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1. Introduction

In [1], the authors established the unique existence of the smooth solution for the
following coupled nonlinear equations

Up = Ugzr + DUUL + 200, (1.1)

vy = 2(uv) . (1.2)

These were proposed to describe the interaction process of internal long waves. In [2],
Ito M. proposed a recursion operator by which he inferred that the equations (1.1)
and (1.2) possess infinitely many symmetries and constants of motion. In [3], P.F.He
established the existence of a smooth solution to the system of coupled nonlinear KdV
equation [4]

up = a(Uggy + buuy) + 2bvvy,,

Vp = —VUgze — Uz,

where a and b are constants.
We remark that M. E. Schonbek [5] dealt with a very similar system of coupled
nonlinear equation [6]

Ut = Uggax — UlUy — Uy, (1'5)

v = —(uv),. (1.6)
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The global existence of a weak solution was established via the technique of parabolic
regularization and Dunford’s theorem on weakly sequentially compact L' sets.

In this paper, we consider the following periodic initial value problem of damped
coupled nonlinear wave equations

w4 f(u)y — QUzy + Bugey + 200, = G1(u,v) + hi(x), (1.7)

— Ve + (200)z + g(v)2 = Ga(u,v) + ha(), (1.8)
u(x + D,t) =u(x — D,t),v(z+ D,t) =v(x — D,t),x € R,t >0, (1.9)
u(z,0) = up(z),v(z,0) = vo(z),x € R, (1.10)

where D > 0, a > 0, 8 # 0, v > 0 are real numbers, and/ :L'tdl’—O/ v(z,t)dr =

0. We establish the t-independent a priori estimates of the problem (1.7)-(1.10) and
get the estimate of upper bounds of Hausdorff and fractal dimensions for the global

attractor.

To simplify the notation in this paper, we shall denote by || - || the norm || - ||L,,
by [| - llp the norm || - |[zr, by [ - [lo the norm || ||z, by || - [l the norm | - ||z,
Q= (-D,D).

2. t-independent A Priori Estimates of Problem (1.7)-(1.10)

Lemma 1 Suppose that

0 Gi0.0) =0 6= 1.2, € o TE (6 ) = mie
—G1w =G n
(€,m) € R%, by > 0 is a constant,
(2) ug € L2(Q),v0 € L2(Q), hi(x) € L2(Q)(i = 1,2),Q = (—D, D).
Then for the smooth solution of the problem (1.7)-(1.10), we have the following estimate

(- ) + JloC, 1)]12 < e (fluol|* + loll?) + 52(1 —e N (Ihl® + h2l®). (2.1)

Furthermore, we have

' 1

Jin (uC, DI + 100, 1) < g (1kall® + lIn2l?) = Eo (2.2)

——1 2 2 1 2

Jim s [ el ()P 4+ Alee (o) Pldr < s (b + o). (2.3)
0

Proof Taking the inner product of (1.7) with u, (1.8) with v, then we have

(U, ut + f(u):r — QUgy + ﬂuzxx + 2’UU$) = (U, G1 (uv U) + hl(x))v (24)
(0,00 — 70+ (2u0)e + g(0)a) = (v, Calu,) + ho()), (25)
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where

) = [ uta e, e, (u f(w)2) =0
(4, —Qizy) = alluel?, (v, —yv2) = V]0l?,

(4, Btiaza) = 0, (v, 9(v)e) =0,

(u, 20v;) + (v,2(uwv),) = Q/UU’Uzdl’ - Z/uvvxdm =0

(u, G1(u,v)) + (v, G2(u,v)) = (v, Gruu + G1yv) + (v, Gy u + Gayv)

_Glu _G2u U 2 2
g <—b R
<“’“)<_ah, _G%)<U)_ ol + [l

h(z)) < 2 A ha(2)) < 2 s %
(ot (2)) < DlP + ol (@ ha(a)) < Dol + el
Summing up the equality (2.4) and (2.5), we get

1d

1
5 g7 ull® + 101%) + allus |* + v lleal* + 5 (HUH2+IIUH ) < bO(thH2+Hh2H2)- (2.6)

The inequality (2.6) implies (2.1)-(2.3).
Lemma 2 ( Sobolev’s Inequality [7]) Suppose that u € Lq4(Q2), where 1 < r,
q < oo, Q € R". Then there exists a constant C' > 0, such that

