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Abstract. Experimental observations show that a strong magnetic field has a dra-
matic influence on the sedimentation of RBCs, which motivates us to model the

sedimentation of red blood cell (RBC) under strong external magnetic body force.
To model the sedimentation of a RBC in a square duct and a circular pipe, a re-

cently developed technique derived from the lattice Boltzmann and the distributed

Lagrange multiplier/fictitious domain methods (LBM-DLM/FD) is extended to em-
ploy the mesoscopic network model for simulations of the sedimentation of a RBC

in flow. The flow is simulated by the LBM with a strong magnetic body force, while

the network model is used for modeling RBC deformation. The fluid-RBC interac-
tions are enforced by the Lagrange multiplier. The sedimentation of RBC in a square

duct and a circular pipe is simulated, which demonstrates the developed method’s
capability to model the sedimentation of RBCs in various flows. Numerical results

illustrate that the terminal settling velocity increases incrementally with the exerted

body force. The deformation of RBC has a significant effect on the terminal settling
velocity due to the change in the frontal area. The larger the exerted force, the

smaller the frontal area and the larger the RBC deformation become. Additionally,

the wall effect on the motion and deformation of RBC is also investigated.
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1. Introduction

Red blood cell (RBC) containing haemoglobin was revealed to be susceptible to

magnetic fields [1,2]. The behavior of red blood cells will be greatly affected by strong

external magnetic force. Many cardiovascular diseases, such as artherosclerotic dis-

ease, strokes, heart attacks, and so on, are related to high blood viscosity. Furthermore,

blood viscosity is the key parameter that modulates hemodynamic forces such as shear

stress and strain in the vessels, as well as blood pressure. Additionally, hyperviscos-

ity may cause the pre-inflammatory injury that triggers endothelial dysfunction and a

cascade of events that result in the hardening and thickening of arterial walls. Hence,

reduction of the high blood viscosity is a direct way to reduce the risk of having these

diseases or alleviate the potential hardening and thickening of arterial walls. One of

the possible means is to impose strong magnetic fields parallel to the blood flow direc-

tion. The apparent viscosity would be reduced by 20%∼30% at a magnetic field pulse

of 1.3T lasting around 1 min where the RBCs is aggregated along the field direction

to form short chain at the microscopic level [3]. Another application of magnetic field

is the separation of red blood cell from the blood [2]. High gradient magnetic field is

adopted in the process of separation based on the fact that the paramagnetic properties

of the reduced haemoglbin [2]. The advantage of using magnetic separation lies in that

this magnetic separation is a physical process without the use of additives which may

pollute the blood. Thus, it is critical to study the effect of the magnetic fields on the

behavior of RBC in fluid flow.

Recently, numerical simulations of red blood cells attract increasing attention be-

cause of the important role of RBCs in blood circulation. Simulations of individual

RBCs provide a down-to-cell approach to study blood flow. Pioneering and funda-

mental work conducted by Fung [4], Fung and Zweifach [5], Evans [6], Skalak and

Branemark [7], Secomb et al. [8], etc., explored the structure and properties of a

RBC membrane and established mathematical RBC models. It is well known that the

RBC has no nucleus, and both the cytosol and the plasma are Newtonian fluids. A

RBC membrane is composed of a phospholipid bilayer supported by protein skeleton

resistant to extension and compression. During the deformation in blood flow, RBCs

roughly maintain their surface area and volume. Motion and deformation RBCs in

fluid flow are a typical fluid-structure interaction problem where the sub-problems to

be solved included the fluid flow, the RBC deformation and motion, the coupling of

fluid and RBC interaction and the constitutive equations and models for the fluid and

RBC. Many methods were proposed for the flow-structure interactions [4, 8, 10–18].

