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1. Introduction

In [1], the authors established the unique existence of the smooth solution for the
following coupled nonlinear equations

ut = uxxx + buux + 2vvx, (1.1)

vt = 2(uv)x. (1.2)

These were proposed to describe the interaction process of internal long waves. In [2],
Ito M. proposed a recursion operator by which he inferred that the equations (1.1)
and (1.2) possess infinitely many symmetries and constants of motion. In [3], P.F.He
established the existence of a smooth solution to the system of coupled nonlinear KdV
equation [4]

ut = a(uxxx + buux) + 2bvvx, (1.3)

vt = −vxxx − 3uvx, (1.4)

where a and b are constants.
We remark that M. E. Schonbek [5] dealt with a very similar system of coupled

nonlinear equation [6]

ut = uxxx − uux − vx, (1.5)

vt = −(uv)x. (1.6)
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The global existence of a weak solution was established via the technique of parabolic
regularization and Dunford’s theorem on weakly sequentially compact L1 sets.

In this paper, we consider the following periodic initial value problem of damped
coupled nonlinear wave equations

ut + f(u)x − αuxx + βuxxx + 2vvx = G1(u, v) + h1(x), (1.7)

vt − γvxx + (2uv)x + g(v)x = G2(u, v) + h2(x), (1.8)

u(x + D, t) = u(x−D, t), v(x + D, t) = v(x−D, t), x ∈ R, t ≥ 0, (1.9)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R, (1.10)

where D > 0, α > 0, β 6= 0, γ > 0 are real numbers, and
∫ D

−D
u(x, t)dx = 0,

∫ D

−D
v(x, t)dx =

0. We establish the t-independent a priori estimates of the problem (1.7)-(1.10) and
get the estimate of upper bounds of Hausdorff and fractal dimensions for the global
attractor.

To simplify the notation in this paper, we shall denote by ‖ · ‖ the norm ‖ · ‖L2 ,
by ‖ · ‖p the norm ‖ · ‖Lp , by ‖ · ‖∞ the norm ‖ · ‖L∞ , by ‖ · ‖m the norm ‖ · ‖Hm ,
Ω = (−D, D).

2. t-independent A Priori Estimates of Problem (1.7)-(1.10)

Lemma 1 Suppose that

(1) Gi(0, 0) = 0 (i = 1, 2), (ξ, η)

(
−G1u −G2u

−G1v −G2v

) (
ξ

η

)
≥ b0(|ξ|2 + |η|2),

(ξ, η) ∈ R2, b0 > 0 is a constant,
(2) u0 ∈ L2(Ω), v0 ∈ L2(Ω), hi(x) ∈ L2(Ω)(i = 1, 2),Ω = (−D, D).

Then for the smooth solution of the problem (1.7)-(1.10), we have the following estimate

‖u(·, t)‖2 + ‖v(·, t)‖2 ≤ e−b0t(‖u0‖2 + ‖v0‖2) +
1
b2
0

(1− e−b0t)(‖h1‖2 + ‖h2‖2). (2.1)

Furthermore, we have

lim
t→∞(‖u(·, t)‖2 + ‖v(·, t)‖2) ≤ 1

b2
0

(‖h1‖2 + ‖h2‖2) = E0, (2.2)

lim
t→∞

1
t

∫ t

0
[α‖ux(·, τ)‖2 + γ‖vx(·, τ)‖2]dτ ≤ 1

b2
0

(‖h1‖2 + ‖h2‖2). (2.3)

Proof Taking the inner product of (1.7) with u, (1.8) with v, then we have

(u, ut + f(u)x − αuxx + βuxxx + 2vvx) = (u,G1(u, v) + h1(x)), (2.4)

(v, vt − γvxx + (2uv)x + g(v)x) = (v, G2(u, v) + h2(x)), (2.5)
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where

(u,w) =
∫ D

−D
u(x, t)w(x, t)dx, (u, f(u)x) = 0,

(u,−αuxx) = α‖ux‖2, (v,−γvxx) = γ‖vx‖2,

(u, βuxxx) = 0, (v, g(v)x) = 0,

(u, 2vvx) + (v, 2(uv)x) = 2
∫

uvvxdx− 2
∫

uvvxdx = 0,

(u,G1(u, v)) + (v, G2(u, v)) = (u,G1uu + G1vv) + (v, G2uu + G2vv)

= (u, v)

(
−G1u −G2u

−G1v −G2v

) (
u

v

)
≤ −b0(‖u‖2 + ‖v‖2),

(u, h1(x)) ≤ b0

2
‖u‖2 +

1
2b0

‖h1‖2, (v, h2(x)) ≤ b0

2
‖v‖2 +

1
2b0

‖h2‖2.