D7l ) < ClID™ullf, q HUHLq @)
. . 1 g 1 m 1
where 0 <j<m,j/m<a<l,1<p<occand -==+a(-——)+(1—a)-
p n r on q

Lemma 3 Under the conditions of Lemma 1, we suppose that

(1) f(u) € Clg(v) € C!, Giu,v) € C(i = 1,2) and |f(u)] < Alu’~?, |g(v)| <
B|U‘6_6, A>0,B>0,6>0, ’Gl| < CZ(’U|5 + |U‘5), C; > 0;

(2) uoz () € L3(Q),voz(z) € L*(Q).

Then for the smooth solution of the problem (1.7)-(1.10), we have the estimate

2 t
a2+ 2 <2672 el + [v0a 2 = 5 [ F(uo(a))dr) + 2720 [ C1ear

1 _ 3 4
+o-(l—e 200 (= hal? + = [hal|?) + Ca, (2.7)
0 « Y

u
where F(u) = / f(s)ds ,the functions C1(-) and Ca(-) depend on ||ul],||v||. Further-
0

more, we have

1 1 4
Jim (g (-, )2+ o2 (-, O]1%) < b maxcﬁbo(2||h1HQ+7Hh2II2)+fp§0Xc2 = En, (2.8)
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_ 1 st 1 3 4
lim = [ [olfuze(, 72 + Y| vza (-, 7)IP)dr < max(boCe + C1) 5 + = [[hall* + = [|ho||*.
t Jo t>0 o ¥

t—o0 b(2)
(2.9)
Proof Taking the inner product of (1.7) with wuy, it follows that
(U:m:a Ut + f(u)a: — QUgy + ﬁux:m: + 21}”:):) = (umm Gl(ua U) + hl(x))a (210)
where
1d 9
(U, ug) = — 5@”“1”
(U:m:v f(u)m) = (uzzxa f(u))
1
:B(ut + f(u):v — QUgg + 200, — G1 — hq, f(u))
o [ P () + 5 (v, f()) = 5(G1 + B, ()
um, —(vvg, f(u)) — = , f(u)).
ﬁdt 8 gt
By using the Sobolev interpolation inequality, we get
| (e, f ()] <HumH (NF @) < Alltg] - [l 55055 < 12HumH2 + C(llul),
2 2y 2
ﬂl(vvx,f(U))l <73 HU||4Hvx||||f( )Nz < 12Humll IIUmH + C([ull, [lo]),
1 4C4
IB(G,f(U))I <—r 7 (lulli=5 + 11155255 + llv[150)
2y 2
_12HumH va\l + C(llull; f[vlD),
(e, h1)| <lugall - [|ha]] < 12HumH2 *thsz
(u:mvy _aumm) = - Oéuua:m” s (ummﬁummx) =0.
From (2.10), we have
1d 9 2 T 9
th[” ug || — B/F(u)daz] + E”umn — 2(Ugg, VVz)
3
< = (tta, G1 (1, ) + o + = [ a]]* + €. (2.11)
Taking the inner product of (1.8) with v, it follows that
(Vzz, vt + (V) g — Y2z + 2(V0)5) = (Vga, G2(u, v) + ha(z)), (2.12)
where 14
__1a 2 _ _ 2
(Vgzy vt) = 2dt||vm” (Vaws —YVzz) vzl

|(Vaa; 9(0)2)| < Cllvge|| - [l9(v)e lvaall® + C,

H_16
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|(Vaz, ho)| < [[vzel] - ([ 7o lva 1 + *IlthQ,

H_16

12(Uaz, VVz) + 2(Vaa, (U0)z)] = 3| /Um Qdm‘ < 3”“$H H”zH4 > 24HU$IH2 6vaH2 +C,

(uazxv Gl) ('sza G2) = (uxa Glx) (Uﬂc7 GZCC))
= _(ux7 Gluux + levx) - (Uxa G2uua: + G2vvx)

G u G u Ux
= —(ux,vx)< GL) G; ) ( o > < —bo([Juz* + [[vz]*)-

Summing up the inequality (2.11) with (2.12), then we have

d 3 4
29(8) + 2bog(t) + alugs|® +7lvas|* < a\lhlll2 + ;I|h2H2 +0, (2.13)

