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1. Introduction

The purpose of this paper is to consider spectral properties of the following operators
™ P2

P==3% X:+> CY (1.1)
el f=1

where X, ¥, r=1,---,m.,{ =1,-- 9o, are a basis for the Lie algebra G of a two-step
nilpotent Lie group &, each ¢ 15 a complex constant.

The operator P and its properties, e.g., local solvability, hypoellipticity, have been
investigated by many authors. It is well known that (1.1) has not been contained in
the class of operators introduced by Hérmander in [1] if the ) is imaginary. Spectral
properties of the Kohn-Laplacian on the Heisenberg group were studied by Luo and Niu
in [2]. Also Furutani et al. discussed the spectrum of Laplacian on two-step nilpotent
groups {See [3]).

In this paper we will determine the spectrum of P. The main tools here are unitary
representations and Plancherel formulae on .

In order to state our main results we need some notations. We denote the spectrum
and the resolvant set of P by o(P) and p(P) respectively. Let ¥, be the completion
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of CF*() with the norm (3.2) below and D{F) the class of those u € Iy such that
Py € L*((@). Introduce the set

2 1
rs(C) ={ge Cra= 3 (26;+ 1o + 3¢ V=T Cin,
1=1 1= i=1

where (7 denotes the complex plane, O, e C (I =1, --.m), i — is a positive integer,
G =16, Bp—-ae) 8; € Iy = {0,1,2,---}, the definition of d will be given in
Section 2, and

SiP= u TDglChUR4 (1.3)
p1—d
ger 2

where R.. denotes the set of nonnegative real numbers.

Theorem 1.1 The spectrum of P is S(P).

As a consequence, we have

Corollary 1.1 IfCy (I =1, ,p) is purely imaginary, then o(FP) is either R or
[0, +oc). In particular, f Cy=0,1=1,---,p2, then o(P) = [0, +o0).

Theorem 1.2 Ifd # 0, then P has not any egenvolue,

— i :
Theorem 1.3 Ifd=0andp;, m Cr.i=1,---, el 5 =1, pa, satisfy
E'{Eﬁj + 1)p; — xf'—_lz Cryy =10 (1.4)
7 {

T =il
for some 3 € I:E“, then 0 18 a unique eigenvalue of P.

The plan of this paper is as follows. In Section 2, we shall recall some basic results
on the two-step nilpotent Lie group which will be used later. Section 3 is devoted to
the proof of Theorem 1.1. In Section 4, we shall prove Theorems 1.2, 1.3. Finally in
Section 5 some applications will be given,

2. Preliminaries

Let (7 be a connected, simply connected Lie group, whose Lie algebra & decomposes
as a vector space G = Gy @ G2 with [G1,G1] C G, [G1,G:2] = {0}. G carries a natural
family of automorphic dilations given by

G (X)=3X f XeG, &)=Y if YEeUG

These dilations extend in a natural way to U(G), the universal envoloping algebra of
G, which may be identified with the set of all left invariant differential operators on G.
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For a nontrivial linear form 7 on G2, define an alternative bilinear form B, on G x G,
B (X, X") =X, X)

where B, 1s a maximal rank. We denote a Zariski open set of G5 by Z. Let d be the
dimension of kernal of B, on Z, py, p denote the dimension of G;, @z respectively, and
(X, Xy ), (¥, -+, Y5, ) denote the basis of Gy, Gy respectively.

Fix rt in Z. There is a basis B of &y, obtained by an orthosonal transformation
from (Xy,---, Xy, ), such that
p—d

B=(T;, 2, W), j=1-- 25 i=1.. .4

jjﬁl:j__?’z—l!-.-] a2 Ei"}":g_'.". .E,i_:l == Br}{ﬁfz H{j-::' = B;-;.“-’FE_:'I}} = f_ﬁ":,?lzl[-{"'—r': .EJ,:I == ﬂl
By (T, Z) = djep;(n)

. - L3 i i
where pi(n) (;.' = l:---:p1 5 ) are positive numbers, such that the eigenvalue of

v =18, is £p5(1n). Suppose that ¢ € R" identifies itself with the dual of space venerated

bw (W),
Define a representation me, of G in L*(R ™2 )

il T

L Esd

Eyii *uf{s i ‘-..-""."_Jf}
(2.1)

