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Abstract In two-space-dimensional case we get the sharp lower bound of the
life-span of classical solutions to the Canchy problem with small initial data for fully
nonlinear wave equations of the form Ouw = F{u, Du, D;Du} in which F(X) = O(|3]*+2)
with @ = 2 in a neighbourhood of A = 0. The cases o = 1 and & > 3 have been
considered respectively in [1] and [2].
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1. Introduction

Consider the Cauchy problem for fully nonlinear wave equations

Qu = F(u, Du, D, Du) (1.1)
t=0:u=cg¢(z),u = ez (1.2)

g & .8
Qirigms 5);3—;? (1.3)

is the wave operator,

DT:(a -i)1 ﬂ:[ii--- ﬂ) (1.4)

_—
331 J IEIEﬂ.

P, ¥ € CFF(R") and ¢ > 0 is a small parameter,
© I

X = (A;(‘}"E}'II = D!]-!”-:In:-l["}"l:_i:Jﬁ '113: D:-]-:"':-n:i-l_j :_} 1} (15}

-

Suppose that in a neighbourhood of A = 0, say, for |A| < 1, the nonlinear term F — F(X)
in (1.1) is a sufficiently smooth function satisfying

F(}) = O(JA]" ) (1.6)

where o is an inteper > 1.
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Our aim is to study the life-span of classical solution to (1.1)=(1.2) for n = 2 and
all imtegers a > 1. By definition, the life-span T{e) = supr for all T > 0 such that
there exists a classical solution to (1.1)-(1.2) on 0 < ¢t < 1.

In the previous papers [1] and [2] we have respectively considered the cases o = 1
and « > 3, The result is the following:

T(e)= 400 ifn=2anda>3 (1.7)
while if nn = 2 and a =1,
[ be(e)
Fle) 2 { be=l, if ij Y(z)de = 0 (1.8)
Loy i G2 R0 0:0)E0

where b is a positive constant and e(e) is defined by
e*e*(e)In(1 + e(g)) = 1 (1.9)
In this paper we will consider the remainder case n = 2 and a = 2 and prove
) b9
T'(e) > (1.10)
exp{ac=?}, if 82 F(0,0,0) =0 (8 = 3,4)

where a, b are positive constants. For this purpase, some refined estimates are needed.
All results mentioned above are sharp due to H.Lindblad [3], Zhou Yi [4]-[5] etc.
In order to prove the desired result, by differentiation, is suffices to consider the
Cauchy problem for the following general kind of quasilinear wave equations

2 2
Ou =" 3 bij(u, Du)uga; +2 Y aoj{u, Du)uss, + Fo(u, Du) (1.11)
i,7=1 a=1
t=0: wuw=ced(z), u =e(z) (1.12)
2 0 &

where ¢ = (2, 2;), Ou = £ > 0 is a small parameter,

gtz O3 = g
¢, ¥ € Cg°(R*) (1.13)

with
supp 19, %} € { ¢ | |z| £ p} (p > 0 constant) (1.14)
and for |A| < 1, where i__z'{,l; (Ad)yi = 0,1,2), b;5(A), ap;(A) and Fp(}) are sufficiently

smooth functions satisfying

bij(A) = bu(A) (4,5 =1,2) (1.15)
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bi;(A), a0;(A) = O(A) (4,5 =1,2) (1.16)
Fo(A) = O(IAP) (1.17)

and 3
2 ai(N&E 2 molél’, Ve € R? (1.18)

where my is a positive constant and
aii(A) = &j + bij(A) (1.19)

where §;; 1s the Kronecker delta.
We point ont that the condition

8iF(0,0,0)=0 (8 =3,4) (1.20)
implies
FF(0,0) =0 (8 = 3,4) (1.21)

In Section 2 we cite some estimates from [1]-[2], [6] and prove some new estimates
on the solution to two-space-dimensional wave equations. Then we prove in a direct
and simple manner the main result (1.10) for the general case and for the special case
88F(0,0,0)=0 (8 = 3,4) in Section 3 and Section 4 respectively.

2. Preliminaries

Following 5.Klainerman [7], introduce a set of partial differential operators

L= [LU;{ﬂr:}tﬂ' = I::]1- 1: S '.l‘ﬂ; {nﬁ.ﬁ}yﬂrb = D! 1:‘ £ 1“} {E']‘}
where
fo=tdh + 2161+ + 2.8, - (2.2)
7, o _
vy *h_ﬁ'm; (f=1,---,1) (2.3)
ﬂ(i[:- it ﬂuﬂh - :-:.[:-ﬂﬂl ({l:b — ﬂ:- ]-: o 1”} {24}
m which
Eo =1 {25}
and for any integer N > 0, define
e, Mewe = 3 IT*u(t, Mpp gryy V2> 0 (26)
| <N

for any function w = wu(t,2) such that all norms appearing on the right-hand side are
bounded, where 1 < p < +oo, kb = (ky, -+, k) is a multi-index, || = by +---+ k,, o
is the number of partial differential operators in I' : I' = (I'y, .-+, T, ) and

TE= k...t (2.7)

- SRRSO
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In this paper we only consider the case n = 2, however, the following Lemmas
2.1-2.3 are still valid for any space dimension n > 2,
It is easy to prove the following three lemmas.