2
where (1) = s | + o — 5 [ Flu)d
Integrating the inequality (2.13), we get

t 1 3 4
(t) < e *"9(0) + 6_%“/ Ce?™%ds + (1 — e ) (= ||hn]|* + = ||ha]).
0 2bg « ol
Noting
2
15 [ Pluydel < Alul§3 < Sllusel +C,
Q
we have

— _ _ 3 4
PP < 2620012620 [* oot i (1-e ) 2 a4 el ),

(2.14)
where the functions C; and C depend on ||u|| and |[v||. From (2.14) we can get (2.8),
(2.9).
Lemma 4 Under the conditions of Lemma 3, we assume that
(1) f(u) € C% g(v) € C?,G; € C?(i =1,2)
(2) up(z) € H*(Q),vo(x) € H*(Q), hi(z) € H(Q)(i = 1,2).
Then for the smooth solution of problem (1.7)-(1.10) we have

5, (1™

t
e 2+ o2 €2 gl + e ) + 27200 [ Gt

where the function Cs depends on ||ul| g1 and ||v|| 1. Furthermore, we have

1 1
Jim (|fuge® + [|vaa*) < 0 e s+ o (*thxH2 *thchQ) =By, (2.16)

5 2
1— e 220 (Zh|1? + = hos||? 2.1
e )(aH 1z | +7H 2:]|%) (2.15)
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Tt [ oltasal? + vlesel s < e Ca+ (Dl + 2ihaaPl. 1)
Proof Taking the inner product of(1.7) with u;z4., we have
(Uszaw Ut + [(U)e — QUge + BUzee + 2002) = (Uggza, G1 + h1), (2.18)
where
| (Uaazas f(1)e)| =|(Uaze, [/ (WP () + f (W) ues)]

SHf”(U)HOOHU:EMH ||ux”i + ”f,(u)HOOHU:UMH |tz |

o

|(Uazaw, —0Uza)| =0tiawa]|®,  (Uzzaw, Biaea) = 0,
| (Uzzze, 2002)| =|(Uszas 2(”325 + vog))| < %vax||2 + %HumaﬁHQ +C,
L [ A e O
Taking the inner product of (1.8) with vyz.,, we have
(Vazzz, Ve — Vzz + 2(u0)z + 9(V)z) = (Vazaa, G2 + h2). (2.20)

Note

|(U:1:mcx7 *'77}:6:1:)| = ’YHUMCIH27

’(UQXEIC{J) 2(UU)$)| :’(Uz:v:m 2<’U,$’U + uv:c))’ = |(v$zz7 2(”1::01) + 2uwvw + uvxa:))|
«
<1glvssel” + Tglhtasal® + .

’(Uat:va;xa g(v)z)’ :‘(v$$$7 g”(U)'UZ(:C) + g'(v)vm)]
SHQN(U)HOOHUJEMHva”i + Hg'(v)HoovaHvaH

<sellvasall” + C,

2 Y
|(Vazaa, h2)| <[|vzza ||| hoz || < ;Hh%HQ + gHu:ccczH27

(uxzmza Gl) + (U:m:zma GZ) :(uxza Gluuzx + levmx + Gluuui + levvg + 2G1uvumvx)
+('sza GQqua: + GZU'Uxm + G2uuui + G2vvvz¢ + QGQUUUI'UI)
(6%
< - bO(||uw:v||2 + ||UM||2) + %HU:BMHQ + TOHUMIHQ +C,

where the funtion C depends on ||ul|g1 and ||v]|z1. From (2.18) and (2.20),we get
d
@(HumHQ + ”UzzH2)+aHume2 + ’YHUM:EHQ + 2b0(Huxx||2 + ||7)m”2)

5 2
< ~lha|® + = |[hze|* + C. (2.21)
a Y
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Thus we have (2.15). From (2.15), we can get (2.16),(2.17).
Lemma 5 Under the conditions of Lemma 4, we suppose that
(1) f(u) € C3,g(v) € C3, Gi(u,v) € C3(i = 1,2),
(2) uor € H3(Q),v0, € H3(Q), hi(z) € H2(Q)(i = 1,2).
Then for the smooth solution of the problem (1.7)-(1.10), we have the following esti-

mates
Es

t )
where Es depends on ||uol| g2, ||vol| g2, || hill g2, (i = 1,2) and t.