If v € S{G) (Schwartz space), 7 is a unitary irreducible representation of &, then the

mealexp Y G5+ % 2% + 3 wiWi+y) f(s) = eV TTmuCee:

aperator wlw) is defined by

x{) = L olg)r(g~)dg (2.2)

where dg is the image of Lebesgue measure on g wie the exponential map. From (2.1),
(2.2} it follows that

Tl f)wls) = fﬂl‘-~. 2,0, y)e VWU S Tos /T e wls — /pt)didzdwdy
(2.3)
Given a left invariant vector field W and a unitary representation w on (7, then the
operator =W} is defined as an unbounded operator

7!
m(W)f = —lwlexp W) f]lr=p

By (2.3) we obtain

c i p —d
?Tr.:.u(ﬂ]=v”ﬁ_ja‘—%r TealZi) = V=185, =1,---, 12

menlWi) =v=1¢, i=1,---,d (2.4)
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——

ﬂ':.-ﬂ[}r” =y —li'lr_g_. b= 11*?}2

Levy-Bruhl [4] proved the Plancherel formula in polarization form: for u € & ()

+id
u(e) = @0 IT P [ ()] D) 2dgdn (2.5)
R w LF2

where D(n) is a nonnegative polynomial of 7, e is the identity element of G, fr denotes

i jr et
the trace. We let Gy = (2m)” 2 772,

Proposition 2.1 Lef u,v € S(G). Then
ult, z, w, y) = {_?Dft.'r‘[ﬂr;ﬁ.{ﬁ_.s._w,_y}'vrr;ﬂ{n]:U(r;r}l-"'ididﬁr} (2.6)
(5,0) = s [ trlmga(u) 7 (o) D(n) #dCan (2.7)
Proof Write u(xz) = ult, z,w,y), then uiz) = u(ze) = uyle). Since

T [’“:ﬁ:] = TTC.r}{E) L L |:Tf']'

(2.6) follows from (2.5). By the fact that both of ¢ plu), m¢;

!
thus Hilbert-Schmidt operator, the right hand side of (2.7) makes sense. Setting f =
w* # 1, where u™ = u{g—1), we have h{e) = (u,v) and

(v) are trace class operator.

Tenlh) = we ) me plv)
We conclude (2.7) by (2.5).
Let u=1v. (2.7) leads to

lull3s = Co [ trlmea(u) mea (D) 2dcdn = Co [ Imcale)lsDlm 2dcin (2.8

Since S is dense in L2, (2.8) holds for u € L2

3. Spectrum

The equation (1.1} can be rewritten as

P==3(T?+Z)-3 Wi+ CY (3.1)
{

7 i

By the natural dilation transformations on 7, P is a second order homogeneous left
invariant differential operator.
Let T be the completion of C§°((] by the norm

’ ]1’” (3.2)

- ] 2
lelly, = [E'wﬂ'lliz + 3 (ITyell3 + 1Z50l72) + D IWipllz2
) !
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Define :
D(P) = {u € ¥, Pue L}G)) (3.3)

where Pu € L? in the distributional sense. We understand P as an unbounded operator
on L* with domain of difinition D{P).
Evidently, the formal adjoint of F is

Prs N XD O
i {
and the formal transform is

Pt = —ZXE—ZG!H
T I

It is clear that P is closed and densely defined on L?. If ReC; = 0,{ = 1,---,ps, then
P* = P, namely, P is selfadjoint.
Proposition 3.1  Foru € D(P), we have

oy
T g Pug = Wi.f}{“}[— Z.ﬂj(% - s?j + Z f,f — J—_IZ Iifl‘,_r-r}g]:;:' (3.4}
i) 7 i !

p:—d
where g € SR 2 ).

Proof Let|-| denote a homogeneous norm (See [5]) and ¥{z) € C§~(G) such that
0 <(x) <1 for x € & and

1, when |z] <1
'frll:?{;ﬂ} —
0, when |x]| > 2

Dienote 5 By i

bslw) = (3y5(2) = Y[t —2,~w. y).s > 0
For u € D(P), set uy, = 1,u, then v, € E' NV, where E' denctes the set of all
distributions with compact support. One can show that u, — u in L? and Pu; — Pu
in L? as s — co.
It follows that for ¢ € S(R 2 )
e g Pu)i :ﬂi‘”(.}i{ﬁc Pug)p = Sl_i:{gj T Pus)i

= lim g (15 ) e, (Pl = e n(w)me (Pl

By (2.4), the result is proved.