Lemma 2.1 For any multi-indez k = (k1,--, k- ) we have
[0, P 20N GapThe (2.8)
HES L
ard _ _
(0, 7%= Y BuI'D= Y BuDI* (a=0,1,---,n) (2.9)
li]<[k]-1 il <[k[-1
where [ ,] stands for the Poisson’s bracket, 1+ = (i1,---,i,) are multi-indices, O is the

wave operator, D is defined by (1.4) and Ay;, By and By; are constants,
Lemma 2.2  For any non-neqative integer N we have

| Duft, Wewe £ Y DT u(2, )
KN

rr R S €| Dult, ) ¥t =0  (2.10)

where 1 < p < +oo, ¢ and C are positive constants independent of L.
Lemma 2.3 Suppose that G = Glw) is a sufficiently smooth function of w =
(wy, -, wpr ) satisfying that if
lw| < vy (2.11)
then
Glw) = O(|w|?) (2.12)

where vy 18 a posttive constant and 8 1s an integer > 1. For any given integer N = (),
if a vector function w = w(t, ) satisfies

[ (2, )] <w, ¥tz0 (2.13)

r &0

where | | stands for the integer part of a real number, then for any multi-indez k with
|k| < N, we have

B
IT*G{w(t, )| < C(w) Z H P!J'w;j(t,mﬂ (2.14)
Pel+--+ Tal<le] 5=1
Li; <

fi=L,---.3

where Cug) is a positive constant depending on g,
Lemma 2.4 Suppose thai n = 2. Let u = u(t,z) be a sufficiently smooth function
with compact support in the variable ¢ for any fized t 2 0. Then for any integer N = ()

we have
ni—1

||u{t= '}HF,N.D& <O+ t:]_?_’”u{t, ',l:'”r,NH%]HJﬂ ¥t =0 [2'15}

- and

TE=

(e, ey < C(L+8) 7 O

D lu(t, Mewvszprg V620 (2.16)
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where 1 < p << 400, p < ¢ < +oo and O 5 a positive constant.
Proof By S5.Klainerman [10] we have (2.15). Noting that for any ¢ > p

r 24

lutt, Mlirwa < Cliults Moo lllts N (217)

we get (2.16) immediately.
Lemma 2.5 Suppose that n = 2. Let w" = w¥(t,2) be the solution to the Cauchy

problem
Ow” =0 {2'13)
t=0:u° = ¢(z), w’ = (z) (2.19)
where
$, 9 € C(R?) (2.20)
such that
supp {¢,%} € { = | [z| < p} (2.21)

where p is a positive constant. Then

”wn(tr }“L?[Rj] E c.f* 'I-" 3-“{2 + t](”‘ﬂlw:‘! [RI'] + |E¢||I"T”-'{R?;I) [EEE]

and for any fived p with 2 < p < 400,

_p=2
l°(t M g2y S Coll+ 07 % (18l ooy + 1¥llgs g7y)  (2:23)

TMOTE0UET,
10, M g g2y S €A+ (UBllos 2y + Wl g2y)  (2:29)

where €, (depending on p) and C are positive constants independent of t,
Proof For the proof of (2.22) and (2.23), see [2]. The proof of (2.24) can be found
‘in §. Klainerman [8].
Lemma 2.6 Suppose that n = 2. Let w = w(t,z) be the solution to the wave
equation
Dw = f(t,z) (2.25)

with the zero initial data, where f(t,2) has compact support in the variable = for any
fizred t > 0. Then

1 + =% T ¥
(L + )2 llwlts N poo g2y S € 3 L (1+ 7)Y 0 f(r, )l g2y Y220 (2.26)
<1

where C' s a posttive constant.

Proof See [2].
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Lemma 2.7 Suppose that n = 2. Let w = w(t,z) be the solution te the wave
equation (2.25) with the zero initial data. Then, for any p with 1 < p < 2 we have

2 oo L9t
oot M ey < CA+07 [IFE N geydn V20 (227)

where (' 15 a positive constant.

Proof See [1].

Remark In [1] we only used Lemma 2.7 in the case p = 1, however, we do need
Lemma 2.7 in the case 1 < p < 2 in this paper.

Lemma 2.8 Suppose that n = 2. Let w = w(t,z) be the solution to the wave
equation

0w = |fi fafalt, ) (2.28)
with the zero initial data. Suppose furthermore that fi, f2 and fi have compact support

ineluded in { z | |z| < t+ p} (p > 0 constant) in the variable = for any fized ¢ > 0.
Then for any real number v we have

e, ) ll s g2, < C(L+ )7
1

" 2
g fu (1 + 7Y E T f T £ M ey @)

[I]+]J]<1

L2 ,
(L (L+ 1) f2 f3(, quij}drj”z (2.29)

where O is a positive constant depending on p.
Proof Let

2y i 22 4 |z |2yr/4
{ q(t.z) = filt,z)(1 4 & + |=]7) (2.30)

ga(t,z) = fa(t,z)(1 4 £ + |z|2) /4

and E = E(t,z) be the forward fundamental solution of the wave operator. Then, by
the positivity of E and Hélder's inequality, we have

lw(t,z)| = E * |g1 fags](t, z)
< (B * (g2 £21)(t, 2)) 2 (E * (g3l f2])(8, 2)) /2 (2.31)