Proof Taking the inner product of (1.7) with t?ugs, (1.8) with t2v,e,it follows
that

uzze |l + |Vzazl| < ==, >0, (2.22)

(tPugs, ur + f (W) — QUgg + BUges + 200;) = (Fuge, G + hy) (2.23)
(t2v6, v + (V) e — Yoz + 2(uv) ) = (Hvg6, Go + ha). (2.24)
Since
(t Uy, Ut) = thHt“zmHQ + H\[umx”Z
(t2vx6’vt) Htvxmnz + ||\[Umx||2

2 dt
by using the inequality (see [7])

k-f
IF()lle < Cllulloo + llullist +1) max | DPf (u)l[fullx,
<p<k
where the constant C' is independent of f and u, we have

a

|(t2ux67 flu)z)] < Ct2”umx||||uxmx” < g”tuxmx‘F + C(Htumx”2 +1),
Y

’(t2vx679(v)w)’ < CtQHUMJ»‘HHUMMH < g”tvxcsmazHQ + C(Htvmxnz +1),

o
|(t2uz6» G1+h1)| < g\ltumeQ +C,

(048, G + )| < G0zl + C.

|(t2um6> 20v, )| |(t2umm7 6V Vg + 20V00)| < = Htummu2 + %memHQ +C,

(0,0, 2(uv)s )]

| Vrzxxy 2(”1:1:3:7} + 3ugvy + 3uvazx + U'Uz:m:))‘
«
g”tummw memw‘f‘ca

where the function C' depends on ||ul| ;2,||v| g2 and ¢, we get

d
%(HtumxnzﬁLHtvmxHQ)+a”tumm”2+7”tvmmH2 < C(||tuxm||2+||tvxm||2+1)- (2.25)

Then from (2.25), we can get (2.22).
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3. Existence of Global Smooth Solution and Global Attractor

We use the Galerkin method to establish the existence of the approximate solution
for the problem (1.7)-(1.10).

Let wj(x) (j =1,2,---) be the normalized eigenfunctions of the equation AU+ Au =
0 with the periodic initial value (1.9),(1.10) and A; (j =1,2,---) are the corresponding
eigenvalues. Then {w;(z)} forms a normalized orthogonal basis in L.

Denote the approximate solution of the problem (1.7)-(1.10) by un(x,t), vy (x,t)
in the form

N N
un(z,t) =Y ajy(tws(z), on(z,t) =Y Bin(t)w;(z), (3.1)
j=1 Jj=1

where a;n(t), Bin(t) ( =1,2,---,Nj;N =1,2,--+) (t € R") are the functions satis-
fying the following system of ordinary equations of first order

(unt + f(un)z — QUNze + BUNzoe + 20NUNz — Gi(un,vn) — hi(z),w;(x)) =0, (3.2)

(vnt + 9(UN)e — VONze + 2(uNvN)z — G2 (un, vN) — ho(x), w;(z)) =0 (3.3)

and the initial condition
(UN ($, 0)7 Wy ($)) = (u0($)7 Wy ($)),

(v (2,0),wj(x)) = (vo(x), wj(x)), (3.4)
obviously there holds

(une(z,0),w;(x)) = (un(2,0),w; () = an(0),

(vne(@,0),w;(x)) = (vn(2,0),w;(2)) = Bjn(0).

By the similar a priori estimate we know that there exists a global solution for the
initial value problem of the nonlinear ordinary differential system (3.2)-(3.4) on [0, T].

Theorem 3.1 Suppose that the following conditions are satisfied,

(1) Gi(0,0) = 0(i = 1,2), (€,1) ( o o ) ( ‘ ) > to(lel + ),

—CUlv TG n

(€,m) € R2, by is a constant,

(2) flu) € Cryg(v) € CF, Gi(u,w) € CMi = 1,2), [f(w)] < A, |g(v)| <
Blv[579, |Gy < Col|ul]® + |v|?), hi(z) € H*! (i =1,2), A>0, B>0,Cy>0, k>3,

(3) ug(z) € H*(Q),vo(x) € H*(Q), k > 3.
Then there ezists a unique global smooth solution u(x,t), v(x,t) for the problem (1.7)-
(1.10) and u(x,t) € L>°(0,T; H*),v(z,t) € L>®(0,T; H*).

