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Abstract. We develop the immersed interface method (IIM) to simulate a two-fluid
flow of two immiscible fluids with different density and viscosity. Due to the surface

tension and the discontinuous fluid properties, the two-fluid flow has nonsmooth

velocity and discontinuous pressure across the moving sharp interface separating
the two fluids. The IIM computes the flow on a fixed Cartesian grid by incorporating

into numerical schemes the necessary jump conditions induced by the interface.

We present how to compute these necessary jump conditions from the analytical
principal jump conditions derived in [Xu, DCDS, Supplement 2009, pp. 838-845].

We test our method on some canonical two-fluid flows. The results demonstrate that

the method can handle large density and viscosity ratios, is second-order accurate
in the infinity norm, and conserves mass inside a closed interface.
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1. Introduction

Many natural and industrial processes involve the flow of two immiscible fluids. Ex-

amples include rise of steam in boiler tubes, bubbles in oil wells, ocean waves, geysers

and sprays. Direct numerical simulations can potentially increase the understanding

of such flows. There are several difficulties in the direct numerical simulation of a

two-fluid flow. The interface separating the two fluids is extremely thin, leading to the

discontinuities of fluid density and viscosity in the flow field. The existence of surface

tension would induce a pressure jump across the interface as well. Other factors such

as high density and viscosity ratios, phase transition, topological changes, and a vast
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range of time and length scales make the development of a robust numerical method

even more challenging [8].

In recent years, different numerical methods have been proposed to solve the gov-

erning Navier-Stokes equations for two-fluid flows, and each of them has its own

strengths and weaknesses. These methods can be classified into two groups: La-

grangian methods that modify the grid to match the interface location, and Eulerian

methods that extract the interface location from a fixed grid.

In a Lagrangian method, the computational mesh moves and distorts with an inter-

face. A Lagrangian method permits an interface to be specifically delineated and pre-

cisely followed, and it allows interfacial conditions to be easily applied [6]. Lagrangian

methods are successful for small interface deformations [30]. However, they have diffi-

culties when interface undergoes large deformations to require re-meshing [27]. Some

examples of Lagrangian methods can be found in [7,21,27].

In an Eulerian method, an interface moves through a fixed grid and its position is

computed at each time step. The two main approaches to follow the interface motion

are interface capturing and interface tracking. With interface capturing, the interface

is implicitly captured by a contour of a scalar function. Some popular examples of

this kind are the volume of fluid (VOF) method [9] and the level set method [23, 28].

In the VOF method, the location of an interface is determined by the volume fraction

occupied by each fluid in each computational cell. In the level set method, an interface

is represented as a zero set of an auxiliary scalar function (level set function). The

signed distance function is commonly used as the scalar function. An interface tracking

method uses a set of Lagrangian points to mark and track an interface. The interface

is treated with either finite thickness or zero thickness. Examples of interface tracking

methods include the front-tracking method [33,34] and the ghost fluid method (GFM)

[5,15]. In the front-tracking method [33,34], a two-fluid flow is treated and solved as

one system with the delta function formulation, and the interface is smoothed by the

discrete approximation of the delta function. The GFM [15] eliminates the numerical

smearing prevalent in the delta function formulation and treats the interface in a sharp

fashion. Its basic idea is to extrapolate the solution in each fluid onto fictitious ghost

nodes located in the other fluid, and then solve the governing equations in both fluids

separately [40].

In an attempt to overcome some of the limitations of the above methods, there

has been some hybrid methods which exploit the best features of different methods.

Some examples of hybrid methods include the level-set/volume-of-fluid methods [31],

the particle level set method [4], the marker/volume-of-fluid methods [1], the level-

contour front tracking methods [29], and the level-set/immersed boundary method

[39].

The immersed interface method (IIM) [20] was initially proposed by LeVeque and

Li [17] to improve the accuracy of Peskin’s immersed boundary (IB) method [24, 25].

The IIM differs from the IB method in the treatment of the singular force appearing in

the delta function formulation of an interface problem. The IIM can capture the jumps

of a solution and its derivative by incorporating them directly into numerical schemes.
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The IIM was initially developed for solving elliptic equations. Later it was extended to

Stokes flows with singular forces [16] and the Navier-Stokes equations with singular

forces [18]. An implementation of the IIM for solving incompressible flows of two

fluids with different viscosity but the same density was proposed in [32].

In this paper we develop the IIM to simulate a two-fluid flow of two immiscible

fluids with different density and different viscosity. To achieve second-order accuracy,

jump conditions of all the first- and second-order Cartesian derivatives of the velocity

and the pressure are needed. We present how to numerically compute these necessary

jump conditions from the analytical principal jump conditions derived in [37].

The rest of the paper is organized as follows. In Section 2, the mathematical for-

mulation and principal jump conditions for a two-fluid flow are given. In Section 3, an

overview of the IIM is presented. In Section 4, the ideas on how to apply the IIM to

a two-fluid flow are detailed. In Section 5, the numerical implementation of the IIM

for a two-fluid flow is described. In Section 6, numerical tests to examine the accuracy,

efficiency and robustness of the IIM are provided. Finally, in Section 7, conclusions and

possible improvements are outlined.

2. The two-fluid flow

We consider an incompressible two-fluid flow of immiscible fluids 1 and 2 with

different density and viscosity separated by an interface Γ in a fixed two-dimensional

rectangular domain Ω = Ω1 ∪Ω2, see Fig. 1.

fluid 1

fluid 2

Ω1

~τ

~n

~X

α

Γ

Ω2

Figure 1: Schematic of a two-fluid system.