In this paper, the lattice Boltzmann method (LBM) [19, 20] is employed to solve the

flow. The RBC is modeled as a closed membrane filled with cytosol and immersed

in plasma. A coarse-grained mesoscopic method developed by Fedosov et al. [11] is

used to represent the properties of a RBC membrane, where the spring network model

representing the spectrin cytoskeleton of a RBC can be carried out with a coarse mesh

to improve computational efficiency. The coupling of flow-RBC interactions is handled

by the distributed-Lagrange-multiplier (DLM) based fictitious-domain method, to avoid
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the remeshing procedure when the flow-RBC interface is updated. The advantage of

the developed method is the reduction of the complexity of the algorithm and the cost

of computation is greatly reduced. Additionally, the developed method is more suitable

for simulating large deformation of RBC. Experimental observations [1–3] show that

a strong magnetic field has a dramatic influence on the sedimentation of RBCs, which

motivates us to model the sedimentation of RBCs under strong external magnetic body

force in this work. As an initial step to the study of the effect of magnetic field, the mag-

netic force is considered as a uniform body force exerted on a RBC [22]. In this paper,

simulations of the sedimentation of a single RBC in a square duct and a circular pipe

under strong magnetic body force are performed by the LBM-DLM/FD method [18,21]

with the developed mesoscopic membrane model [11].

The paper is organized as follows: Section 2 outlines the mathematical formulation.

In Section 3, two numerical tests, including the sedimentation of RBC in a square duct

and a circular pipe, are performed. Section 4 presents a brief conclusion.

2. Mathematical formulation

2.1. LBM-DLM/FD method

In this paper, the sedimentation of a RBC in a duct flow is simulated by the de-

veloped LBM-DLM/FD method [18, 21], which is a FDM within the LBM framework.

In this method, the computational domain includes both the fluid and solid domains,

and the flow-structure coupling is handled by the Lagrange multiplier method. The

merit of LBM-DLM/FD method is that no re-meshing procedure is needed when the

flow-structure interface changes, making it possible to deal with large deformation of

structure. The equations in the LBM-DLM/FD method include equations of the fluid

subdomain, equations of the solid subdomain, and equations to constrain fluid and

solid motion. The fluid-structure coupling on the fluid-structure interface is also im-

posed by the Lagrange multiplier, and the information exchange is implemented by

interpolation.

The fluid domain is solved by the lattice Boltzmann equations (LBEs). The form of

LBEs used here includes the DLM, λ, in the body force term under the incompressible

limit [19,20]:

fi(t+ δt,x+ eiδt) = fi(t,x)−
1

τ
(fi − f eq

i ) +
wiδt
c2s

[(λ+ ρf ff ) · ei] , (2.1)

where fi is the single-particle distribution function in the i-direction of the microscopic

velocity, δt denotes the time scale. ff is the external force acting on the fluid. wi is the

corresponding weighting factor of the density distribution in each velocity direction. τ
is the relaxation time associated with the kinematic viscosity of the fluid and reflects the

relaxation rate to the local equilibrium distribution f eq
i . The macroscopic fluid velocity
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uf and mass density ρf are obtained from the distribution functions as follows [19]:

ρf =
∑

i

fi, ρfuf =
∑

i

fiei. (2.2)

The solid or structure motion is controlled by following equation in weak form [16]:

∫

Ωs

(

(ρs − ρf )
dus

dt
− (ρsfs − ρf ff )

)

· ϕsdΩs

−

∫

Ωs

[∇ · (σs − σf )] ·ϕsdΩs +

∫

Ωs

λ·ϕsdΩs = 0, (2.3)

where u is the velocity, ρ is the mass density, f is the body force, and σ is the stress.

The subscripts f and s correspond to the flow and structure variables, respectively. ϕs

is the weighting function. The RBC deformation in flow always can be assumed to be

in a quasi-equilibrium process. Hence, the acceleration term in the preceding equation

can be ignored. The cell is divided into two parts by the membrane: the inner and

outer parts. In this paper, the external magnetic force is treated as the constant body

force acting on the whole cell. Thus, in the inner part, ff = fmag, and, in the outer part,

ff = 0. In every time step, the property at the grid points located in and out of a cell is

updated to determine whether the external body force should be imposed.