Proof Similar to the proof of Lemma 1-Lemma 5, we have

sup ([Jun (z, )| g + [low (@, )| ) < Ci,
0<t<T
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un(z,t)

'UN(ZU, t)
the existence of the approximate solution for the problem (3.2)-(3.4). Furthermore,

where constants C}, are independent of N. Let Uy (z,t) = ( ) Thus we get

from the approximate solution sequence vy (z,t) we can choose subsequence vy, (z,t)
and function U(z,t) € L>(0,T, H*),

Un,(z,t) — U(zx,t) weakly star in L>°(0,T;H¥) (k> 3).
From
(unt, unt + f(uN)e — QUNgy + BUNzez + 20NVNg — Gi(un,vn) — hi(z)) =0, (3.5)

(vnts ONt + 9(UN)z — VONze + 2(unvN)z — Go(un, vn) — ha(z)) = 0, (3.6)

we can get
lunell + lowell < C,

where constants Cj. are independent of N. Thus we have
Un, — U weakly star in L%°(0,T;L2(Q2)),N; — oo.

Thus the functions u(z,t),v(z,t) satisfy the problem (1.7)-(1.10) a.e.. There exists a
global smooth solution for the problem (1.7)-(1.10), it is easy to prove that the global
solution is unique.

In order to prove the existence of global attractor of the problem (1.7)-(1.10), we
need the following Babin-Vishik’s result (see [§]).

Theorem 3.2 Let E be a Banach space. Let {S;,t > 0} be a set of semi-group
operators, i.e.,S;: B — E satisfy

SpSr = St+77 So = I,

where I is the identity operator. We also assume that
(1) Operator S is bounded, i.e., for each R > 0, there exists a constant C(R) such
that ||u||g < R implies
|Stullg < C(R) for t € [0,00),

(2) There is a bounded absorbing set By C E ,i.e., for any bounded set B C FE,
there exists a constant T', such that

S:B C By, for t>T,

(3) St is a completely continuous operator for t > 0. Then the operator Semi-group
St has a compact global attractor.

Theorem 3.3 Suppose that the problem (1.7)-(1.10) has a global smooth solution
and assume that
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(1) J(w) € Cg(v) € €% Gifuw) € C2i = 1,2), [fw)] < A, lg(o)] <
Blv[570, |G;] < Co(Jul® + [vf?), (i=1,2), A>0, B>0,6>0

(2) Gi(0.0) = 0(i = 1,2), (&) ( G~ ) ( ¢ ) > bl + Inf),

_le _GQU n

(€,m) € R2, by is a constant

(3) uo(x) € H3(Q),vo(x) € H*(Q) hi(z) € HY(Q) (i =1,2).
Then there exists a global attractor A of the periodic initial value problem (1.7)-(1.10),i.e.,
there is a set A, such that

(a) S;A= A, fort € R

(b) tlgglo dist(S¢B, A) = 0, for any bounded set B C H?(Q), where

dist(S¢B, A) = sup inf ||x — y||g
x€BYEA

and Sy is a semi-group operator generator generated by the problem (1.7)-(1.10).
Proof On account of the result of Theorem 3.2, we shall prove this theorem by
checking the conditions (1)-(3) in Theorem 3.2
Under the assumptions of the theorem, we know that there exists an operator semi-
group generated by the problem (1.7)-(1.10). Thus we set the Banach space E = H?(1),
and S; : H3(Q) — H?*(Q). By using the results of Lemma 1-5, and assuming that
B C H?(Q) belongs to the ball {||u||z2 + ||v]|z2 < R}, we have

1St (uo, vo) I =l|ullzz + Il Fr2 < lluollFr2 + llvollFz + Cr(llhaliFp + [lh2l7n)
§R2—|—02,t20, ug € B, wvg € B,

where C1,C5 are absolute constants. This means that {S;} is uniformly bounded in
H?. Furthermore, from the results of the above Lemmas we see that

1S: (o, vo)l% = lul%e + lol%e < 2(Eo + By + E), (3.7)
Yt > to = To(R, lluoll 2, l[voll a2, | (@) . 1o () ] 1), Hence
A= (ue B2Q),v e HAQ), [ully= + vl < 2B+ By + E»)}

is a bounded absorbing set of the operator semi-group S¢, and from Lemma 5 we see
that

ES(R¢ t)
t

ugzel| + |vzzz | < , t>0

for ||uollzz < R, |lvollgz < R. By using the compact imbedding: H3(Q) — H?%(Q),
we thus know that the operator semi-group S; : H?> — H? for t > 0 is completely
continuous. The proof of the theorem is now completed.