2.1. The formulation

With proper initial conditions and far-field boundary conditions, the two-fluid sys-

tem is governed by a unified delta function formulation in the whole domain as [34]

ρ

(

∂ui
∂t

+
∂(uiuj)

∂xj

)

=
∂

∂xj

(

−pδij + µ

(

∂ui
∂xj

+
∂uj
∂xi

))

+ Fi + ρGi, (2.1)
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∂ui
∂xi

= 0, (2.2)

∂Xi

∂t
= Ui, (2.3)

where xi (i = 1, 2 in 2D) is the Cartesian coordinates defining the domain, Xi is the

Cartesian coordinates of a point on the interface, t is the time, ui is the fluid velocity,

Ui is the interface velocity, p is the fluid pressure, µ is the dynamic viscosity of the

system, ρ is the density of the system, δij is the Kronecker symbol, Fi is a singular force

representing physical effects of the interface, and Gi is a finite smooth body force. For

convenience, we hereafter use both a suffix notation and a vector notation to denote a

vector. For example, the position vector of a point on an interface is denoted as Xi or
~X.

The interface is parametrized with arc length α ∈ [0, l] as Xi = Xi(α, t). We assume

that the interface is a smooth closed curve immersed in the fluid domain (i.e. Xi(0, t) =
Xi(l, t) and Xi(α, t) ∈ C2

[0,l]). The unit tangential vector ~τ and the unit normal vector

~n at the interface are

~τ = (τ1, τ2) =

(

∂X1

∂α
,
∂X2

∂α

)

, ~n = (n1, n2) = (τ2,−τ1).

We assume the density and viscosity are constant in each fluid, with values ρ1 and

µ1 in the fluid 1 and ρ2 and µ2 in the fluid 2, respectively. The system density ρ and

viscosity µ in Eq. (2.1) can be written as

ρ = ρ1H(~x, t) + ρ2(1−H(~x, t)), µ = µ1H(~x, t) + µ2(1−H(~x, t)),

where H(~x, t) is defined by

H(~x, t) =

{

1, ~x ∈ Ω1,
0, ~x ∈ Ω2.

Note that Ω1 and Ω2 above are the regions occupied by fluid 1 and fluid 2 at time t,
respectively, as shown in Fig. 1.

In general, the singular force Fi can be expressed as

Fi(~x, t) =

∫

Γ(α,t)
fi(α, t)δ(~x − ~X(α, t))dα, (2.4)

where fi is the force density. The force density in the two-fluid systems considered in

this paper takes the following form [2]

fi = γκni, (2.5)

where γ is the surface tension, ni denotes the normal to the interface, which points to

fluid 2 as shown in Fig. 1, and κ is the local curvature of the interface, being reckoned

as positive when the corresponding center of curvature lies on the side of the interface

to which ~n points.
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2.2. Jump conditions

The IIM incorporates into numerical schemes the necessary jump conditions across

the interface induced by the singular force and the discontinuous fluid density and

viscosity. Define fn = ~f · ~n and fτ = ~f · ~τ , which are the normal and tangential force

density, respectively. Denote a jump condition across the interface as

[·] := (·)fluid 2 − (·)fluid 1.

The following principal jump conditions for a two-fluid system have been derived by

Xu [37]

[ui] = 0, (2.6)
[

µ
∂ui
∂n

]

= −fτ τi − [µ]

((

∂~U

∂τ
· ~n
)

τi +

(

∂~U

∂τ
· ~τ
)

ni

)

, (2.7)

[∆ui] =

[

∂2ui
∂n2

]

+ κ

[

∂ui
∂n

]

, (2.8)

[p] = fn − 2 [µ]

(

∂~U

∂τ
· ~τ
)

, (2.9)

[

1

ρ

∂p

∂n

]

=
∂

∂τ

(

−~τ ·
[

µ

ρ

∂~u

∂n

]

+

[

µ

ρ

]

(

∂~U

∂τ
· n
))

, (2.10)

[∆p] =

[

ρ

(

∂Gi

∂xi
− ∂uj

∂xi

∂ui
∂xj

)]

, (2.11)

where κ is the local curvature. These jump conditions are called the principal jump

conditions since jump conditions of Cartesian derivatives can be derived from them.

The unit step function H(~x, t) can be solved from the Laplace equation ∆H = 0
with the following principal jump conditions across the interface

[H] = −1,

[

∂H

∂n

]

= 0, [∆H] = 0. (2.12)

3. An overview of the IIM

The immersed interface method (IIM) preserves the nonsmoothness or discontinu-

ities in a numerical solution (the velocity, the pressure or the unit step function) and

achieves second-order or higher accuracy by incorporating necessary jump conditions

into a standard finite difference scheme on a fixed Cartesian grid. A standard finite

difference scheme has its usual form if its stencil does not cross the interface. Other-

wise, it contains a jump contribution which is composed of necessary jump conditions

of the solution. To determine the form of the jump contribution, we use the generalized

Taylor expansion for a piecewise smooth function [35]. The following examples show



452 M. Uh and S. Xu

the central finite difference schemes for first- and second-order derivatives when the

solution has discontinuities on the stencil.

Let xi+1 − xi = xi − xi−1 = h > 0 and xi−1 < ξ < xi ≤ η < xi+1. Suppose that φ(x)
is smooth except at discontinuous points of the first kind, ξ and η. Then

dφ(x−i )

dx
=
φ(x−i+1)− φ(x+i−1)

2h
+O(h2)

+
1

2h

(

2
∑

n=0

−[φ(n)(ξ)]

n!
(xi−1 − ξ)n −

2
∑

n=0

[φ(n)(η)]

n!
(xi+1 − η)n

)

, (3.1)

d2φ(x−i )

dx2
=
φ(x−i+1)− 2φ(xi) + φ(x+i−1)

h2
+O(h2)

− 1

h2

(

3
∑

n=0

−[φ(n)(ξ)]

n!
(xi−1 − ξ)n +

3
∑

n=0

[φ(n)(η)]

n!
(xi+1 − η)n

)

. (3.2)

Notice that to obtain second-order accuracy in approximating the second-order

derivative above, the jump condition of the third-order derivative
[

∂3φ
∂x3

]

is needed.

