator of Eq. (2.15) if one sets

[Di j] = [g
i j]. The implementation and application of CED and LB are beyond the scope of

this paper, but are worthwhile avenues for future research.

6.1. Perona-Malik diffusion on R3
⋊ S2

Our approach is similar to recent work by Burgeth et al. [5] who used adaptive, edge

preserving diffusion on the DTI tensor components separately. The difference is that here

the diffusion considers both positions and orientations in the domain and therefore sep-

arates two crossing fibers in the domain so that it is better equipped to handle crossing

structures.

We test the algorithm on a synthetic test image consisting of two crossing fibers con-

sisting of oriented glyphs surrounded by isotropic spheres, (see Fig. 7) in which linear

diffusion destroys the fiber structure, whereas nonlinear adaptive diffusion both preserves

the fiber structures and denoises the entire dataset.

Mutual influence of the anisotropic regions (fibers) and isotropic regions (ventricles) is

avoided by replacing the constant diffusivity D33 in Eq. (2.15) by

A3D33A3 7→A3 ◦ D33e−
(A3W (·,t))2

K2 ◦A3, (6.2)

where for K →∞, linear contour enhancement is obtained. The idea is to set a soft thresh-

old (determined by K) on the amount of diffusion in A3 direction. Within homogeneous

regions one expects |A3W (y,n, t)| to be small, whereas in the transition areas between

ventricles and white matter where one needs to block the diffusion process, one expects a

large |A3W (y,n, t)|.
Remark 6.1. Since the Perona-Malik diffusion is nonlinear, the constant K is dependent

on any normalization which may have been applied to U . If ΦK(U) represents nonlinear

diffusion with parameter K on data U then ΦK(U) = ΦcK(cU)/c, ∀c 6= 0. Parameter K is

typically chosen based on a histogram of |A3U | in order to get the proper scaling invari-

ance, as is illustrated in Fig. 8.

To implement this, we propose the following discretization scheme

A3(D̃33A3)W (y,n, t) ≈
D̃33(y+

1

2
h,n)A3W (y+ 1

2
h,n, t)

h

−
D̃33(y− 1

2
h,n)A3W (y− 1

2
h,n, t)

h
, (6.3a)
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Figure 7: Adaptive Perona-Malik di�usion. Top row: Arti�
ial 15×15×15×162 input data that is thesum of a noisy �ber part and a noisy isotropi
 part. For the sake of visualization, we depi
t these partsseparately. Bottom row left: Output of linear di�usion with t = 1, D33 = 1,D44 = 0.04 and ∆t = 0.01.Bottom right: Output of Perona-Malik adaptive di�usion with D33 = 1, D44 = 0.015, K = 0.05, ∆t = 0.01,
t = 1.

Figure 8: A histogram of |A3U | of a real dataset of dimensions 63×27×10 and 162 sampled dire
tions.The graph of Gaussian fun
tion exp{−(A3U)2/K2} with K = 10−5 is in
luded in red. Perona-Malikdi�usion with this parameter works well with this parameter on this data. A good rule of thumb is thatthe parameter K should be 1.5∼ 2 times higher than the standard deviation of the histogram of |A3U |.
A3W (y+

1

2
h,n, t) ≈ W (y+h,n, t)−W (y,n, t)

h
=A

f
3
W (y,n, t), (6.3b)

A3W (y− 1

2
h,n, t) ≈ W (y,n, t)−W (y− h,n, t)

h
=A

b
3W (y,n, t). (6.3c)
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Combining these three equations leads to

A3(D̃33A3)W (y,n, t) ≈
D̃33(y+

1

2
h,n)A

f
3
W (y,n, t)− D̃33(y− 1

2
h,n)Ab

3W (y,n, t)

h
, (6.4)

where for notational convenience h= hRnez = hn and

D̃33 = D33 exp

�
− (max(|A f

3W |, |Ab
3W |))2

K2

�
.

The D̃33 terms can easily be calculated with linear interpolation. Combined with the finite

difference operators of Section 3.2, this give the full discretization scheme.

The discretization scheme for D̃33 uses max(|A f
3
W |, |Ab

3W |) because forward and back-

wards finite difference schemes individually induce shifts near discontinuities, which are

exactly the regions we want to dampen diffusion. Central finite difference schemes some-

times allow diffusion across region boundaries. This happens when fiber voxels have more

than one isotropic neighbor, then Ac
3W may be close to zero because the stencil does not

depend on the center point. Because of the spatial discretization and because every direc-

tion n is considered, this is very likely to occur in almost all geometries.

7. Enhancement of DTI of the human brain

In this section, we will look at the enhancement of DTI scans obtained from healthy

volunteers. To do this, we first describe the process by which DTI tensor fields are con-

verted to function of R3
⋊ S2, before showing the results of linear contour enhancement

and non-linear enhancements.