Summing up the equality (2.4) and (2.5), we get

1
2

d

dt
(‖u‖2 + ‖v‖2) + α‖ux‖2 + γ‖vx‖2 +

b0

2
(‖u‖2 + ‖v‖2) ≤ 1

2b0
(‖h1‖2 + ‖h2‖2). (2.6)

The inequality (2.6) implies (2.1)-(2.3).
Lemma 2 ( Sobolev’s Inequality [7]) Suppose that u ∈ Lq(Ω), where 1 ≤ r,

q < ∞, Ω ∈ Rn. Then there exists a constant C > 0, such that

‖Dju‖Lp(Ω) ≤ C‖Dmu‖a
Lr(Ω)‖u‖1−a

Lq(Ω)

where 0 ≤ j ≤ m, j/m ≤ a ≤ 1, 1 ≤ p ≤ ∞ and
1
p

=
j

n
+ a(

1
r
− m

n
) + (1− a)

1
q
.

Lemma 3 Under the conditions of Lemma 1, we suppose that
(1) f(u) ∈ C1,g(v) ∈ C1, Gi(u, v) ∈ C1(i = 1, 2) and |f(u)| ≤ A|u|5−δ, |g(v)| ≤

B|v|6−δ, A > 0, B > 0, δ ≥ 0, |Gi| ≤ Ci(|u|5 + |v|5), Ci > 0;
(2) u0x(x) ∈ L2(Ω), v0x(x) ∈ L2(Ω).
Then for the smooth solution of the problem (1.7)-(1.10), we have the estimate

‖ux‖2 + ‖vx‖2 ≤2e−2b0t(‖u0x‖2 + ‖v0x‖2 − 2
β

∫
F (u0(x))dx) + 2e−2b0t

∫ t

0
C1e

2b0τdτ

+
1
b0

(1− e−2b0t)(
3
α
‖h1‖2 +

4
γ
‖h2‖2) + C2, (2.7)

where F (u) =
∫ u

0
f(s)ds ,the functions C1(·) and C2(·) depend on ‖u‖,‖v‖. Further-

more, we have

lim
t→∞(‖ux(·, t)‖2+‖vx(·, t)‖2) ≤ 1

b0
max
t≥0

C1+
1
b0

(
3
α
‖h1‖2+

4
γ
‖h2‖2)+max

t≥0
C2 ≡ E1, (2.8)
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lim
t→∞

1
t

∫ t

0
[α‖uxx(·, τ)‖2 + γ‖vxx(·, τ)‖2]dτ ≤ max

t≥0
(b0C2 + C1)

1
b2
0

+
3
α
‖h1‖2 +

4
γ
‖h2‖2.

(2.9)
Proof Taking the inner product of (1.7) with uxx it follows that

(uxx, ut + f(u)x − αuxx + βuxxx + 2vvx) = (uxx, G1(u, v) + h1(x)), (2.10)

where

(uxx, ut) =− 1
2

d

dt
‖ux‖2

(uxx, f(u)x) =− (uxxx, f(u))

=
1
β

(ut + f(u)x − αuxx + 2vvx −G1 − h1, f(u))

=
1
β

d

dt

∫
F (u)dx− α

β
(uxx, f(u)) +

2
β

(vvx, f(u))− 1
β

(G1 + h1, f(u)).