2.2. Red blood cell model

The coarse-grained model of RBC membrane, first proposed by Boey et al. [9] and

further developed by Li et al. [10], and Fedosov et al. [11], is employed here. The

membrane surface is triangulated with N nodes, E edges, and T triangles. The total

energy of the system is defined as:

V (xn) = Vin−plane + Vbending + Vsurface + Vvolume, (2.4)

where xn represents the vertex coordinates and the in-plane energy is expressed by:

Vin−plane =
∑

all edges

Vwlc +
∑

all edges

Vp. (2.5)

Each edge in the network is a spring defined by two potentials — a wormlike chain with

the energy Vwlc and a repulsive potential with the energy Vp. Vbending is the membrane

bending energy. The surface and volume terms, Vsurface and Vvolume respectively, are

used to constrain the variation of the surface area and volume to be small. More details

regarding individual energy can be found in [11]. Finally, the nodal forces are derived

from the total energy as follows:

Fmembrane
n = −

∂V (xn)

∂xn

. (2.6)



516 X. Shi and G. Lin

3. Numerical simulations and discussion

3.1. Modeling the sedimentation of a RBC in a square duct

Fig. 1 shows the flow domain setup: a RBC with the diameter d and length l is

placed on the centerline of a square duct with the width of W . The top and bottom

are set as periodic boundaries, while the others are set as wall boundaries. An external

body force is applied on the cell along the vertical direction. The cell membrane is

decomposed into 996 triangular elements. The shear and bending moduli of a RBC are

set to 6.3 µm/m and 2.4 × 10−19N ·m, respectively. The equivalent radius of a RBC is

adopted as the characteristic length:

a = (3V /4π)
1

3 , (3.1)

where V is the cells volume. In this paper, the volume of a healthy RBC is assumed

to be 93 µm3 [1]. Hence, our result is a = 2.82 µm. Then, under the creeping flow

condition, the terminal settling velocity of a sphere with the radius a in an infinite flow

field and used as a characteristic velocity is given as:

U0 =
F

6πaµf

, (3.2)

where F is the external body force and µf is the fluid viscosity. The initial diameter of

RBC is 8.8 µm and is equal to 48 δx, where δx denotes the lattice spacing in the lattice

Boltzmann method. The relaxation time, τ , in the lattice Boltzmann method related to

the kinematic viscosity of the fluid is set to 0.98, which reflects the relaxation rate to

the local equilibrium distribution. According to [22], the external force used here is on

the order of 10−10 N .

Figure 1: Schematic of the sedimentation of a RBC in a square duct.
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(a) 123 pn (b) 369 pn (c) 615 pn

Figure 2: Streamlines around the RBC & RBC deformation under different external magnetic body forces
in a square duct.

First, the effect of the external magnetic body force is investigated. The width of

the duct is fixed at 6.36a. Fig. 2 shows the streamlines around the RBC at different ex-

ternal magnetic body forces when the cell reaches the terminal settling velocity. These

streamlines are drawn on the two respective characteristic slice planes. One, defined

as Slice 1, is the plane containing the centerline and parallel to one of the duct walls,

and the intersected duct walls have the shortest distance to the cell. The other, defined

as Slice 2, is the diagonal plane, where the intersected duct walls are furthest from the

cell. Fig. 2 illustrates a circulating flow in the lateral region of RBC exists on each slice

plane, and it can be deduced that these closed streamlines will form a closed stream-

surface with the shape of an annulus. However, we can determine that the size of the

circulating region on each slice plane is different. The size of the circulating region on

Slice 1 is much smaller than that on Slice 2, and the circulating region on Slice 2 is

closer to the RBC than that on Slice 1, indicating that the distance between the cell and

duct wall has an important effect on the flow field. The stronger the wall effect is, the

more hardly the circulating flow is formed. The corresponding streamlines in different

cases start from the same location. As such, the shape of the streamline is similar, and

the effect of magnification of the force is not significant.

Fig. 3 illustrates the development of the terminal settling velocity of RBCs with

respect to the loads of external force where the velocities are scaled by U0. The scaled

terminal settling velocities are around 0.5. If the undeformed RBC is regarded as a

disk, the terminal settling velocity in the infinite flow field is given by:

UT =
3F

16πdµf

, (3.3)

where d = 2.798a, resulting in UT /U0 = 0.402, which is close to our computation
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Figure 3: Terminal settling velocity of RBC variations under external forces in a square duct.