Remark Just as the remarks pointed in [9], the attractor A obtained in Theorem
3.3 is the w-limit set of the absorbing set A, i. e.,

A= W(Z) = ﬁtauZOUtZOSt‘A (3.8)
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4. Upper Bound of Dimensions of Global Attractor

In order to establish the upper bounds of Hausdorff and fractal for the global at-
tractor of the periodic initial value problem (1.7)-(1.10). We need the following linear
variation corresponding to the problem (1.7)-(1.10):

vt + L(u,v)v =0, (4.1)

v(0) = vy, (4.2)

_ ( n(z) )
&(z) )’
gz + Bzz + (f(W)N)2 + 2(v8)z — G1ué — G10€ ) .
_’ygasx + (g/(U)f)x + 2(“6 + 077)90 - G2u£ - G2v£

Since the solution of the problem (1.7)-(1.10) is sufficiently smooth, we can easily

where

L(u,v)v = (

prove that the linear problem (4.1)-(4.2) has a global smooth solution as long as the
initial data are mildly smooth, i.e., there is a solution operator G such that v(t) = Givp.
It can be verified that the semi-group operator Syug, Sivg can be differentiated in Lo(£2),
u U
namely, the Frechet derivative S;U exists, and Givg = SiU, U = ( ), Uy = ( 0 )
[ Vo
In fact, we set

w(t) = ST(UO + Vo) — St(Uo) — Gt(Uo)Vo = Ul(t) — U(t) — l/(t).
Thus we have
Brw(t) = Li(Ur) — Ly(U) + L0 w(t) + Li(U + v +w) — Li(U) + L(U)v,  (4.3)

w(0) =0, (4.4)

where Uy = L1(U) is the operator form of the equation (1.7)-(1.8).Therefore,(4.3) can
be rewritten as the form

Gtw(t) —I—L(U)w = Ao(U, V,w), (45)

where

AU, v,w)=L1(U+v+w)—Li(U)+ LIU)(v +w). (4.6)

By the theory of linear partial differential equations, we have the Lo-estimate
2
lw(®)] < Cllvoll” (4.7)

This implies that the semi-group operator S; is differentiable in Lo (€2).
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Denote by v1(t),---,v(t) the solutions of the linear equation (4.1) corresponding
respectively to the initial data v1(0) = &;,---,v7(0) = &7, where £ = (£1,&2,---,&7) €
Ly(Q)). By simple computations (see [9]),we can deduce that

d
dt

where L(U) = L(S:Up) is a linear map, v — L(U)v; ” A” denotes the exterior product,
Tr the trace of an operator, and @ J(t) the orthographic projection of the space Lo(€2)
to the subspace spanned by {1/1( )+, v(t)}. Therefore, from (4.7) we can obtain that
the change of the volume /\ —of of the J dimensional cube is

@) A= A @) + 207 (LU)Qg) v (t) A+ Avg(t)]* =0, (4.8)

wy(t) =sup  sup |]1/1(t)/\---/\1/J(t)||3\J
uw€AE;€L2,|E|<1 L2

< sup exp (_2/0t inf(TTL(STU()))QJ(T)dT) . (4.9)

ugEA

From the result in [9] we know that w;(t) is sub-exponented with respect to t, i.e.,

wi(t+t") <w;(t)w;t),t,t' > 0. (4.10)

Hence we have

. YUt =
Jim w (t) 1;[ < exp(—2qy), (4.11)
where
1 [t

=1 inf — inf (TrL(S;U, dr | . 4.12
47 tingo Sup (uoEA,|§1I<11,§j€CR t»/O o ( " ( 0))QJ(T) T) ( )