By using the Sobolev interpolation inequality, we get

|(uxx, f(u))| ≤‖uxx‖ · ‖f(u)‖ ≤ A‖uxx‖ · ‖u‖5−δ
10−2δ ≤

β

12
‖uxx‖2 + C(‖u‖),

2
β
|(vvx, f(u))| ≤ 2

|β|‖v‖4‖vx‖‖f(u)‖2 ≤ α

12
‖uxx‖2 +

γ

8
‖vxx‖2 + C(‖u‖, ‖v‖),

| 1
β

(G, f(u))| ≤4C1

|β| (‖u‖10−δ
10−δ + ‖v‖5−δ

10−2δ + ‖v‖5
10)

≤ α

12
‖uxx‖2 +

γ

8
‖vxx‖2 + C(‖u‖, ‖v‖),

|(uxx, h1)| ≤‖uxx‖ · ‖h1‖ ≤ α

12
‖uxx‖2 +

3
α
‖h1‖2,

(uxx,−αuxx) =− α‖uxx‖2, (uxx, βuxxx) = 0.

From (2.10), we have

1
2

d

dt
[‖ux‖2 − 2

β

∫
F (u)dx] +

7α

12
‖uxx‖2 − 2(uxx, vvx)

≤ −(uxx, G1(u, v)) +
γ

4
‖uxx‖2 +

3
α
‖h1‖2 + C. (2.11)

Taking the inner product of (1.8) with vxx, it follows that

(vxx, vt + g(v)x − γvxx + 2(vv)x) = (vxx, G2(u, v) + h2(x)), (2.12)

where
(vxx, vt) = −1

2
d

dt
‖vx‖2 (vxx,−γvxx) = −γ‖vxx‖2,

|(vxx, g(v)x)| ≤ C‖vxx‖ · ‖g(v)x‖ ≤ γ

16
‖vxx‖2 + C,
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|(vxx, h2)| ≤ ‖vxx‖ · ‖h2‖ ≤ γ

16
‖vxx‖2 +

4
γ
‖h2‖2,

|2(uxx, vvx) + 2(vxx, (uv)x)| = 3|
∫

uxv2
xdx| ≤ 3‖ux‖2‖vx‖2

4 ≤
α

24
‖uxx‖2 +

γ

16
‖vxx‖2 + C,

(uxx, G1) + (vxx, G2) = −(ux, G1x)− (vx, G2x),

= −(ux, G1uux + G1vvx)− (vx, G2uux + G2vvx)

= −(ux, vx)

(
G1u G2u

G1v G2v

) (
ux

vx

)
≤ −b0(‖ux‖2 + ‖vx‖2).

Summing up the inequality (2.11) with (2.12), then we have

d

dt
φ(t) + 2b0φ(t) + α‖uxx‖2 + γ‖vxx‖2 ≤ 3

α
‖h1‖2 +

4
γ
‖h2‖2 + C, (2.13)

where φ(t) = ‖ux‖2 + ‖vx‖2 − 2
β

∫
F (u)dx

Integrating the inequality (2.13), we get

φ(t) ≤ e−2b0φ(0) + e−2b0t
∫ t

0
Ce2b0sds +

1
2b0

(1− e−2b0t)(
3
α
‖h1‖2 +

4
γ
‖h2‖2).

Noting

| 2
β

∫

Ω

F (u)dx| ≤ A‖u‖6−δ
6−δ ≤

1
2
‖uxx‖2 + C,

we have

‖ux‖2+‖vx‖2 ≤ 2e−2b0tφ(0)+2e−2b0t
∫ t

0
C1e

2b0sds+
1
b0

(1−e−2b0t)(
3
α
‖h1‖2+

4
γ
‖h2‖2+C2),

(2.14)
where the functions C1 and C2 depend on ‖u‖ and ‖v‖. From (2.14) we can get (2.8),
(2.9).

Lemma 4 Under the conditions of Lemma 3, we assume that
(1) f(u) ∈ C2, g(v) ∈ C2, Gi ∈ C2(i = 1, 2)
(2) u0(x) ∈ H2(Ω), v0(x) ∈ H2(Ω), hi(x) ∈ H1(Ω)(i = 1, 2).