50

oot Mgseay < |B @D oo g | B+ @D 5 (232)

)

where “+" stands for the convolution.
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: i 3
By Lemuna 2.7 {in which we take p = E} and noting the hypothesis on the compact
support of fi(i = 1,2,3), we get
|2+ 631 2D s,

LE[Rj

i
< O+ [ lg3falr, My g dr

<O+ 0 [ Aty A My g dr (2.33)

On the other hand, noting that
IC(L + & +|2?)*?] < C(1 + ¢ + |2[2)*"2 (2.34)
and the hypothesis on the compact support of f;(i = 1,2,3), by Lemma 2.6 we have
1B * (a21 £21)(t Mo gt

& 1.-"‘?' 1/2 I .
<C(+1) mm]{uv} 1P (G2 121) (Ml

<Cu+072 Y [ PRIy goydr (2:35)
[F]=1
Noting that
DI | R 65401 G || e

[f]=1

< Z |1{I‘ 2. PJfEJ{Tr }”L:[R |

|T]4]J]<1
<C > ”{fl'rffl'FJfE}ET:'J”p[R'-'} (2.36)
||+ ]J)=1

(2.29) directly follows from (2.32), (2.33) and (2.35).
Lemma 2.9 Suppose that n = 2. Let w = wi(i,z) be the solution to the wave
equation :

Ow = | f; fat, z)| (2.37)

with the zero initial data. Suppose furthermore f; and fy have compact support included
m{z||z| <t+p}(p >0 constant) in the variable ¢ for any fized t > 0. Then for
any real number v we have

”w{t1 }.ile[R?]
<Cu+O( S [@+n P A, ), g dr)

|T]<1

,(j{:(l + Y| F2(, -]||i?{jodT)

1/2

2
X (2.38)
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where C' is a positive constant depending on p,

Proof Let
qi(tiz) = filt,2)(1 + &% + | |?) /4 (2.39)
92(t,2) = folt, 2)(1 + 17 + [o[?)7/4 ‘
As in Lemma 2.8, we have
(w(t,2)| < (B * gi(t,2))*(E = gi(t,z))!/? (2.40)
hence .
2es 4 1/2 2e4 3 1/2
Ielts 2o gty S NE* g N o 1B @ e (241)
By Lemma 2.6 and noting (2.34), we have
”E * ﬂf{t, }”L"‘*{sz
4
<ca+92 ¥ [ +7) DG ) oo,
<170
:
-1/2 —y—1f2yn/! R1IL:
L0149 l%fﬁ A+ DT Y, pade (242)
On the other hand, by Lemma 2.7 (in which we take p = 1) we get
:
”E ¥ §§{¢1 '}“_LJ[RE] < C(1+ tjfu ||§§(T-.'J“L;{R?]d7
:
- 2
SCO+) [+l e e (24

(2.38) comes immediately from (2.41)-(2.43).
Lemma 2.10 Suppose that n > 1. Let w = w(t,z) be the solution to the waye
equation

Ow =38, f(t,2) (ae {0,1,---,n}) (2.44)

with the zero initial data, then

¢
”w{t: '}“LZ{R"] = f{: ”.ﬁ": '}HL'-'l:R"]dT + ”*—’GET: '}lrLZ(R“J {2-¢5J
where fore=1,2... 1, Ug = 0 while for g = 0, w(t, 2) is the solution to the following

Cauchy problem.
Dt-'[j =
(2.46)

Proof See [1].
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Lemma 2.11 Suppose that n > 2. Let w = w(t,z) be the solution to the wave
equation (2.44) with the zero initial data, where f(t,z) has a compact support tncluded
in{z| |z <t+ p} in the variable z for any fired t = 0. Then

¢
(1 4+ t}fn-l}ﬁ“w“, ']”Lﬂ-(R“J < .'j{fu (L T][ﬂ_”"fzﬂf{?ﬁ ']”LWERn dar

}
£ jt[l 4 TJ_{,;H]M“_Hﬂ 1| ldT} (2.47)
0 recs

where C' s a positive constant depending on p.
Proof See [G].

Lemma 2.12 Suppose thatn > 2. Let v = v(t,z) and w = w(t,z) be functions

with compact support included in { = | |2] < ¢4+ p} in the variable z for any fized t > 0.
Then, for any a = 0,1,---,n we have

”t"“’ ]5 w{t }“LE{R" s G“D:vH ”L ,;1?" Z “F ’-'.I.i' |iLm{R*} {2143}
[£]<1

where C' is a positive constant depending on p.
Proof See [6].