Figure 4: Frontal area of RBC variations under external magnetic body forces in a square duct.

results and provides a brief estimation and validation. As the load increases, the scaled

settling velocity increases. If the cell is rigid, the scaled settling velocity should be kept

as a constant, disregarding the external force. Hence, Fig. 3 also illustrates the effect of

RBCs deformation on the terminal settling velocity. Fig. 4 presents how the frontal area

varies with respect to the external load, where the frontal area, Sfrt, is scaled by the

initial area S0 = πd2
/

4 and d is the diameter of the undeformed RBC. As the external

force increases, we find that the lateral length of the cell becomes small, so the frontal

area of RBC will decrease (Fig. 4) and result in lower drag. Hence, larger terminal

settling velocity is required so that the viscous drag can balance the external magnetic

body force.

Usually, the deformation of RBCs in response to an external magnetic body force is
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Figure 5: Deformation index of RBC variations under external magnetic body forces in a square duct.

measured by the deformation index (DI) defined as [23]:

DI =
l

d
. (3.4)

As shown in Fig. 1, l and d are the length and diameter of a RBC, respectively. In our

current study, the configuration is symmetric, and the deformation of RBC is relatively

simple. Hence, together with the frontal area, the DI can describe the main character

of the deformation.

Fig. 5 shows the variation of the DI of a RBC according to the external magnetic

body force. As depicted in Fig. 2, during the sedimentation of RBC, the frontal sur-

face with respect to the sedimentation suffers the largest deformation where the initial

concave surface becomes convex. However, the back surface rolls toward the interior

of the cell and becomes more concave. This mechanism will elongate the RBC along

the direction of the movement. According to the constitutive equations of RBC mem-

brane, the RBCs surface area and volume are constrained to change little during the

deformation. When the cell is elongated, the cross size should be reduced to satisfy the

volume constraint. The larger the external force, the more the cell is elongated. The

transverse size and frontal area are reduced, which is why the DI increases with the

magnification of the loads, as shown in Fig. 5.

It should be clarified that although the style of RBC deformation is similar to that

in the Poiseuille flow driven by either pressure or body force, the mechanism of de-

formation is different. In the Poiseuille flow, the flow is active and dominant, but the

deformation is passive. The motion of material points on the membrane is determined

by the velocity distribution of the flow field. In this current study, the cells deformation

is determined by the external magnetic body force. The magnetic body force causes

the deformation of the cell and drives the flow. Although the flow also affects the cells

shape, the body force is the driving source of the flow and deformation of RBC.
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Table 1: Wall effects on the terminal settling velocity and deformation index.

W = 4.26a W = 6.38a

UT /U0 0.331 0.529

DI 0.856 0.833

Sfrt/S0 0.594 0.608

The effect of the duct wall is studied by varying the ducts width W . Table 1 lists

the variations of the scaled terminal settling velocity and the DI due to the change of

W with the external body force fixed at 369 pN . From Table 1, we can determine the

importance of the wall effect of the duct. On one side, if the settling velocity is the same

due to the non-slip boundaries, the existence of the wall will increase the shear rate

and exert a retarding effect on the terminal settling velocity. Table 1 also shows that

terminal settling velocity is significantly reduced as the duct wall approaches the cell.

On the other side, the material particles tend to get forced away from the wall, which

is another well-known aspect of wall effect. Because of the symmetric configuration in

the present computations, the summation of such an aspect of wall effect is squeezing

the cell along the transverse direction so that the lateral size is reduced. Due to the

conservation of RBC volume, the cell will be elongated. Although the terminal settling

velocity at W = 4.26a is much lower than that at W = 6.38a, the DI is larger, and

the frontal area is smaller when W = 4.26a, indicating that velocity has less effect on

deformation. It can be concluded that when the cell is near a wall, the wall effect is as

important as the external body force on both the RBC deformation and the translating

velocity.