However, this jump condition is difficult or costly to obtain. It was proved by Huang

and Li [11] that even though the local truncation error is reduced from O(h2) to O(h)
near an interface, the IIM can still achieve second-order accuracy in the infinity norm

in solving a Poisson equation. A second-order accuracy has also been numerically con-

firmed for the Navier-Stokes equations when only the jump conditions of the first- and

second-order Cartesian derivatives are used.

Using the systematic approach in [35], we can derive the jump conditions for all

first- and second-order Cartesian derivatives of φ if we know the following principal

jump conditions

[φ],

[

∂φ

∂n

]

, [∆φ].

In particular, the follows are spatial jump conditions in 2D obtained from the 3D results

in [35]

[

∂φ

∂x1

]

= τ1
∂[φ]

∂α
+ n1

[

∂φ

∂n

]

, (3.3)

[

∂φ

∂x2

]

= τ2
∂[φ]

∂α
+ n2

[

∂φ

∂n

]

, (3.4)

[

∂2φ

∂x21

]

= r1(τ
2
1 − τ22 ) + r2(2τ1τ2) + r3(τ

2
2 ), (3.5)

[

∂2φ

∂x1∂x2

]

= r1(2τ1τ2) + r2(τ
2
2 − τ21 ) + r3(−τ1τ2), (3.6)

[

∂2φ

∂x22

]

= r1(τ
2
2 − τ21 ) + r2(−2τ1τ2) + r3(τ

2
1 ), (3.7)
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where r1, r2 and r3 are given by

r1 =
∂2[φ]

∂α2
−
(

∂τ1
∂α

[

∂φ

∂x1

]

+
∂τ2
∂α

[

∂φ

∂x2

])

,

r2 =
∂

∂α

[

∂φ

∂n

]

−
(

∂n1

∂α

[

∂φ

∂x1

]

+
∂n2

∂α

[

∂φ

∂x2

])

,

r3 = [∆φ].

4. The IIM for the two-fluid flow

As shown in Section 3, computing the jump conditions of all the first- and second-

order Cartesian derivatives of the velocity ui and the pressure p requires the following

principal jump conditions
[

∂ui
∂n

]

,

[

∂p

∂n

]

.

For the two-fluid flow, the available principal jump conditions are
[

µ
∂ui
∂n

]

,

[

1

ρ

∂p

∂n

]

,

which are given in Eqs. (2.7) and (2.10) in Section 2.2. The available principal jump

conditions are not in the desired form due to the discontinuous fluid properties. Fur-

thermore, they involve the interface velocity ~U , as indicated in Eqs. (2.7) and (2.10).

4.1. Interpolation of the interface velocity

The interface velocity is present in some principal jump conditions given by Eqs. (2.6)-

(2.11), so it is necessary to interpolate it accurately. To obtain second-order accuracy,

we incorporate the known jump condition
[

µ∂ui
∂n

]

in the interpolation.

To derive the interpolation formula, we use the following Taylor expansions in the

normal direction of the interface

u+δn
i = Ui + δn

∂ui
∂n

∣

∣

∣

∣

fluid2

+O(δn2),

u−δn
i = Ui − δn

∂ui
∂n

∣

∣

∣

∣

fluid1

+O(δn2),

where u±δn
i (i = 1, 2) is the velocity a distance of δn away from the interface along

the normal direction on both sides of the interface, as illustrated in Fig. 2(a), and

is interpolated from surrounding Cartesian grid points using standard second-order

bilinear interpolation. Multiplying the first Taylor expansion by the viscosity µ2 and

the second by µ1 and then adding the results, we obtain the following interpolation

formula for the interface velocity

Ui =
µ1u

−δn
i + µ2u

+δn
i

µ1 + µ2
− 1

µ1 + µ2

[

µ
∂ui
∂n

]

δn +O(δn2). (4.1)
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(a) (b)

δn

δn

fluid 1fluid 2

Ui

u
+δn
i

u
−δn
i

IV

I

III

II

u
+δn
i

IV

I

III

IIhx

hy

a

b

Γ

δn

δn

fluid 1fluid 2

Ui

u
+δn
i

u
+2δn
i

Γ

Figure 2: (a) Interpolation stencil; (b) one-sided finite difference stencil.

We use the fluid velocity at the current time step to find the current interface velocity.

Since the jump condition
[

µ∂ui
∂n

]

, given by Eq. (2.7), involves the interface velocity, the

interpolation formula gives an implicit equation for Ui as

Ui =
µ1u

−δn
i + µ2u

+δn
i

µ1 + µ2
+O(δn2)

− 1

µ1 + µ2

(

−fττi − [µ]

((

∂~U

∂τ
· n
)

τi +

(

∂~U

∂τ
· τ
)

ni

))

δn. (4.2)

Please see the Appendix on how to treat this implicit equation numerically.

4.2. Computing

[

∂ui

∂n

]

To derive the jump conditions of first- and second- Cartesian derivatives of the ve-

locity, the desired jump condition is
[

∂ui
∂n

]

, but the available jump condition is
[

µ∂ui
∂n

]

.