3. Life-span of Classical Solutions in the General Case
By the Soholev embedding theorem, there exists Ey > 0 so small that
Il mzy €1 VS € HARY), [fllya e, < Bo (3.1)

For any given integer § > 5, any given positive real numbers E(< Ey) and Tz 0y,
introduce the following set of functions

Xser={v(t,z) | Dsr(v) < B;8v(0,2) = " (2)({ = 0,1, --,5 + 1)}  (3.2)

where

2
Dszr(v) =), sup |ID*v(t, sz + sup (1+6)Ylu(t, Yirss  (3.3)
oy O<t<T 0<t=T
anduﬂ = £¢{z),u; = ey(z) and ][m} ({=2,---,541) are the values of Jyu(t, z) at

() fﬂl‘l‘ﬂ.dﬂj’ detern-uncd from Equation (1.11) and the initial data (1.12). Obvicusly,
{D}[E =0,1,---,58 + 1) are all sufficiently smooth functions with compact support in

{z]e] < p}-

It is easy to prove the following

Lemma 3.1 FEndowed with the metric

p(3,v) = Dgr(d—9), ¥9,9 € Xggr (3.4)

Xsg T 15 a nonempty complete metric space, provided that ¢ > 0 is suitably small
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Let X s.e T be the subset of Xg g r composed of all elements in Xg g 7 with compact
support included in { = | |2] < ¢ + p} in the variable 2 for any fixed ¢t > 0.
Lemma 3.2 For any v € X5 g1 we have

(%, Dv, D*v)(t, -]||FI[%]+I_W SOELLA) 7Y e, T (3.5)
and
||[u,gu,ﬂ2uj{:, ‘}”r.[%]ﬂ.q < CE(1+t)7V*a, vie[0,T] (3.6)
where ¢ 2 3 and C is a positive constant.
Proof Noting that 5 > 5, by (2.15) (in which we take n = 2, N = [g] + 1, so

2
N + [5] + 1< 5, where p=3forvorp=2for Dv and L??tr] and the definition of

Xs g, we immediately get (3.5). By (2.16), similarly we obtain (3.6).

The main result in this section is

Theorem 3.1 Suppose that n = 2 and a = 2. Then under assumplions (1.13)-
(1.19], for any given integer S > b, there exist posilive constants en and Cp with
Cheg = Ep such that for any £ € (0,ep], there exists o positive number T = T(&)
such that Cauchy problem (1.11)~(1.12) admits on [0,T(g)] a unique classical solution
u € XgopeTie), Where T(g) can be chosen as follows:

T(e) = b %=1 (3.7)

where b is a positive constant.

Moreover, with eventual modification on a set with zero measure tn the variable t,
we have

u € C([0,T(e)]; HSH(R™) (3.8)
w € C([0,T(e)]; H3(RY) (3.9)
ue € C([0,T(e)]; H*'(R?)) (3.10)

In order to prove Theorem 3.1, we define a map
M:v—u= Mv (3.11)
by solving the following Cauchy problem for linear wave equations for any v € X S.ET:

Ou = F(v, Dv, D, Du)

2 2
= Z bij (v, Dv]ﬂ'xizj + 2 E ﬂﬂj{vr Dﬁ}ﬂ't;c; + Folv, Dv) (3.12)
$,9=1 =1

b=t Qb= e dla); -atpseghin] (3.13)
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Thus it is only necessary to prove that there exists ¢y > 0 such that the map M
possesses a unique fixed point in X $,Coe,T(e)» Provided that £ is suitably small and T'(¢)
1s given by (3.7).

It is not difficult to get the following two lemmas.

Lemma 3.3 For any v € JES,E,T we have, with eventual modification on a set
with zero measure in {,

u= Mve C([0,T); H¥FYR?)) (3.14)
us € C([0,T]; HS(R?)) (3.15)
uy € L2(0, T: H*~Y(R?)) (3.16)

Moreover, for any fized t > 0, u = u(t,z) has compact support included in { z | |z| £
t+ p} in the variable 2.
Lemma 3.4 Foru=u(t,z) = Mv, 8;u(0,2) ({ =0,1,---,5 4+ 2) are independent
of vE Xspr and _
Hul0,2) = !=2) (1=0,1,--,8+1) (3.17)

Furthermore,
(0, Mlr.s4+2 < Ce (3.18)

where 1 < p < +o00 and C is a posilive constant. j
Lemma 3.5 Under the assumptions of Theorem 3.1, for anyv € Xgp 1, u = Mv
satisfies

Dsz(u) < C1{e + (R + VR)(E + Dsr(u))} (3.19)

where G is o posilive constant depending on p,

R=R(E,T)= E¥14+T)/° (3.20)

Proof We first estimate ||u(t,-)||r.sa.
By (2.8), for any multi-index k with |k| < 5, we have

OMfu= Y AuT'F(v, Dv, D.Du) (3.21)
i<k
Let

M u = wi + wy (3.22)

where w;, satisfies

1§ B
Owg = Y Aul*F(v,Dv,D;Du) = F, (3.23)
|i] < [l

with the zero initial data, while w] satisfies
Dwj = 0 (3.24)

with the same initial data as ['*u, which has the order O(e).
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By (2.23), it is easy to see that
Wi, )l o g3, S Ce(L +¢)H° (3.25)

henceforth €' denotes a positive constant.
Noting (3.5), by Lemma 2.3 we have

Ii'-'i-:-!kl {_-_: C Z {;FIDDI{I.H}[.I\-IEJDfluj{rizﬂfuu}i
Mo |+ 10y 1+ |z | < k]
[P g L P =0
+|(Te Doy )(Th DIvo) (T2 D, Du))) (3.26)
where F, is defined by the right-hand side of (3.23). By the positivity of the funda-
mental solution E, we get