In the sequel we usually take y as an Hermite function. All Hermite functions
e 5 ppy 21
wal@eI.? ) form a normal orthogonal basis of L*(R 2 ).

Proof of Theorem 1.1 Let us note that «(FP) is nonempty (See [6]) and partic-
ularly 0 € o(P). We first prove S(P) 2 a(P).
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Suppose that T € C\§(P), we shall show that 7 € p(P). It is clear that the distance
B1—4
from 7 to S(P) is positive, denoted by c(7), hence for all 5 €I, * |

|:r = [Z 28, +1)p Za;_ V=LY G| = elr)
) d
p1—d
Now let pg{€) be an Hermite function on B 2, then
E-?” -
( 552 T 5 Hios; = (285 + g,
j

Proposition 3.1 and (2.8) yield that for u € D{P)

|Pu — 7ul|3: =C; f e (P = Tu]llleD[r;r}lﬂdu,d?}

& ; SR ) n2
=75 T,;,?u{ [ Zﬂj( = 5)+Z_‘Q’E_1“f—lzf’mf]}|iﬁg
. 3 :
D) 2dedn
2Coclr)? [ lim )iy Din)2dCan = () 32

which 1mnplies that
1Pu — Tullg2 z e(r)|lull 2
and so P — 71 : D(P) = L*(G) is injective.
We can show that P — 71 is surjective with the same way in [2].

Next we show S(P) C o(P).
i —dd : .
Suppose that g € [s(C) for some § € I.* |, we claim that p € o(P). If it is not

true, i.e., u € p(P), then ul — P is a bijective map from D(P) to L*(G). Therefore for
every f € L2((), there exists a unique u € D{P) such that

puu — Pu = |
By Propositon 3.1, we have
e Flios =[pmen(u) — meq(u)me P*H%ﬂﬂ
=g nlu) {12 = [Z 28; + 1)p Zr: «f—_lzii Cim) bes
3
It follows from g € I'g that,
weqa(fleg =0, for every f € L

On the other hand, we can find a function f € L*(G) below such that mq ,(f)eg # 0,
which leads to a contradiction.
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In fact, set

_f[t,,z;m._ .U:I = fl(tjfl{z}fﬁliwjft{yj

1—d
where f1, f2 € S(RUT ), fs € S(RY), f4 € S(RP). From (2.3),
. )
mealf)es = [ eV THmwmuCEez g =S £ (1) 3 (2) f3 (w) fa(y)os (s — Vpt)dtdzdwdy
where p = p(n), and thus

el f)eals=o =f STt we)+y=lpes 5-'f1 2) falw) falules( —/pt)didzdwdy
=f3(¢) faln [ VI fr(t) fa{z)og(—+/pt)didz
=) falm) / I {f}f'z( - %ﬂ)@;i[—yﬁfjlffﬂ

Now take fi(f) = wal ,u,-"_t Jand fa(z), falw), fily) so that fg( 5 %:l, fgf(:} ﬂﬂ?}] =
respectively. Then we o[ fles = 0.

4. Eigenvalue
Proof of Theorem 1.2  Suppose that
Pu—qu=0, forsomerteC, ue D[P (4.1)
We will show that «w =0 a.e. Applying (2.4) to (4.1) yields

lr = [30028; + Dps + 3¢ — V=13 ] pre () = 0 (4.2)
i i t
By —d
where 4 € T +2 .02 Rt € RP*. Consider the following three cases on C) (I =
L, ¢y pa).
1) Re C) # 0, for some (.
Then when only (. n satisfy

Re 7 — [Z(Eﬁj +1p;+ Y ¢+ ImG- m] =0, Y8
ki i !
(4.3)
Im 7+ Z ReCi-m =10
{

e nltuliog may not be equal to zero, otherwise ¢ n(u)wg must be zero. But (4.3) is at
most a d + pp — 1 dimensional hypersurface in RY x R, so it has zero measure. By
(2.8) u=10 a.e
2) Re C; =0, V1, and > (25 + L)p; + > ImCp -7y # 0, for all 5.
k] : l
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From (4.2), 7 is real and

e [Z{Eﬁj g I}pj = Zlff . Zli'ﬂﬂf{ ] j'."'-EJ =0 (443
i 1 {

determines a d 4+ ps — 1 dimensional hypersurface in R? x R"2, on which Teqlt)ws may
not be zero. When (,7 do not satisfy (4.4), 7 n(u)es are zero. Also by (2.8), u =0,
a.e.