We can compute the desired jump condition using one-sided finite difference approxi-

mations. By the definition of a jump condition, it can be shown that

[

∂ui
∂n

]

=
1

µ1

[

µ
∂ui
∂n

]

− [µ]

µ1

∂ui
∂n

∣

∣

∣

∣

2

, (4.3)

[

∂ui
∂n

]

=
1

µ2

[

µ
∂ui
∂n

]

− [µ]

µ2

∂ui
∂n

∣

∣

∣

∣

1

. (4.4)

We can approximate the one-sided derivative ∂ui
∂n

∣

∣

fluid1
or ∂ui

∂n

∣

∣

fluid2
using a one-sided

finite difference approximation with a stencil shown Fig. 2(b). Eqs. (4.3) and (4.4)

imply that the error in the one-sided finite difference approximations is multiplied by a

factor
[µ]
µ1

or
[µ]
µ2

. We therefore choose the formula that has the smaller factor.
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4.3. Computing

[

∂p

∂n

]

Taking the divergence of the momentum equation, Eq. (2.1), we have the Poisson

equation for p∗ = p/ρ subject to the known principal jump conditions:

∆p∗ = sp, (4.5)

[ρp∗] = [p],

[

∂p∗

∂n

]

=

[

1

ρ

∂p

∂n

]

, [∆p∗] = [sp], (4.6)

The right hand side sp is

sp = −∂D

∂t
− 2∇ · (~uD) +

µ

ρ
∆D − 2

(

∂u1
∂x2

∂u2
∂x1

− ∂u1
∂x1

∂u2
∂x2

)

+∇ · ~G, (4.7)

where D = ∇ · ~u (D = 0 theoretically) is kept in sp to better enforce the divergence-

free condition numerically. We apply the augmented variable approach [19] to com-

pute p∗ = p/ρ using the known principal jump conditions [ρp∗], [∂p
∗

∂n
], and [∆p∗]. We

compute p∗ instead of p, which turns out to make our algorithm more stable.

If we know [p∗] in addition to
[

∂p∗

∂n

]

and [∆p∗], we can derive all the jump conditions

of the first- and second-order Cartesian derivatives of p∗ (see Section 3) [35] and apply

the IIM to compute p∗. In the augmented variable approach, the desired jump condition

[p∗] is set as an augmented variable and computed together with p∗ in an iterative

manner until the available jump condition [ρp∗] = [p] listed in Eq. (4.6) is satisfied.

Below are the details.

Let ηe be the vector of the exact values of [p∗] at the discrete points representing

the interface. Let ψe be the vector of the available principal jump condition [p] = [ρp∗].
Let η be an arbitrary guess of the exact jump condition ηe. Using the guess η, the

discretized Poisson equation, Eq. (4.5), leads to the linear system

Lp∗ + Cη = b, (4.8)

where the matrix L corresponds to the discrete Laplacian, p∗ denotes the vector of the

values of p∗ on the Cartesian grid, the matrix C accounts for the jump contribution due

to η, and the vector b involves the discretized right-hand side sp and the known jump

conditions
[

∂p∗

∂n

]

and [∆p∗]. For the guess η, we can therefore solve Eq. (4.8) for p∗ as

p∗ = L−1(b− Cη). (4.9)

Using the guess η and the computed p∗, we can obtain the values of [ρp∗] at the

discrete points on the interface, denoted as ψ, from one of the following formulas:

[ρp∗] = ρ2[p
∗]− [ρ] p∗|1 , if ρ2 > ρ1, (4.10)

[ρp∗] = ρ1[p
∗]− [ρ] p∗|2 , if ρ2 < ρ1, (4.11)
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where p∗|1 or p∗|2 is extrapolated from the computed p∗. These formulas imply that ψ

can be written as

ψ = Bη + Ep∗, (4.12)

where B = ρ1I or B = ρ2I (I is the identity matrix), and E is the extrapolation matrix.

Combining Eqs. (4.9) and (4.12), we have

Mη = ψ − EL−1b, (4.13)

where M = B−EL−1C is the Schur complement. Let ψ0 correspond to the zero guess

η = 0. From Eq. (4.13), we then have

ψ0 = BL−1b,

and

Mη = ψ −ψ0. (4.14)

In particular the exact jump condition ηe can be found by solving the Schur complement

linear system

Mηe = ψe −ψ0.

We use GMRES to solve the system because it does not need to form the matrix M
explicitly. It only needs to compute the matrix vector product Mη for a given guess

η. The result of the matrix product is just the right hand side of Eq. (4.14). In each

GMRES iteration we need to solve the discrete Poisson equation. We use FFT to do so,

which results in O(N lnN) flops in each iteration, where N is the number of Cartesian

grid points.

Note that we can also use the iterative two-fluid pressure solver proposed by Xu [38]

to compute the pressure p∗ using the available jump conditions.

5. Implementation

In this section, we describe the implementation of the IIM for solving the two-fluid

flow. It is very similar to the implementation of the IIM for solving fluid-solid interaction

in [36] (in fact, we modified our fluid-solid interaction code to produce our two-fluid

flow code). Hereafter,we use the notations ~u = (u, v) and ~x = (x, y) instead of (u1, u2)
and (x1, x2) to be consistent with [36].

5.1. Spatial discretization

We define the discrete flow variables on a staggered Marker-and-Cell (MAC) grid,

as shown in Fig. 3(a). The pressure p is defined at the center of the cell (i, j) (i ∈
{1, 2, · · · , Nx} and j ∈ {1, 2, · · · , Ny}). The velocity components u and v are defined at

the edge centers (I, j) and (i, J), respectively, where (I, J) corresponds to (i+ 1
2 , j+

1
2).

The dimensions of the cell are ∆x and ∆y.
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(a) (b)

vi,J

vi,J−1

uI−1,j uI,j

pi,j

∆x

∆y

fluid 1

fluid 2

(Xm, Ym)

Figure 3: (a) MAC grid with staggered arrangement of flow variables; (b) Lagrangian markers (dots) and
irregular points (x-symbols) on the interface.