”wk[i: '}Hﬂafﬂz}
<C > (|IE«|@lDlu)rDhv)T D)

W |40y 1+ e | = 1%]
b1y |21 =0

+||E * |(£% Dow)(T' DM o)(T% D, Du)(t, )l s, g2,) (3.27)

L 'j”;jafﬂz}

To estimate A 2 | E#|(Tlo DRy)(Th DIg)(TH DEw)|(2, '}HL?-{H?]‘ we use Lemima 2.8,
Without loss of generality, we may suppose that |I| < |{1] < |ls], then, by Lemma 2.8

1
(in which we take v = H} we get
4
AEG{I_l_”—J:jlﬁ( E f“ b T}*IH
i+ 0

2
[[(T Dow)(TIrt DRw)(TTh DIiw)(r, )|, i R-_.}dr)”

4 1/2
j . ~1f4qr ol i fepyda,N2r. |
(jl; (1+7) 4T DI )T DR v (7, ) g2, 7) (3.28)
By Holder’s inequality and (3.6) (in which we take ¢ = 3), we have
I(T% Do v) (DTl DRow)(D/TH DAv)(r, )l 2,

12 iy :
< Ot N 3., PV, )

< CE}1+7)"12 (3.29)

”r,[=§1+1,3

On the other hand, by a similar reason and noting the definition of Xggr, when
| 12| = 0, we have

|(T4 Dhw) (T DEo)(r, ), 2,
< C||Dhu(, N (814 6l170m M 5.5

< CE3(1 4 7)1/ (3.30)
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while, when |l2| = 1, by (3.5) we have
I TH i I2..42 ; iz

I(T D5 o) (T2 D20 ) (7 )| e

< Cllu(r o)l

r,[%]-l—i.ﬂ-”ﬂu{'r‘ -}El%,s.z
< B4 1)y U2 (3.31)
Thus, we obtain : _
A CEMLEDYS <« ClLHt) e R(E,T)E (3.32)

Similarly, we have
| E % (D' DRp)(Th DIv)(P2 D Dull(t, )l 4 2,
< C(1+ )" VOR(E,T)Dsr(u) '{3.33}
It follows from (3.22), (3.25), (3.27) and (3.32)-(3.33) that
sup (1+t)"%llu(t, )llr.sz < C{e + R(E,T)(E + Dsr(u))} (3.34)
o<t T
We now estimate || D*u(t,-)||r.s2 (2 = 1,2).

For any multi-index & (|k| < 5), by respectively applying I'* and T*D to both sides
of (3.12), we can get the following energy integral formula

DT u(t, 2, o, + I Dult, Vel o,

i Zf ai;(v, DV)(t, T Du(t, ))us (T Dus(t, -))e, d2

1:..;1'_

= 1 DT (0, )7, g, + I(T* D0y ey, g,

F Ef aij(v, DU)(0, HT* Du(0,-))e {I‘kp-um,-}}ijdt

1a=1

dai;(v, D‘u i 1
4 Z [ f } F Du(T, ). ,-I:F"’Du{?'ﬁ]}xjdmdr

i.5=1

dai;(v, Dv)(T,-) e ; odr
_9 E f /R* 2 (T*Du(r, )}, (I* Du(r, ). ded

zsz 5“”-"':'” D“HT (0% Du(r, ). (T* Du(r, ) dudr

7=1

+zfj Gi(r, )(T* Dulr, ), dedr

-I—E_[} ij gr{T, WT* Du(r,))rdadr
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= ke Rt k AL 12 x
IDT*u(0, )2, s, + I Du(0, el o

i --2_:1 -/’H'.:r "1:,'3'[:1.?, 'Dv}“]’ '][Pkﬂu{ﬂr ':I]m.'(rkﬂu[ﬂa ‘]':Izj dr

+I+ T4+ IIT4 IV 4V (3.35)

in which

2
'G"i.: = E {[I‘Lﬂ[b{_;{”, _D'I.I']'EI-:{.EJ,} - '5:';.![;1?1 Dﬂ}rkﬂﬂm,m‘,}

f,7=1

‘|‘I!J1'j{1-':. DUJ{Fkﬂu:;mj s {PkﬂuJIiﬂj }}

+2 Z{(Fkﬂiﬂcu{“sﬂﬂ]ﬂui} — agjlv, Qv}rkﬂuui]

Jot
+agj(v, Dv)(T* Duee; — (T* Dues, )} (3.36)
gr =T*DFy(v,Dv) + > CuI'F(v, Dv, D, Du) (3.37)
fil<|]

where ('}; are constants,
Using (1.16) and (3.5), it is easy to see that

I
I, | 1T, |TTT) < c:'E?f (1+7)"Yd7 - D% o(u)
0
< CR(E,T)D% p(u) (3.38)
Now we estimate the L* norm of Gi(r,-). By Lemma 2.3 and noting (2.9}, we have