7.1. Representing DTI data as functions of position and orientation

Diffusion Tensor Imaging(DTI), introduced by Basser et al. [3] assumes that the diffu-

sion propagator pt can be described for each voxel by an anisotropic Gaussian function,

i.e.,

pt

�
X t = x+ r | X0 = x

�
=

1p
(4πt)3 det(D(x))

exp

�−rT D(x)−1r

4t

�
, (7.1)

which described the probability that water particles end up at displaced by r from their

starting position x and where D is a tensor field of 3×3 positive definite symmetric tensors

that describe the local Gaussian diffusion process. The tensors contain 6 parameters for

each voxel, which means the tensor field requires at least 6 DW-MRI scans to compute.

The drawback of approximating pt with an anisotropic Gaussian function is that it

is only able to estimate one preferred direction per voxel. However, if more complex

structures such as crossing, kissing or diverging fibers are present the Gaussian assumption

fails, as was demonstrated by e.g., Alexander et al. [2]. In practice though, large areas of

the brain can be approximated well with DTI tensors and in the regions where complex
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fiber structures are present the diffusion profile can often be inferred by taking contextual

information into consideration [22].

Since DTI tensors cannot contain information regarding crossings, the DTI data needs

to be represented in a form that does allow crossing fiber structures. A representation

that suits these demands can be obtained by converting a DTI tensor field into an ODF. We

obtain the ODF distribution associated with a DTI tensor field by inserting Eq. (7.1) into

Eq. (1.1) and using r = αn

ODF(x,n) =
1p

det(D(x))(4πt)3

∫ ∞

0

exp

�
− nT D−1(x)nα2

4t

�
α2dα. (7.2)

This integral can be simplified (see Appendix for a derivation) to

ODF(x,n) =
1

4π
p

det(D(x))

�
1

nT D−1(x)n

� 3
2

. (7.3)

It should be noted that this step can only be done provided that D is positive definite

(otherwise the integral of Eq. (7.2) does not converge for all n). In experimental data,

sometimes tensors with small negative eigenvalues are present because not all tensor fitting

algorithms enforce positive definitiveness in the fitting process. This means that the ODF

does not exist for these tensors and a better tensor fitting algorithm needs to be used for

these positions in the data.

The ODF distribution is normalized per position:

∫

S2

ODF(x,n)dσ(n) = 1, ∀x ∈ R3, (7.4)

which means it is not dependent on the strength of diffusion. For example, multiplying a

diffusion tensor with a constant will not affect the ODF of that tensor (this is also why the

diffusion time t has canceled out in the equation). This means that in the conversion from

DTI tensor to ODF some information has been lost.

To get a measure that is dependent on the total amount of diffusion, we can introduce

an extra factor that is sensitive to the total amount of diffusion. A factor suitable for this

is
p

det(D(x)), which is proportional to volume of the DTI ellipsoid associated with tensor

D(x). This ellipsoid is defined by rT D−1(x)r = 1 and has radii equal to the square root

of the eigenvalues of D(x) and volume equal to 4π
p

det(D(x))/3. It is also a convenient

factor, because it cancels one of the factors of Eq. (7.3). Another justification for multiply-

ing by
p

det(D(x)) is because we are interested in viewing DW-MRI data as a probability

density function of position and orientation simultaneously. In short, we want to know

pt(X t = x+ r and X0 = x) instead of the diffusion propagator pt(X t = x+ r | X0 = x). Of

course, using elementary probability theory we can say that

pt

�
X t = x+ r and X0 = x

�
= pt(X t = x+ r | X0 = x) · p(X0 = x).
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Figure 9: Comparison of the old and new methods on the same DTI tensor obtained from medi
al data.The left glyph shows the data the new method generated by Eq. (7.5) and the right glyph shows theold method des
ribed in Eq. (7.6).
We then assume that p(X0 = x) ∝

p
det(D(x)), i.e., the a priori probability that water

particles start their diffusion at x is proportional to the total amount of diffusion at that

position which seems a reasonable assumption.

If we perform this multiplication and collect all the constant factors in c, we obtain the

following formula:

U(x,n) = c
�
nT D−1(x)n
�− 3

2 , (7.5)

where we choose c = 1 for convenience. Note that the choice of c is not arbitrary because

it influences parameter K from the nonlinear diffusions, see Remark 6.1.

In our previous work [7, 10], an ad hoc method was used to convert DTI tensors to

functions of position and orientation using a simple quadratic form:

U ′(x,n) = c2nT D(x)n, (7.6)

which in general gives completely different results and in practice tends to make glyphs

more isotropic. This extra anisotropy makes using oriented contextual information much

more difficult, since extra sharpening steps become critical to obtain the orientation infor-

mation in the data.

To conclude this section, we present Fig. 9 to visualize the difference between the old

and new methods for one DTI tensor and Fig. 10 shows this difference on a coronal cross-

section of the corpus callosum.

7.2. Experimental results

To test the algorithm on real data, a DTI brain scan was acquired from a healthy volun-

teer with 132 gradient directions and a b-value of 1000s/mm2. Linear contour enhance-

ment (Eq. (4.1)) as well as Perona-Malik adaptive diffusion (Eq. (6.2)) was performed on

it, as can be seen in Fig. 11. Prčkovska et al. [22] showed that DTI combined with en-

hancement techniques can extrapolate crossing information from contextual information.

It is interesting to see if such a method can be improved with a Perona-Malik type scheme,

especially since the ventricles may make such methods unreliable in those areas.