We track the interface using Ns discrete Lagrangian markers (Xm, Ym) which cor-

respond to m∆α (m ∈ {0, 1, 2, · · · , Ns}), as shown in Fig. 3(b). We use periodic cu-

bic splines to represent the closed interface. We calculate geometric quantities and

jump conditions at the Lagrangian markers and interpolate the jump conditions at the

intersections between grid lines and the interface (the x-symbols in Fig. 3(b)). We

re-parametrize the interface every time step such that the Lagrangian markers are uni-

formly distributed along the interface.

Based on Eqs. (3.1) and (3.2), we can discretize Eq. (4.5) as the following

p∗i+1,j − 2p∗i,j + p∗i−1,j

∆x2
+

p∗i,j+1 − 2p∗i,j + p∗i,j−1

∆y2

=Zi,j − 2

(

ui,J − ui,J−1

∆y

vI,j − vI−1,j

∆x
− uI,j − uI−1,j

∆x

vi,J − vi,J−1

∆y

)

+
Gx

I,j −Gx
I−1,j

∆x
+

Gy
i,J −Gy

i,J−1

∆y
+ Cp

i,j, (5.1)

where

Zi,j =

(

∂D

∂t

)

i,j

− 2

(

uI,jDI,j − uI−1,jDI−1,j

∆x
+

vi,JDi,J − vi,J−1Di,J−1

∆y

)

+
µij

ρij

(

Di+1,j − 2Di,j +Di−1,j

∆x2
+

Di,j+1 − 2Di,j +Di,j−1

∆y2

)

and Cp
i,j corresponds to the term due to the jump contribution from each finite differ-

ence approximation of the derivatives in Eq. (5.1). The time derivative ∂D
∂t

is approx-

imated by assuming divergence free condition at the next time level. The divergence

Di,j is computed as

Di,j =
uI,j − uI−1,j

∆x
+

vi,J − vi,J−1

∆y
+ CD

i,j,
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where the jump contribution is denoted as CD
i,j. The jump contributions Cp

i,i and CD
i,j

are nonzero only if the stencil of a finite difference approximation has irregular points.

Similarly, we can discretize Eq. (2.1) as

(

∂u

∂t

)

I,j

=Cu
I,j −

p∗i+1,j − p∗i,j
∆x

−
(

u2i+1,j − u2i,j
∆x

+
(uv)I,J − (uv)I,J−1

∆y

)

+
µI,j

ρI,j

(

uI+1,j − 2uI,j + uI−1,j

∆x2
+

uI,j+1 − 2uI,j + uI,j−1

∆y2

)

, (5.2)

(

∂v

∂t

)

i,J

=Cv
i,J −

p∗i,j+1 − p∗i,j
∆y

−
(

(uv)I,J − (uv)I−1,J

∆x
+

v2i+1,j − v2i,j
∆y

)

+
µi,J

ρi,J

(

vi+1,J − 2vi,J + ui−1,J

∆x2
+

vi,J+1 − 2vi,J + vi,J−1

∆y2

)

, (5.3)

where Cu
I,j, C

v
i,J are jump contributions.

5.2. Time integration

The discretized momentum equation and the kinematic equation for the interface

can be written as

du

dt
= R(u,X, p), (5.4)

dX

dt
= U(u,X), (5.5)

where u is the velocity at all the grid points and X is the coordinates of all the La-

grangian markers. We currently employ an explicit fourth-order Runge-Kutta scheme

for the time integration of the above two equations. Explicit high-order time integra-

tion schemes are appropriate at moderate Reynolds numbers, as shown by Johnston

and Liu [13,14] and Liu [3]. We thus have

u1 = un, X1 = Xn,

u2 = un + ∆t
2 R(u1,X1, p1), X2 = Xn + ∆t

2 U(u1,X1),

u3 = un + ∆t
2 R(u2,X2, p2), X3 = Xn + ∆t

2 U(u2,X2),

u4 = un +∆tR(u3,X3, p3), X4 = Xn +∆tU(u3,X3),

and

un+1 = un +
∆t

6
(R(u1,X1, p1) + 2R(u2,X2, p2) + 2R(u3,X3, p3) +R(u4,X4, p4)) ,

Xn+1 = Xn +
∆t

6
(U(u1,X1) + 2U(u2,X2) + 2U(u3,X3) +U(u4,X4)) .
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The pressure pk (k = 1, 2, 3, 4) above is computed by the augmented variable approach

described in Section 4.3 using the approximations uk and Xk at the current time sub-

step. Since the velocity update scheme is explicit, we enforce the following Courant-

Friedrichs-Lewy (CFL) condition and the viscous time step restriction [15,26]

∆t <
1

|u|
max

∆x
+

|v|
max

∆y

and ∆t <
1

2
(

1
∆x2 + 1

∆y2

) min

{

ρ1
µ1

,
ρ2
µ2

}

. (5.6)

5.3. Algorithm

We describe the algorithm in our method using the flow chart in Fig. 4.

Start

Input of calculation

Set initial value to flow field: u
0

Initial interface

Mesh calculation (MAC grid)

parameters

parametrization ~X0

End

Solve for pressure pn+ 1

2 :
Augmented or Iterative method

Solve for velocities u
n+1

New interface position ~Xn+1

Boundary conditions

Terminate?

Output of velocity

YES

Find ρ and µ

using the step function H

Available principal jump

Interface-Gridline Intersections
(Irregular points)

Jump contributions of u

(velocity Cartesian jumps)

Interface velocity ~Un Interface velocity ~Un+1

Increment of
time step

and pressure

conditions

NO

Figure 4: The flow chart of the algorithm.
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6. Numerical results

In this section, we numerically test the accuracy and robustness of our method

by simulating some canonical two-fluid flows. The non-dimensional parameters and

results in each simulation are based on some reference density scale ρ0, viscosity scale

µ0, length scale L, velocity scale U, and time scale L/U.