G| <€ 3 |(T* DRy)(Th D)= D, Du)| (3.39)

o l+0ty |+ 12| <]k
Mol [=2

To estimate B = |(T* Diow)(Th Dhiy)(Th D, Du)(r, ']”LHR”]’ we may assume that |[{5] <
[I1]. When [i]| < |I2], by (3.5) and (3.3) we have

B < [IDv(r, ) s, DT o(r, )l s, [1DeDu(r, )52
F.[z].r:::- 1".[3].':1;
< C(1+ 1) 'E*Dsp(u) (3.40-1)
when || = |lz| and || = 1, noting (2.15), similarly we have

B {_: ||Df-|}v|lf..r: IJ”[‘.['—E-].:-DHEIH{T’ .}F|F.5.2||E£'DTL||P1[%J o

< C(1+7)'E*Dgr(u) (3.40-2)
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while when |I;| = |l2| and |I1] = 0, by Halder’s inequality and (3.6) (in which we take
g = G), similarly we still get

B < IDo(r, )l s, Mo(m Miesall D Dully s

< C(l+ 1) E*Dgp(u) (3.40-3)
Thus we obtain
|G (T, I:]l[L'jiR:} <C47)'E*Dsy(u), ¥Vre [0, T] (3.41)

then ;
V] < CE? [ (14 1) dr - Dyr(u)
- .

< CR(E,T)D% p(u) . (3.42)
Similarly, we have ' :
V| < CR(E,T)E + Dsr(u))Dsr(u) (3.43)

By (3.38) and (3.42)-(3.43), and noticing (2.9), (1.18) and (3.18), it follows from
(3.35) that

s
L 511PTI|JD‘H{3 Mirsz £ Cle + \/R(E,T) (E + Dsz(u))} (3.44)
iy 0212
The combination of (3.34) and (3.44) yields (3.19).
Similar to Lerma 3.5, we can get (cf. [1]-[2]) - - N
_ Lemma 3.6 Let 9,v € Xsgr. Ift = M9 and u = M v also satisfy @,u ¢
Xs g1, then

Ds_17(@ — u) < Co( R + VR)(Dsor,r(it — 8) + Ds_17(0 — 7)) (3.45)

where Cy is a positive mn.sz&anf depending on p and R = R(E,T) is still defined by
(3.20).

By means of Lemma 3.5 and Lemma 3.6, just as in [9] we can easily use the con-
traction mapping prineciple to get Theorem 3.1.

4. Life-span of Classical Solutions in the Special Case
87F(0,0,0) =0 (8 = 3,4)

In this section we consider Cauchy problem (1.11), (1.12} under hypothesis (1.21).
We only point out the essential points in what follows.
Instead of (3.3), we take

z

Dsr(v) = E sup || Dul(t, . Mrse + sup (148)712|u(e, e 2.2

1=y 0<t<T Gt

+ sup (14 )2 u(t,

0<t<T ';'”I‘.[flﬂ.m (4.1)
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Then we have
Lemma 4.1 Foranyve Xgpr,

I(v, Dv, D)2, | < CE(1+t)"Y2, wte[0,T] (4.2)

I‘.[%]+1.-:::::- v
where ' is a positive constant.
The main result in this section is
Theorem 4.1 Suppose that (1.21) holds. Then under the assumptions of Theorem
3.1, we have the same conclusion as in Theorem 3.1 with

T(e) = exp{ae™?} -1 (4.3)

where a is a positive constant,
Lemma 4.2 Under the assumptions of Theorem 4.1, for any v € ES,E.T; u=Muv
satisfies B '
Dsr(u) < Ci{e + (R + VR)(E + Dsr(u))} (4.4)

where i.‘f’l 15 a positive constant depending on p and

R=R(E,T)=E‘In(1+T) (4.5)

Proof We first estimate |u(t, )||r.s2.
Noting (1.21}), we easily see that F(v, Dv, D, Du) can be rewritten as follows:

2 2
F(v,Dv, D, Du) = ¥ &Gi(v, Du) + > Ag(v)vg, v,

g=1 1,0=0

2 2
ar Z Efj—,n[ﬂ, ‘Dv]u.r;uu:jzm T Z {ﬁij[:ﬂ: Dv}v:ﬂivﬁj + Fﬂ{ﬂ,ﬂ]

Fodam=0 1, 9=0
RS |

(4.6)
where in a neighbourhood of the origin we have

Gi(X) = O(AP), i=1,2, X = (v,Du) (4.7)
and Gy is affine in Du,
Aij(v) = O(le]), 4,5 =0,1,2 (4.8)
Bijm(A), Cii(A) = O(|A]), 4,5,m = 0,1,2, A = (v, Do) (4.9)
and
Fo(v,0) = O([v|*) (4.10)

Thus, by (2.8)}-(2.9), for any multi-index k with |[k| < §, we can suppose that

T = wyy, + way, + wyy (4.11)
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where w,p, wey and wsy, respectively satisfy