Since visualization of larger datasets is difficult, only coronal slices through the cen-

ter of the brain are depicted, where the ventricles are visible as large, isotropic spheres.



164 E. J. Creusen, R. Duits, A. Vilanova and L. M. J. Florack

Figure 10: Comparison of the old and new methods on a �eld of glyphs. Shown is a 
oronal 
ross-se
tion of the 
orpus 
allosum. Top row: new method a

ording to Eq. (7.5). Bottom row: old methoda

ording to Eq. (7.6).

Figure 11: DTI data of the 
orpus 
allosum and 
orona radiata �bers in a human brain with b-value1000s/mm
2 and 132 gradient dire
tions on voxels of (2mm)3. Top row: A 
oronal sli
e of the originaldata with a region of interest in the yellow square. Middle row: The unpro
essed region of interestby applying Eq. (7.5) (left) and same region with min-max normalization and sharpening a

ordingto Eq. (7.7) (right). Bottom row: The result of linear 
ontour enhan
ement (left) and Perona-Malikdi�usion (right). Parameters for both: t = 1, ∆t = 0.01, D33 = 1, D44 = 0.01 and for Perona-Malik

K = 1× 10−9. Marked in red are areas in whi
h the ventri
les have indu
ed 
rossing stru
tures in thelinear di�usion pro
ess. Marked in green are areas known to have 
rossing �bers.
Because inducing crossings requires sharp peeks, sharpening techniques have to be em-

ployed. Squaring the input data is the simplest way to do this (and is used here), but other

techniques such as R3
⋊ S2-erosions are also an option [9]. For visualization, a min-max-
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normalization and another sharpening step are used, given by operator

V(U)(y,n) =
� U(y,n)− Umin(y)

Umax(y)− Umin(y)

�2
, with Umin

max

(y) =min
max

�
U(y,n) | n ∈ S2

	
. (7.7)

From Fig. 11 it can be seen that the Perona-Malik method performs better than linear

contour enhancement. The first effect is visible on the boundary of the data. Linear con-

tour enhancement diffuses signal outside of the boundaries of the image (because of zero

padding boundary conditions for the calculation of derivatives), which causes artifacts visi-

ble as horizontal structures near the top and bottom edges. The same zero padding ensures

a large derivative at these places so Perona-Malik does not suffer from this problem.

The second effect is visible around the ventricles (marked by red in Fig. 11). Lin-

ear diffusion shows the influence of the ventricles in every direction, particularly creating

anatomically incorrect fiber crossings in the corpus callosum (towards the top left from the

ventricles) and corona radiata (towards the right of the ventricles).

Both methods are able to properly infer information about crossings, shown in the

green circle, which is a location known to have crossing fibers. This shows that even

though the diffusion from the ventricles has been suppressed, crossings in the data can still

be inferred from the surrounding data.

8. Conclusions

We have numerically solved the diffusion and convection-diffusion equations on DW-

MRI data. We have shown that these equations can be used to enhance the DW-MRI

data, to reduce noise and to infer crossings from contextual information. We have derived

the finite difference schemes for the convection-diffusion process on DW-MRI, where we

compared explicit and implicit time integration schemes. We have developed an edge-

preserving, adaptive Perona-Malik diffusion process using finite difference schemes. We

have shown that this adaptive diffusion process performs better than linear diffusion in

areas which contain large isotropic diffusion profiles such as the ventricles of the brain.

Since the non-linear diffusion strongly reduces the interference of the isotropic glyphs of

the ventricles on the anisotropic glyphs of the fibers, the need to segment these areas and

the involved preprocessing beforehand is thereby eliminated.

Appendix: Derivation of Eq. (7.3)

Inserting Eq. (7.1) into Eq. (1.1) yields Eq. (7.2), repeated here for clarity:

ODF(x,n) =
1p

det(D(x))(4πt)3

∫ ∞

0

exp

�
− nT D−1(x)nα2

4t

�
α2dα.

For ease of notation we collect all terms independent of α into single symbols

A=
1p

det(D(x))(4πt)3
> 0, B =

nT D−1(x)n

4t
> 0,
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where formally A = A(x, t) and B = B(x,n, t) which we will ignore here for notational

brevity. A and B are positive because t > 0 and D(x) and D−1(x)) are positive definite. The

equation then simplifies to

ODF(x,n) = A

∫ ∞

0

exp(−Bα2)α2dα.

By integration by parts we find

A

∫ ∞

0

αexp(−Bα2)αdα=
A

2B

∫ ∞

0

exp(−Bα2)dα=
A
p
π

4B
3

2

,

where the last integral is the Gaussian integral

∫ ∞

0

exp(−Bα2)dα=

p
π

2
p

B
.

Finally we fill in A and B (formatting to emphasize the canceling terms) to arrive at

Eq. (7.3)

ODF(x,n) =
A
p
π

4B
3

2

=

p
π

p
det(D(x))(4πt)

3

2

· 1
4

�
4t

nT D−1(x)n

� 3
2

=
1

4π
p

det(D(x))

�
1

nT D−1(x)n

� 3
2

.
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