Then for the smooth solution of problem (1.7)-(1.10) we have

‖uxx‖2 + ‖vxx‖2 ≤ e−2b0t(‖u0xx‖2 + ‖v0xx‖2) + 2e−2b0t
∫ t

0
C3e

2b0sds

+
1

2b0
(1− e−2b0t)(

5
α
‖h1x‖2 +

2
γ
‖h2x‖2) (2.15)

where the function C3 depends on ‖u‖H1 and ‖v‖H1. Furthermore, we have

lim
t→∞(‖uxx‖2 + ‖vxx‖2) ≤ 1

2b0
max
t≥0

C3 +
1

2b0
(
5
α
‖h1x‖2 +

2
γ
‖h2x‖2) = E2, (2.16)
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lim
t→∞

1
t

∫ t

0
[α‖uxxx‖2 + γ‖vxxx‖2]ds ≤ max

t≥0
C3 + [

5
α
‖h1x‖2 +

2
γ
‖h2x‖2]. (2.17)

Proof Taking the inner product of(1.7) with uxxxx, we have

(uxxxx, ut + f(u)x − αuxx + βuxxx + 2vvx) = (uxxxx, G1 + h1), (2.18)

where

|(uxxxx, f(u)x)| =|(uxxx, f ′′(u)u2(x) + f ′(u)uxx)|
≤‖f ′′(u)‖∞‖uxxx‖‖ux‖2

4 + ‖f ′(u)‖∞‖uxxx‖‖uxx‖
≤ α

10
‖uxxx‖2 + C, (2.19)

|(uxxxx,−αuxx)| =α‖uxxx‖2, (uxxxx, βuxxx) = 0,

|(uxxxx, 2vvx)| =|(uxxx, 2(v2
x + vvx))| ≤ γ

8
‖vxxx‖2 +

α

10
‖uxxx‖2 + C,

|(uxxxx, h1)| ≤‖uxxx‖‖h1x‖ ≤ 5
α
‖h1x‖2 +

α

10
‖uxxx‖2.

Taking the inner product of (1.8) with vxxxx, we have

(vxxxx, vt − γvxx + 2(uv)x + g(v)x) = (vxxxx, G2 + h2). (2.20)

Note
|(vxxxx,−γvxx)| = γ‖vxxx‖2,

|(vxxxx, 2(uv)x)| =|(vxxx, 2(uxv + uvx))| = |(vxxx, 2(uxxv + 2uxvx + uvxx))|
≤ γ

16
‖vxxx‖2 +

α

10
‖uxxx‖2 + C,

|(vxxxx, g(v)x)| =|(vxxx, g′′(v)v2(x) + g′(v)vxx)|
≤‖g′′(v)‖∞‖vxxx‖‖vx‖2

4 + ‖g′(v)‖∞‖vxxx‖‖vxx‖
≤ γ

16
‖vxxx‖2 + C,

|(vxxxx, h2)| ≤‖vxxx‖‖h2x‖ ≤ 2
γ
‖h2x‖2 +

γ

8
‖uxxx‖2,

(uxxxx, G1) + (vxxxx, G2) =(uxx, G1uuxx + G1vvxx + G1uuu2
x + G1vvv

2
x + 2G1uvuxvx)

+(vxx, G2uuxx + G2vvxx + G2uuu2
x + G2vvv

2
x + 2G2uvuxvx)

≤− b0(‖uxx‖2 + ‖vxx‖2) +
γ

8
‖vxxx‖2 +

α

10
‖uxxx‖2 + C,

where the funtion C depends on ‖u‖H1 and ‖v‖H1 . From (2.18) and (2.20),we get

d

dt
(‖uxx‖2 + ‖vxx‖2)+α‖uxxx‖2 + γ‖vxxx‖2 + 2b0(‖uxx‖2 + ‖vxx‖2)

≤ 5
α
‖h1x‖2 +

2
γ
‖h2x‖2 + C. (2.21)
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Thus we have (2.15). From (2.15), we can get (2.16),(2.17).
Lemma 5 Under the conditions of Lemma 4, we suppose that
(1) f(u) ∈ C3,g(v) ∈ C3, Gi(u, v) ∈ C3(i = 1, 2),
(2) u0x ∈ H3(Ω), v0x ∈ H3(Ω), hi(x) ∈ H2(Ω)(i = 1, 2).