2
Quy, = 3 8( Y Aal'Gi(v, Du)) (4.12)

=1 gk

2
Owey, = Z HMI'I( Z A;jl{ﬂ}ﬂziuq

W=k 1,g=0
gh we gl
— E_’ -ijm(u1 Dﬂ]u:iu:;'zm -} Z C{j{ﬂ,_ﬂ'ﬂ]ﬂmit?ij)
e i,4=0
= o (4.13)
and :
Dwg, = > AT Fp(v,0) (4.14)

|t < [k}

with the gero initial data for ws, and wj, and the same initial data as I*u for wig,
where A; and 4, are constants.
By Lemma 2.10 and Lemma 2.5, it is easy to get that

st Mya g2, < C{ey/m+10) + fu 1Gi(v, Du)(r, lin.s 2dr ) (4.15)

Noting that, by Hélder's inequality and (4.7) and using (4.1)-(4.2) and (2.19) {in which"
we take p = 2), we have

|Gi(v, Du) (7 -)|lr.s.2
< Cllle(r IR 5, (I, Mlesa + [1Du(r, Yir.s2)
[51
—.i—”"'l'.:'{‘]"] }”FI[%]‘E”DH[TT ']llr[%],m”ﬂ(‘r: ']”1".5,2}
< C(141)"Y2EYE 4 Dso(u)) (4.16)
it follows from (4.15) that

wsslt, Mo g2y € G+ 0 (e + BB + Dsz(u))} (4.17)

In order to estimate “w'“‘[i"}“L?[RQ]’ we first point out that by Lemma 2.3 and
noting (4.9) we have

|I1 { Z E (v, Dv)v,, vy, )

1,5=0

<C 3 |(rhDly)(Th Du) (TR Do)l (4.18)

Mo l+18 1+ a1 £]R]
[fal=1
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1
We may assume that |l}| < |k, then by Lemma 2.9 (in which we take Ao —4-) and
noting the definition of X5 p r, we get

1 % |(L Dow) (B4 Du)(T Do), )l 1 o

; 1/2
<C(1+ 1):!4(f§1[) (14 T}_S..'r‘l“r'-r]:"hﬂﬂ{’r,1]”;2{_&9]{1?)

4 1/2
( [] (1+ 'r]l'“[][F‘“Df“trj{l”:“ﬂﬂ}{ﬂ',-]|[ig [ Ra]:ﬁr)

< C(1+ f)”"(f:{i + 7)) Do, -}f|§5~2de”2

.(E(l + )T DRwy (T Du)(r, 2. . dT)i,-'z

A
t
< CE(L+ Y2 [ (14 7)"M(T* Dow)(D% Do) (r, )2, s
0 LR
Omn the other hand, when [lo] < [Is], by Lemma 4.1 we have
(T2 DR D)7, Yl gy < Cllolr, My s, 100, s
< CE*1+ r)1/2

when |lp| > |I3] and |fy] = 1, in a similar

way we gel the same estimate; while when
o] > |la] and |Ly] = 0, by

Lemma 2.12 and noting (2.9) we have
lo Ty 1 i : i
”Er D ﬂﬂj {I‘E-{_]UHT: }“L'-'[R']

= G”DEI‘!DL'{T1 .]“L:"I:Rj] 2 Z ”PIIIIEU{T: }HLW{Rjj
DR

< ClDv(r, )e.sallv(r, LU

i: C’Eﬁ{l + ,T}a—llf'ﬂ

Thus, by the pasitjvity of the fundamental solution E, it comes from (4.18)-(4.19) that

”E * I‘I( i Ciil, D vy, vy, ) Et’-J”LE[RE] < O(1+¢t) /2 E"

1,5=0

(4.20)

Similarly, we have

Ex [I“!( i E{_j,m[ﬂ;-ﬂv]“z;umju:m o EE: éij{”:ﬂﬂ]vxf""mj)J{fr'}
i foiir=0

T.=0
Jtmzl 4

LR
SCO(1+ W 2EYE ¢ Dgr(u))

(4.21)
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Hence

et o gy S CL +12EX(E + Dsir(u) (4.22)
We now estimate ||wap(t, '}”L‘J(R‘I}' By Lemma 2.3 and noting (4.10), we have |
TFy(v,0)] £ C 3 |(T%w)- - (D)) (4.23)
IPpl+---+ g | <1k
gl 141

By Lemma 2.9 (in which we take v = %} and the positivity of the fundamental solution
E, we get

lwse(t, ) Il 2 e, < COL+ )M

1/2

Mgl+ o+ 1<1e] (7] <1
Hgl=--=liy
(L@ ) (o), Ny o)
LR }'
(4.24)
Noting that by Hélder’s inequality and (4.1)-(4.2) we have
! [
T (T - T w)(r, 'j”L?{Rj}
< (o)l s, llw(m:)lir.se < CE
gl 2]..-:::a
and ; 1
”{P -ﬂ} L {F "'U}{T:, '}HLI{RE}
<lo(r )2 s, lIo(m Mieso € C(1+ 071288
it follows from (4.24) that g
lwsa(t M2 g2y < CLL+ t)1/2 go (4.25)

Thus, we get from (4.11), (4.17), (4.22) and (4.25) that

s (107 lu(t, sz < Cle + R(E,T)E + Dsp(w))} . (426)

We next estimate ||u{tT-]||P E141.00°
SEAERE

For any multi-index k& with |k| < [g] + 1 we still have (4.11)-(4.14).