3) Re C; =0 (¥i) and Z[E;ﬁ'_.,- + 1)p; + ZImC; - = 0 for some 3.
i I
Une sees that 7 is real and

d
T=) ¢=0 (4.5)
i=1

18 a d — 1 dimensional hypersurface in R?, As before u=10a.e,
These show that 7 is not an eigenvalue of P.
Proof of Theorem 1.3 First, observe that Cr(l=1,-,ps) satisfying (1.4) must
be purely imaginary. In the case Re ¢} =0 (%1) and Z(Eﬁj +1)p; /-1 Z Cr-m #0
!

J
(%), P has not any eigenvalue with the progress in the proof of Theorem 1.2,

In what follows we investigate the case Re ) = ( (V) and (1.4) helds for some 3.

It is easy to check that P has not nonzero eigenvalue. It therefore suffices to prove
that 0 is a unique eigenvalue of P, Le., there exists a u € S(G) C D(P), u £ 0, such
that Py = 0,

Indeed, take a nontrivial function

u(t, z,y) = Cy f 90 ) pgy(31)eY T HOZFIIEN) L o (o) 4ty D)2
(4.6)
where O] = {Eﬂ}_%_m, m o= pl7'), g(n') € C3°(RP?). By integration by parts, we
have
f%?D(51]E'-.-"—_l{il.ﬁ"."—imz-%.—'f’.ﬁT:-.ﬂ]wﬁuI:S! +v'ﬁﬁ]d51 c S{G:I

and so u € §(F). We also nead the following.
Proposition 4.1  u(t, z,y) in (4.6) satisfies that

0. 8 # Gy e
7?}[“)99.3(5] = { T_ (4.7)
QI:T,T]IF..EU (g);, A=
Its proof will be given later. By (4.7) and (1.4),
[Z{zﬁj +1)p;— V=13 .G, -'?j'_g]‘.‘rn{u}ipﬁ =0, V3,V (4.8)
i !

this yields that m(Pu)ws = 0 and thus Pu = 0 from (2.6). The proof is completed.
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Proof of Proposition 4.1 From (2.3) one deduces that
Ty Fop i 2.
y{u)pa(s) =C1f§{rf]:p,3n{5;)c‘f‘l{“” P12+ /P12 81)

g, (51 + /1) D) 2dy'ds,
¢ !. )
eV T Hmwmter GBSl (s -/t dtdzdy

Since [ ¥~ gy = (2m)P2d(n —n"), where 6 means Dirac function, and p; = p,
if ' =1,
m(u)ia(s) =C f (2)P g m)pgy (s1)eY TP THVI=S o (51 1 /5t) D) V2 dis,
: E“"j"_l{"”'%_‘r“r‘az's]cpﬁ{s — J/ot)dtdz
Apain note that
eV =llezt+Prai—yBrsly, {Eﬂ]%ﬂ{—ﬁ{.ﬂ — &) — pi)
it follows that
o ()ip(9) =Cign) 2m) 22 [ g, (s1)om(o1 + v/pt)ag(s - /31
84—+ pls) — 8) — pt)dids;
:L-?[TF}f“:ﬂﬁu{SL}ﬁﬁﬁuEﬂ‘Pﬁ(Sl]dSi = g(m)es(s) [ g (51} (s1)ds)

Applying the orthogonal property of Hermite functions, we conclude the prool.

5. Some Applications

Let ¢ be the Heisenberg group Hy, then p; = 2n, po» = 1 and d = (. Consider the
Kohn-Laplacian on H,

it

P= =Y (X} +Y})+v-TaT

=1
where {X;, ¥, T} (j = 1,--+,n) is the basis for the Lie algebra of H,,. If & = =(2m+n)
for some nonnegative integer m, then P has eigenvalue 0, and if @ # £(2m + n) for
any nonnegative integer m, then P has not any eigenvalue (See [2]).

Consider the operator

n - k
P=— Z{Xf + }”f] . Z.Ef dpif el
F=1 i=1
on the two-step nilpotent Lie group H, x RF, where {X;,¥;,2;,T} (j = 1,---,n,
i=1,.--, k) is the basis of corresponding Lie algebra. Now p; =2n+k,pa = 1. d = k.
According to Theorem 1.2, P has not any eigenvalue.
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