Then for the smooth solution of the problem (1.7)-(1.10), we have the following esti-
mates

‖uxxx‖+ ‖vxxx‖ ≤ E3

t
, t > 0, (2.22)

where E3 depends on ‖u0‖H2,‖v0‖H2,‖hi‖H2,(i = 1, 2) and t.
Proof Taking the inner product of (1.7) with t2ux6 , (1.8) with t2vx6 ,it follows

that
(t2ux6 , ut + f(u)x − αuxx + βuxxx + 2vvx) = (t2ux6 , G1 + h1) (2.23)

(t2vx6 , vt + g(v)x − γvxx + 2(uv)x) = (t2vx6 , G2 + h2). (2.24)

Since
(t2ux6 , ut) =

1
2

d

dt
‖tuxxx‖2 + ‖

√
tuxxx‖2,

(t2vx6 , vt) =
1
2

d

dt
‖tvxxx‖2 + ‖

√
tvxxx‖2,

by using the inequality (see [7])

‖f(u)‖k ≤ C(‖u‖∞ + ‖u‖k−1
∞ + 1) max

1≤p≤k
|Dpf(u)|‖u‖k,

where the constant C is independent of f and u, we have

|(t2ux6 , f(u)x)| ≤ Ct2‖uxxx‖‖uxxxx‖ ≤ α

8
‖tuxxxx‖2 + C(‖tuxxx‖2 + 1),

|(t2vx6 , g(v)x)| ≤ Ct2‖vxxx‖‖vxxxx‖ ≤ γ

8
‖tvxxxx‖2 + C(‖tvxxx‖2 + 1),

|(t2ux6 , G1 + h1)| ≤ α

8
‖tuxxxx‖2 + C,

|(t2vx6 , G2 + h2)| ≤ γ

8
‖tvxxxx‖2 + C,

|(t2ux6 , 2vvx)| =|(t2uxxxx, 6vxvxx + 2vvxxx)| ≤ α

8
‖tuxxxx‖2 +

γ

8
‖tvxxxx‖2 + C,

|(t2vx6 , 2(uv)x)| =|(t2vxxxx, 2(uxxxv + 3uxxvx + 3uvxx + uvxxx))|
≤α

8
‖tuxxxx‖2 +

γ

8
‖tvxxxx‖2 + C,

where the function C depends on ‖u‖H2 ,‖v‖H2 and t, we get

d

dt
(‖tuxxx‖2+‖tvxxx‖2)+α‖tuxxxx‖2+γ‖tvxxxx‖2 ≤ C(‖tuxxx‖2+‖tvxxx‖2+1). (2.25)

Then from (2.25), we can get (2.22).
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3. Existence of Global Smooth Solution and Global Attractor

We use the Galerkin method to establish the existence of the approximate solution
for the problem (1.7)-(1.10).

Let ωj(x) (j = 1, 2, · · ·) be the normalized eigenfunctions of the equation ∆U+λu =
0 with the periodic initial value (1.9),(1.10) and λj (j = 1, 2, · · ·) are the corresponding
eigenvalues. Then {ωj(x)} forms a normalized orthogonal basis in L2.

Denote the approximate solution of the problem (1.7)-(1.10) by uN (x, t), vN (x, t)
in the form

uN (x, t) =
N∑

j=1

αjN (t)ωj(x), vN (x, t) =
N∑

j=1

βjN (t)ωj(x), (3.1)

where αjN (t), βjN (t) (j = 1, 2, · · · , Nj ;N = 1, 2, · · ·) (t ∈ R+) are the functions satis-
fying the following system of ordinary equations of first order

(uNt + f(uN )x − αuNxx + βuNxxx + 2vNvNx −G1(uN , vN )− h1(x), ωj(x)) = 0, (3.2)

(vNt + g(vN )x − γvNxx + 2(uNvN )x −G2(uN , vN )− h2(x), ωj(x)) = 0 (3.3)

and the initial condition

(uN (x, 0), ωj(x)) = (u0(x), ωj(x)),

(vN (x, 0), ωj(x)) = (v0(x), ωj(x)), (3.4)

obviously there holds

(uNt(x, 0), ωj(x)) = (uN (x, 0), ωj(x)) = α′jN (0),

(vNt(x, 0), ωj(x)) = (vN (x, 0), ωj(x)) = β′jN (0).