By Lemma 2.11 and Lemma 2.5, it is easy to see that

(1 + 6w (8 M 2

coles 3 f{1+ V2T Gi (v, Du)(, 3’||Lm{R* i

[ri<|&]
i=1,2

+ j:{l + )73 Gi(v, Du)(r, irs.dr) ) (4.27)
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By Hélder's inequality and noting (4.7), we have

TG, Duj (r, ‘}“L.,E[R?J

<A(r? s (le(n

L5 ]+1,00 + | 2ulr )l

F,[%j-f-—l.m 1".['25“]+1,-::::-)
S C(L+7)%2EYE + Dgr(u))
and
IT*G:(v, Du) (7, )l|ra.1

< Clle(s, ')“r,[g],m””("" Nres2(le(7, )lle,s2 + | Dulr, -)lr.s:2)

+| Du(r, 'JIIPﬁ]‘mIIv[TF ME 52}
< C(1+ VB E + Dgp(u))
Thus, it follows from (4.27) that
(148wt Mo ) < C{e + R(E,T)(E + Ds.r(u))} (1.28)
By Lemma 2.6 we have
(L + O ¥ was(t, )| g2, < C’H% f{l 1) P Ha(r, M g2y dr (4.2)

where Hy;, denotes the right-hand side of (4.13). Similar to (4.18) we have

ITTHy,| < € ¥ (I(T* D% u)(Th Do)(T Do)

Mo+ Fy [+t 2]+t
[Tai<t

+|(T% DM v) (Th D) (I D, Du)|) (4.30)

To estimate B—é.[]{[‘!uﬂ»!ut;-]{I‘hﬂuj[F!:Dv}[T,-j]|Lt{Rej1 we may assume |f;] < |ls].
When |lp| < |13], it is easily seen that

fa ; RE
B < CIDRu(r, Yy s, DO R s

LC(1l+7)" V23

when |ly| > |lz| and |Iy] = 1, we have the same estimate; while when |ly] > |l;] and
[To| = 0, by Lemmas 2.12 and (2.9) it is easy to see that

H E S”EPJD U}{PII 'DT"]['T:- 'J”L*:[R?JHDIJET:- 'j]lﬂ-f-'.g
S ClIDLTo(r, )| g, 007, M s, ID0(r, s

< CllDv(r, )|} 5,2l (T, '}”r.[%m:m

S C(L4m)HEES
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Similarly, we have
1
|(T' Dw)(T" Dv)(T" DaDu)(7, My g2y < C(1+7) 72 B Dsiz(w)

Hence
77 Hol, M g2y < €L+ )" E*Ds, r(u) (4.31)

then
(1 + )2 lwsats Il 2, < CR(E, T)E + Dsiz(w)) (4.32)

Noting that, by Lemma 2.3 and Eq. (4.10), for any multi-index ! with |I| <5, we

have
! : o e 18 RIE
P F (@007 M gy S Ol IR, s, Il

< Cll+ T)"H2E" (4.33)

by Lemma 2.6 we get
(1 + ) lwanlt, Mo g2, < CR(E,T)E (4.34)
Thus, we'get from (4.28), (4.32) and (4.34) that

sup (1 + )2 (Juft, )]

5 <C{e+ R(E,T)E+ Dsr{u))} (4.35)
0<t<T 1".[2]+1.c:::-

Finally we estimate || Diu(t, )||p.s2 (1 = 1,2).
Using Lemma 4.1, similar to (3.38) we still have

1), 111, |I11] € CR(E, T)D%1(u) (4.36)

We also have (3.39), (3.40-1) and (3.40-2). Instead of (3.40-3), we use Lemmas 2.12
and (2.9) to still get

; I iz E
B < Cllv(r g 15, M )T D Du)(r o )
< Ollo(m, M 574,01 DT ¥ Moo oy 1D M 5 o
< Cllo(r, N 514 o 100 sl Dulm My )
< C(1+ 1) E*Dgrlu) (487)
Thus we have
IV | < CR(E,T)D%qp(u) (4.38)

Noting (1.21), similarly we have

V| < CR(E, T)E + Dsr(u))Dsr(u) (4.39)
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Thus, by (4.36) and (4.38)—(4.39), it follows from (3.35) that

2

Eni‘f};T ID*u(t, )l|r,s.2 < C{e + \/R(E,T)(E + Dsr(u))} (4.40)

=1

The combination of (4.26), (4.35) and (4.40) yields (4.4).
Similarly we can prove (cf. [1], [8]) - - B
Lemma 4.3 Let o, v € Xgpp. Ifii = M and v = M v also sabisfy @, u €

AsgT, then

Ds_17(i — ) < Co( B+ VR)Dsor,r(@ — ) + Ds_y 7(5 — 7)) (4.41)

where Cy is @ positive constant depending on p and R = R(E,T) is still defined by
(4.5).

[1]

[10]

Theorem 4.1 is a direct consequence of Lemmas 4.2 and 4.3 (see [9]).
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