6.1. Example 1: Circular flow

In this example, we consider two fluids with different viscosity and density across a

circular interface located at the radius r = 0.5 in the domain Ω = [−1, 1] × [−1, 1], as

shown in Fig. 5.

Ω

R

S

µ1

ρ1

µ2

ρ2

ω

Figure 5: Geometry of a circular two-fluid flow.

We prescribe the angular velocity ω = 1 at a circumference located at the radius

R = 3 (outside the computational domain). The steady state of the flow is in rigid

rotation:

u(x, y) = −ωy,

v(x, y) = ωx, (6.1)

p(x, y) =
1

2
ρω2

(

x2 + y2
)

+ c,

where c is an arbitrary constant. We set the Dirichlet boundary conditions for the veloc-

ity and the Neumann boundary conditions for the pressure at the domain boundaries

according to the analytical steady state solution. The steady state solution is evolved

out from the initial zero velocity and pressure fields. The jump conditions are calcu-

lated using the formulas given in Eqs. (2.6)-(2.11). We compare our numerical steady

state with the analytical one.

We first take a look at solutions obtained with ρ1 = 1, ρ2 = 2, µ1 = 1, µ2 = 2 at time

t = 2 using Nx = Ny = N , Ns = 2N , where N can take different values for different

spatial resolutions. The convergence test using N = 32, 64, 128, 256 is given in Table 1,

indicating about second order accuracy in both the velocity and the pressure.
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Table 1: Convergence test with the augmented variable approach for p∗: ρ1 = 1, ρ2 = 2, µ1 = 1, µ2 = 2.

N ||u− ue||∞ Order ||v − ve||∞ Order ||p∗ − p∗
e
||∞ Order

32 3.46× 10−4 - 3.46× 10−4 - 3.96× 10−3 -

64 8.82× 10−5 1.97 8.82× 10−5 1.97 1.10× 10−3 1.85

128 2.20× 10−5 1.99 2.20× 10−5 1.99 4.11× 10−4 1.42

256 5.30× 10−6 2.01 5.30× 10−6 2.01 8.63× 10−5 2.25

Table 2: Convergence test for the circular flow using different densities ratios ρ2/ρ1 and same Reynolds
number Re1 = 1, Re2 = 2.

ρ2/ρ1 = 10 ρ2/ρ1 = 100 ρ2/ρ1 = 1000

N ||u− ue||∞ ni Order ||u− ue||∞ ni Order ||u− ue||∞ ni Order

32 3.84× 10−3 2 - 6.24× 10−3 4 - 6.54× 10−3 5 -

64 9.61× 10−3 2 2.00 1.54× 10−3 4 2.02 1.61× 10−3 5 2.02

128 2.39× 10−5 2 2.01 3.81× 10−4 3 2.02 3.99× 10−4 5 2.02

For small density ratios (1 ≤ ρ2/ρ1 < 10), computing either p or p∗ by the aug-

mented variable approach does not affect the stability of the method, but this is not

the case if density ratios are large. The method using p becomes unstable, while the

method using p∗ can still maintain stability. The improvement in the stability may be

attributed to the more accurate calculation of the pressure gradient 1
ρ

∂p
∂xi

= ∂p∗

∂xi
in the

Navier-Stokes equations with the method using p∗, even though the error in the pres-

sure p = ρp∗ can be larger than the method using p. Table 2 compares the errors in u
and the number ni of GMRES iterations at different densities ratios for the method us-

ing p∗. In general, the Poisson solver requires more GMRES iterations for large density

ratios, and the method is still second order.

6.2. Example 2: Static bubble

In the second test, we consider a circular bubble in static equilibrium without the

gravity. This example is used to verify the calculation of surface tension and the possible

presence of parasitic currents. The surface tension is introduced in the simulations by

the singular force fi = γκni, where γ is the surface tension coefficient. Theoretically,

in the absence of external forces and initial velocity, the velocity field should remain

zero throughout the domain and the pressure rises from a constant value outside the

bubble to a different constant value inside the bubble with the jump [p] = γκ. In the

simulation, the computational domain is the square [−1, 1] × [−1, 1]; and the bubble

has the center (0, 0) and the radius r = 0.5. The no-slip condition is imposed on all the

domain boundaries.

Fig. 6 shows the velocity component u and the pressure p on a 64 × 64 grid at

time t = 1 with ρ2/ρ1 = 1000/1, µ2/µ1 = 100/1 and γ = 0.05, indicating negligible

parasitic currents. We also compare the computed pressure jumps [p] with the analytic

value [p]e = 2γ at t = 1 for various parameter combinations. The relative errors in the

pressure jumps in all cases are less than 0.005%.
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Figure 6: Velocity component u and pressure p for a static bubble in a fluid with ρ2/ρ1 = 1000, µ2/µ1 = 100,
γ = 0.05.

6.3. Example 3: Oscillating bubble

In the third example, we consider the relaxation of a non-spherical bubble toward

its static equilibrium shape to test the conservation of the bubble area. The relaxation

is driven by the surface tension. The initial bubble shape is a rounded plate as shown in

Fig. 7, and the fluid is initially at rest. The computational domain is Ω = [−1, 1]×[−1, 1].
No-slip conditions are applied at all the domain boundaries. The gravitational and

other external forces are absent. The dimensionless parameters used in the simulation

were set to Re = 50, Bo = 10, ρ1 = 10, ρ2 = 1 and µ1 = 10, µ2 = 1, where Re = ρ0LU
µ0

,

and Bo = ρ0U
2L
γ

(the reference velocity U is determined based on the Bond number Bo
and the surface tension coefficient γ).