3.2. Modeling the sedimentation of a RBC in a circular pipe

In this section, the RBC is placed in a circular pipe. The sedimentation of a RBC

in a circular pipe is investigated and compared to that in a square duct to illustrate

another aspect of wall effect: the shape of the cross-section. All of the computational

configurations, including the mesh size of the fluid field and RBC membrane, boundary

conditions, and material properties, etc., are setup to be the same as described in the

previous section except the cross-section shape of the pipe. To facilitate the comparison,

the diameter of the pipe cross-section is also set to 6.38a.

Fig. 6 presents the streamlines around the RBC at different external magnetic body

forces when the RBC reaches the terminal settling velocity. Compared to Fig. 2, there is

no significant difference to the RBCs shape under the corresponding external magnetic

body force. The streamlines are also drawn on the same slice planes defined in the

earlier Slice 1 and Slice 2. In this section, because of the symmetric configuration, the

flow on Slice 1 and Slice 2 is almost identical. It is evident that the distance from the

cell to the wall in a square duct is farther than that in a circular pipe on Slice 2, and the

size of the circulating region is larger in the square duct. However, the distance from

the cell to the wall in the square duct is the same as that in the circular pipe on Slice 1,
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(a) 123 pn (b) 615 pn

Figure 6: Streamlines around the RBC & RBC deformation under different external magnetic body forces
in a circular pipe.

and the size of the circulating region is much smaller in the square duct.

Table 2 lists the scaled terminal settling velocities and DIs at the loads of 123 pN
and 615 pN , respectively. Table 2 also provides a comparison of corresponding data

between the cases in the circular pipe and in the square duct. The variation of the

parameters describing the motion and deformation of RBC with respect to the external

body force is similar to that in the square duct: the larger the external body force is

imposed, the larger the scaled settling velocity and the DI are.

Table 2: Comparison of the wall effect on the terminal settling velocity and deformation index.

F = 123 pn F = 615 pn

Square duct Circular pipe Square duct Circular pipe

UT /U0 0.477 0.429 0.563 0.517

DI 0.620 0.624 0.907 0.915

Sfrt/S0 0.789 0.785 0.562 0.559

According to the comparison of the two cases in Table 2, it can be observed that

under both loads, the difference on RBC deformation is not obvious when the variations

of the DI and the frontal area are less than 1%. The terminal steady shapes of the RBC

are almost identical, which is also observed in Fig. 2 and Fig. 6. However, the difference

of the scaled settling velocity is much more significant: around 10%. From Table 2, it

can be deduced that the terminal settling velocity is more sensitive to the wall effect

than the DI and the frontal area.

Furthermore, the effect of the cross-section shape on the RBC actually is the se-

quence of the two kinds of wall effects noted in the previous section. The retarding

effect mainly influences the RBC motion parallel to the wall and reduces the translat-

ing velocity of the cell. The repelling effect primarily acts on RBC motion in the normal
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direction of the wall. In current symmetric configurations, the repelling effect leads to

the squeezing effect on the cell. In the present computation, regarding the shape of the

cross-section, the circle is the inscribed circle of the square. Although the perimeter of

the square is larger than the circle, the point on the circle is no further than the point

on the square to the center. From analyzing the shape of the cross-section and Table 2,

it can be concluded that the retarding effect is more sensitive to the distance between

the material point and the wall than the repelling effect.

4. Conclusion

In this work, the sedimentation of RBC in a square duct and a circular pipe is

investigated. In addition, the flow field and deformation of RBC are investigated. It

is observed that the terminal settling velocity increases incrementally with the exerted

magnetic body force. The deformation of RBC has a significant effect on the terminal

settling velocity due to the change of the frontal area. The larger the exerted magnetic

body force, the smaller the frontal area and the larger the RBC deformation become.

Deformation amplifies the increment of the terminal settling velocity. The wall effect

presents as the retarding effect in the parallel direction of the wall surface, providing

additional drag to the cell. In the normal direction of the wall, the wall effect repels

the cell away from the wall and, in this current study, presents as the squeezing effect

due to the symmetric configuration, which will reduce the frontal area and elongate

the cell. The exerted magnetic body force and wall effect play the dominant role in

RBC deformation. If the wall is far from the cell, the wall effect will vanish. However,

in both cases, the velocity of the flow field is less important with respect to the shape

of the cell, which makes it different from the RBC deformation in Poiseuille flow.
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