By the similar a priori estimate we know that there exists a global solution for the
initial value problem of the nonlinear ordinary differential system (3.2)-(3.4) on [0, T ].

Theorem 3.1 Suppose that the following conditions are satisfied,

(1) Gi(0, 0) = 0(i = 1, 2), (ξ, η)

(
−G1u −G2u

−G1v −G2v

) (
ξ

η

)
≥ b0(|ξ|2 + |η|2),

(ξ, η) ∈ R2, b0 is a constant,
(2) f(u) ∈ Ck,g(v) ∈ Ck, Gi(u, v) ∈ Ck(i = 1, 2), |f(u)| ≤ A|u|5−δ, |g(v)| ≤

B|v|6−δ, |Gi| ≤ C0(|u|5 + |v|5), hi(x) ∈ Hk−1 (i = 1, 2), A > 0, B > 0, C0 > 0, k ≥ 3,

(3) u0(x) ∈ Hk(Ω), v0(x) ∈ Hk(Ω), k ≥ 3.
Then there exists a unique global smooth solution u(x, t), v(x, t) for the problem (1.7)-
(1.10) and u(x, t) ∈ L∞(0, T ;Hk),v(x, t) ∈ L∞(0, T ;Hk).

Proof Similar to the proof of Lemma 1-Lemma 5, we have

sup
0≤t≤T

(‖uN (x, t)‖Hk + ‖vN (x, t)‖Hk) ≤ Ck,
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where constants Ck are independent of N . Let UN (x, t) =

(
uN (x, t)
vN (x, t)

)
. Thus we get

the existence of the approximate solution for the problem (3.2)-(3.4). Furthermore,
from the approximate solution sequence vN (x, t) we can choose subsequence vNi(x, t)
and function U(x, t) ∈ L∞(0, T, Hk),

UNi(x, t) → U(x, t) weakly star in L∞(0,T;Hk) (k ≥ 3).

From

(uNt, uNt + f(uN )x − αuNxx + βuNxxx + 2vNvNx −G1(uN , vN )− h1(x)) = 0, (3.5)

(vNt, vNt + g(vN )x − γvNxx + 2(uNvN )x −G2(uN , vN )− h2(x)) = 0, (3.6)

we can get
‖uNt‖+ ‖vNt‖ ≤ C ′

k,

where constants C ′
k are independent of N . Thus we have

UNi → Ut weakly star in L∞(0,T;L2(Ω)),Ni →∞.

Thus the functions u(x, t), v(x, t) satisfy the problem (1.7)-(1.10) a.e.. There exists a
global smooth solution for the problem (1.7)-(1.10), it is easy to prove that the global
solution is unique.

In order to prove the existence of global attractor of the problem (1.7)-(1.10), we
need the following Babin-Vishik’s result (see [8]).

Theorem 3.2 Let E be a Banach space. Let {St, t ≥ 0} be a set of semi-group
operators, i.e.,St: E → E satisfy

StSτ = St+τ , S0 = I,

where I is the identity operator. We also assume that
(1) Operator St is bounded, i.e., for each R > 0, there exists a constant C(R) such

that ‖u‖E ≤ R implies
‖Stu‖E ≤ C(R) for t ∈ [0,∞),

(2) There is a bounded absorbing set B0 ⊂ E ,i.e., for any bounded set B ⊂ E,
there exists a constant T , such that

StB ⊂ B0, for t ≥ T,

(3) St is a completely continuous operator for t > 0. Then the operator Semi-group
St has a compact global attractor.