Definition 1 The Hausdorff measure of a set X is defined by

ng(X,d) = hm nH(X d,e) =supngy(X,d,e),
e>0

where
m(X,d,e) mer

and the infimum is taken over the balls with radii r; < e that cover the set X.
The Hausdorff dimension of a set X is defined by a number dg(X) € [0, 00) which
satisfies
TLH(X, d) =0, for d> dH(X)

and
nH(X, d) =o00, for d< dH(X)
Definition 2 The fractal dimension is defined by the number
lgn,(e)

1 bl
lg —
€

drp(X) = Ei% sup
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where ny(g) denotes the smallest number of the balls with radii less than or equal to €
that cover the set X.
From the results of [9] we see that

dp(X) = inf{d > 0,np(X,d) = 0}

where
np(X,d) = lin% sup(e¥ng(€)).
E—>

Since np(X,d) > ng(X,d), we have

Theorem 4.1[10] Let A be an attractor of a nonlinear evolution equation ( such
as the Navier Stokes equation (1.7) etc) that is bounded in H' (). Then if ¢; > 0
for some J, the Hausdorff dimension of X 1is less than or equal to J and its fractal
dimension is less than or equal to

J (1 + max _QZ> (4.13).
Lemma 4.1[7] (A generalization of the Sobolev-Lieb- Thirring inequality) Let @ C

R™ be a bounded domain, and {¢1,¢2,---,} an orthogonal basis in L2(Q). ¢; € H™,

N
and for almost every x € Q, set p(z) = Y |¢j|2. Then we have the estimate
J=1

ko ) N ,
= ) /!%! do + ko S j/|Dm¢j\ dz (4.14),
Jj=1q

€ Ji=1g

where the constant ko depends on m,n, €, but it is independent of N and ¢;.
Theorem 4.2 Under the conditions of Theorem 3.8, the Hausdorff and fractal
dimensions of the global attractor of the problem (1.7)-(1.10) are finite, and

/p(w)”%dfc <
Q

where Jy is the smallest integer which satisfies

b1
> (2)1/2
Jo > (a) )
where
~ min(a, )
T 4k D2
_min(a,’y)

1 1
b= + §||f//(u)Hoo + 5”9%”)”00 + [[tz]loo + vz lco — bo-

4D?

Proof On account of the result of Theorem 4.1, we need to estimate the lower
bound of T'r (L(U)Q ).
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Suppose that {¢1, P2, -+, ¢} is an orthogonal basis of the subspace @ jLa, we have

Ir (L(U)QJ) = Z [(_a¢jxx - Bd)jxmx + (fl(u)¢])x + 2(7”/]])30 - Glud)j - lewjﬁ ¢])

=
+H(=Vjzz + (¢ (V)0))z + 2(udj + vi))z — Goudj — Gauvthj, 15)]

1
=ZIW%W+NWW+2/#@%%®+/Mﬁw+/wﬁm
=1 d

Q Q

+2 / Ux¢j¢jdx - /(Glud’? + G1v¢j¢j + G2U¢j¢j + vaw‘?)dl’
Q Q

+% / g"(v)vxﬁdaz]
Q

+ boJ

> min(q, ) [kl()/pg(a:)d:n - (211))2J
Q

1 1
= (G @ lloe + 5l @) eclloalo + sl + 1l )

— (G @l + 19" @l + il + el ) (410
where
2/3
J= | plz)dz < ( p3(x)dx)1/3(2D) , (4.17)
[oe=(]
J3
/p3($’)d1‘2 D) (4.18)
Q
J
plz) = |95% (4.19)
j=1
Hence
min(a,y) 5 B min(c, )
Tr(LU)Qy) = Fo(2D)? J” + (bo 2D)? )J

1 1
= (G @l + 19" @ e + italloc + ezl ) T >0,

b
it J > (7)%, where
a
o, = min(a,7)
 4kgyD?’
_ min(a, )

1 1
b= 1D2 + §”JM<U)HOO + 5”9%”)”00 + [[tz]loo + [[vz|lco — bo-
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Let Jo— 1< (=)2 < Jo.

In view of

b
a

@ _ bl-a® 2 2
a5, — aJd —bJy ~ 3(aJd —bJpy)

from Theoerm 4.1 we finally obtain

dr(A) < Jo,
2by/ &
dp(A) < Jo [ 14+ —5122
FlA) < o TG b

The proof of the theorem is thus completed.
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