Fig. 7 shows the bubble shape and the velocity field at different time. At time t = 3,

the bubble is almost circular. The decay of the bubble oscillation is apparent in the

variation of the total fluid kinetic energy K = 1
2

∫

Ω ρ~u · ~udA shown in Fig. 8(a). The

relative change of bubble area versus time is plot in Fig. 8(b). The maximum relative

error in the bubble area on the considered non-dimensional time interval [0, 4] is about

1%.

We estimate the convergence rate by comparing the maximum difference between

numerical solutions at successive grid sizes. We compute the solutions at four different

resolutions with Ni×Ni (i = 1, 2, 3, 4) Cartesian grid points and Nsi = 2Ni Lagrangian

markers, and let N1 = 32, N2 = 64, N3 = 128, N4 = 256. The order of accuracy can be

estimated from

order = − log (Ei+1(q)/Ei(q))

log (Ni+1/Ni)
, (6.2)

where Ei(q) =
∥

∥qNi − qNi+1

∥

∥

∞ denotes the max norm of the error in the variable q at

the grid level Ni. We set Re = 50, Bo = 1, ρ2/ρ1 = 10, µ2/µ1 = 10 and calculate the
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Figure 7: Bubble shape and velocity field at different time as a bubble is relaxing to its equilibrium with
Re = 50, Bo = 10, ρ2/ρ1 = 10, µ2/µ1 = 10.
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Figure 8: A relaxing bubble with Re = 50, Bo = 10, ρ2/ρ1 = 10, µ2/µ1 = 10: (a) Fluid kinetic energy
versus time and (b) relative change of bubble area versus time.

errors at t = 1. The results are displayed in Table 3, indicating also near second order

accuracy.

To validate our method, we also compare our results with those by Olsson et al.

[22], which were obtained by a finite element discretization and a conservative level
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Figure 9: Comparison of the bubble shape at (a) t = 0, (b) t = 3, (c) t = 5, (d) t = 7, (e) t = 10 for an
oscillating bubble with Re = 1, Bo = 1, ρ1 = 10 ρ2 = 1, µ1 = 10 µ1 = 1. Left: Our method, the IIM;
Right: the Finite Element Method [22].
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Table 3: Convergence analysis for a relaxing bubble with Re = 50, Bo = 10, ρ2/ρ1 = 10, µ2/µ1 = 10.

u order v order

E1 4.78× 10−3 - 3.89× 10−3 -

E2 1.42× 10−3 1.75 1.37× 10−3 1.50

E3 4.29× 10−4 1.73 3.85× 10−4 1.84

set method. The test case has the non-dimensional parameters Re = 1, Bo = 1,

ρ1 = 10, ρ2 = 1 and µ1 = 10, µ2 = 1. The domain is [−1, 1] × [−1, 1]; and the grid

size is 80 × 80. The initial shape of the bubble was composed by a 1 × 0.3 rectangle

and two half circles of diameter 0.3. Fig. 9 compares the bubble evolution between our

simulation and the simulation by Olsson et al. [22]. The comparison of the bubble area

variation is given in Fig. 10. The area loss is less than 0.16% in our simulation in the

time interval [0, 10].

(a) (b)

0 2 4 6 8 10
0.366
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time

A
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a 

 

 

80 × 80

Figure 10: Comparison of the area conservation: (a) our method, the IIM; (b) the Finite Element Method
[22].

6.4. Example 4: Rising bubble

In the final test, we simulate a bubble rising in an initially quiescent fluid under

buoyancy. The buoyant force is given as ~G = ρ~g in Eq. (2.1), where ρ is the piecewise

constant density of the system, and ~g is the gravitational acceleration. We chose the

reference scales for this example as L = d, U =
√
gd, ρ0 = ρ2, µ0 = µ2, where d is

the effective diameter of a bubble, and g = |~g|. The two-fluid flow due to a rising

bubble can be characterized by four non-dimensional parameters, namely the density

ratio rρ = ρ2/ρ1, the viscosity ratio rµ = µ2/µ1, the Reynolds number Re =
ρ0

√
gd3/2

µ
,

and the Bond number Bo = ρgd2

γ
.

Since an analytic solution is not available for this example, we estimate the order

of accuracy using a grid refinement study as the example of an oscillating bubble in
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Table 4: Convergence test for a rising bubble at t = 1 with Bo = 1, Re = 10, rρ = 10, rµ = 10.

u order v order

E1 5.35× 10−2 - 3.89× 10−2 -

E2 1.50× 10−2 1.83 1.34× 10−2 1.53

E3 4.30× 10−3 1.81 3.20× 10−3 2.07

−1 0 1
0

1

2

3

4

IIM

Figure 11: Comparison of the bubble evolution at Bo = 10, Re2 = 35, ρ2/ρ1 = 10, µ2/µ1 = 10. (a) Our
method, the IIM; (b) the Finite Element/Level Set Method [12].

Section 6.3. We use four grid resolutions corresponding to N1 = 32, N2 = 64, N3 =
128, N4 = 256. In the present convergence test, the domain is [−1, 1] × [0, 4] and the

parameters are Bo = 1, Re2 = 10, rρ = 10, rµ = 10. The results are displayed in Table

4, indicating near second order accuracy again.

To validate our method, we compare our simulation results with those by Hys-

ing [12], which were obtained by combining the finite element method and the level

set method. The test case has non-dimensional parameters rρ = 10, rµ = 10, Re = 35,

Bo = 10, and dimensional parameters ρ0 = ρ2 = 1000[kg/m3 ], µ0 = µ2 = 10[kg/(m·s)],
g = 0.98[m/s2], γ = 24.5[lg/s2] and d = 0.5[m]. The rectangular domain is [−1, 1] ×
[0, 4], and the initial interface is circular with the radius d/2. Besides the visual com-

parison of the bubble shape, we also use the centroid, circularity and rise velocity of

the bubble for quantitative comparison. The results are given in Fig. 12 and they agree

very well with the ones by Hysing [12].

The simulated terminal shapes of a single rising bubble at a range of Reynolds and

Bond numbers are shown in Table 5. The density and viscosity ratios are kept to be
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Figure 12: Comparison of the center of mass, circularity and rise velocity of a rising bubble: (a) our method,
the IIM; (b) the Finite Element/Level Set Method [12].

rρ = 1000 and rµ = 100 in these simulations. The results indicate that larger Reynolds

numbers and Bond numbers cause larger deformation of the bubble [10]. We note that

the method has numerical instability with high Reynolds numbers or Bond numbers in

the table. This is the subject of future research.
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Table 5: Bubble shapes at time t = 5 at different Reynolds and Bond numbers for rρ = 1000 and rµ = 100.
x-mark: The corresponding simulation is unstable.

Bo

Re

0.5 1 5 10 20 50 100

1

5 x

10 x

20 x

50 x

100 x x x x

7. Conclusions

In this paper, we develop the immersed interface method (IIM) for simulating a

two-fluid flow. The IIM uses a fixed Cartesian grid to solve the flow. The effect of

the two-fluid interface is captured as jump contributions in a numerical scheme. The

jump contributions involve the jump conditions of all the first-order and second-order

Cartesian derivatives of the velocity and pressure. These Cartesian jump conditions

can be computed from the analytical principal jump conditions. In particular, we have

employed an interpolation formula to interpolate the interface velocity, one-sided finite

difference approximations to compute the Cartesian jump conditions for the velocity,

and the augmented variable approach to compute the Cartesian jump conditions for

the pressure. We implement the IIM with the MAC scheme and explicitly integrate

the discrete momentum equations in time using a Runge-Kutta method. We track the

interface using Lagrangian markers that are connected by periodic cubic splines.

We have conducted several numerical experiments to investigate the performance

of our method. The results have demonstrated that the method: (1) is of second-order

accuracy in the infinity norm; (2) generates very few parasitic spurious currents in a

flow; (3) conserves mass in a non-penetration closed interface; (4) works well for large

ranges of density ratio (up to 1000) and viscosity ratio (up to 1000) in the parameter

region 1 < Re < 50 and 0.5 < Bo < 50; and (5) suffers from numerical instability

for a relatively large Reynolds number (Re > 100) or Bond number (Bo > 50) in

the dynamic problem of a rising bubble. In the future, we will improve the method

to handle large deformation and topological change of an interface, which may relate

to the observed numerical instability. We are currently working on the change of the
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interface tracking to the interface capturing by the level set, and the employment of

implicit schemes to improve numerical stability.
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Appendix: Approximation of the interface velocity

The interpolation formula for Ui gives an implicit equation for Ui as

Ui =
µ1u

−δn
i + µ2u

+δn
i

µ1 + µ2
+O(δn2)

− 1

µ1 + µ2

(

−fττi − [µ]

((

∂~U

∂τ
· n
)

τi +

(

∂~U

∂τ
· τ
)

ni

))

δn. (A.1)

Let ~Um = (Um, V m) be interface velocity at the Lagrangian marker m. Assuming

fτ = 0, the above equation can be broken into

Um = Um
initial +

[µ]

µ1 + µ2

((

∂Um

∂τ
n1 +

∂V m

∂τ
n2

)

τ1 +

(

∂Um

∂τ
τ1 +

∂V m

∂τ
τ2

)

n1

)

,

V m = V m
initial +

[µ]

µ1 + µ2

((

∂Um

∂τ
n1 +

∂V m

∂τ
n2

)

τ2 +

(

∂Um

∂τ
τ1 +

∂V m

∂τ
τ2

)

n2

)

,

where

Um
initial =

µ1

(

u−δn
1

)m

+ µ2

(

u+δn
1

)m

µ1 + µ2
,

V m
initial =

µ1

(

u−δn
2

)m

+ µ2

(

u+δn
2

)m

µ1 + µ2
.

Using the fact that
∂Um

∂τ
=

∂Um

∂α
,

where α is the arc length parameter. We obtain the following system of ODEs
(

Um

V m

)

+

(

cm1 cm2
cm2 cm3

)

∂

∂α

(

Um

V m

)

=

(

Um
initial

V m
initial

)

, (A.2)

where

cm1 = − [µ]

µ1 + µ2
(2n1τ1)δn,

cm2 = − [µ]

µ1 + µ2
(n2τ1 + n1τ2)δn,

cm3 = − [µ]

µ1 + µ2
(2n2τ2)δn.
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Using central finite differences to approximate the derivatives,

∂Um

∂α
=

1

2∆α

(

Um+1 − Um−1
)

+O(∆α2),

∂V m

∂α
=

1

2∆α

(

V m+1 − V m−1
)

+O(∆α2),

we obtain

(

−km1 Um−1 + Um + km1 Um+1
)

+
(

−km2 V m−1 + km2 V m+1
)

= Um
initial,

(

−km2 Um−1 + km2 Um+1
)

+
(

−km3 V m−1 + V m + km3 V m+1
)

= V m
initial,

where

km1 =
cm1
2∆α

, km2 =
cm2
2∆α

, km3 =
cm3
2∆α

.

Let Ns be the number of Lagrangian markers and m = 0, · · · , Ns − 1. Define

U = [U0, U1, U2, · · · , UNs−1]T ,

V = [V 0, V 1, V 2, · · · , V Ns−1]T .

Then we have the following linear system for the interface velocity

A

(

U
V

)

=

(

Uinitial

Vinitial

)

,
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