Theorem 3.3 Suppose that the problem (1.7)-(1.10) has a global smooth solution
and assume that
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(1) f(u) ∈ C3,g(v) ∈ C3, Gi(u, v) ∈ C2(i = 1, 2), |f(u)| ≤ A|u|5−δ, |g(v)| ≤
B|v|6−δ, |Gi| ≤ C0(|u|5 + |v|5), (i = 1, 2), A > 0, B > 0, δ > 0

(2) Gi(0, 0) = 0(i = 1, 2), (ξ, η)

(
−G1u −G2u

−G1v −G2v

) (
ξ

η

)
≥ b0(|ξ|2 + |η|2),

(ξ, η) ∈ R2, b0 is a constant
(3) u0(x) ∈ H2(Ω), v0(x) ∈ H2(Ω) hi(x) ∈ H1(Ω) (i = 1, 2).

Then there exists a global attractor A of the periodic initial value problem (1.7)-(1.10),i.e.,
there is a set A, such that

(a) StA = A, for t ∈ R+

(b) lim
t→∞dist(StB,A) = 0, for any bounded set B ⊂ H2(Ω), where

dist(StB,A) = sup
x∈B

inf
y∈A

‖x− y‖E

and St is a semi-group operator generator generated by the problem (1.7)-(1.10).
Proof On account of the result of Theorem 3.2, we shall prove this theorem by

checking the conditions (1)-(3) in Theorem 3.2
Under the assumptions of the theorem, we know that there exists an operator semi-

group generated by the problem (1.7)-(1.10). Thus we set the Banach space E = H2(Ω),
and St : H2(Ω) → H2(Ω). By using the results of Lemma 1-5, and assuming that
B ⊂ H2(Ω) belongs to the ball {‖u‖H2 + ‖v‖H2 ≤ R}, we have

‖St(u0, v0)‖2
E =‖u‖2

H2 + ‖v‖2
H2 ≤ ‖u0‖2

H2 + ‖v0‖2
H2 + C1(‖h1‖2

H1 + ‖h2‖2
H1)

≤R2 + C2, t ≥ 0, u0 ∈ B, v0 ∈ B,

where C1,C2 are absolute constants. This means that {St} is uniformly bounded in
H2. Furthermore, from the results of the above Lemmas we see that

‖St(u0, v0)‖2
E = ‖u‖2

H2 + ‖v‖2
H2 ≤ 2(E0 + E1 + E2), (3.7)

∀ t ≥ t0 = T0(R, ‖u0‖H2 , ‖v0‖H2 , ‖h1(x)‖H1 , ‖h2(x)‖H1), Hence

A = {u ∈ H2(Ω), v ∈ H2(Ω), ‖u‖H2 + ‖v‖H2 ≤ 2(E0 + E1 + E2)}

is a bounded absorbing set of the operator semi-group St, and from Lemma 5 we see
that

‖uxxx‖+ ‖vxxx‖ ≤ E3(R, t)
t

, t > 0

for ‖u0‖H2 ≤ R, ‖v0‖H2 ≤ R. By using the compact imbedding: H3(Ω) ↪→ H2(Ω),
we thus know that the operator semi-group St : H2 → H2 for t > 0 is completely
continuous. The proof of the theorem is now completed.

Remark Just as the remarks pointed in [9], the attractor A obtained in Theorem
3.3 is the ω-limit set of the absorbing set A, i. e.,

A = ω(A) = ∩tau≥0∪t≥0StA . (3.8)
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4. Upper Bound of Dimensions of Global Attractor

In order to establish the upper bounds of Hausdorff and fractal for the global at-
tractor of the periodic initial value problem (1.7)-(1.10). We need the following linear
variation corresponding to the problem (1.7)-(1.10):

νt + L(u, v)ν = 0, (4.1)

ν(0) = ν0, (4.2)

where

ν =

(
η(x)
ξ(x)

)
, ν0 =

(
η(x)
ξ(x)

)
,

L(u, v)ν =

(
−αηxx + βηxxx + (f ′(u)η)x + 2(vξ)x −G1uξ −G1vξ

−γξxx + (g′(v)ξ)x + 2(uξ + vη)x −G2uξ −G2vξ

)
.

Since the solution of the problem (1.7)-(1.10) is sufficiently smooth, we can easily
prove that the linear problem (4.1)-(4.2) has a global smooth solution as long as the
initial data are mildly smooth, i.e., there is a solution operator Gt such that ν(t) = Gtν0.
It can be verified that the semi-group operator Stu0, Stv0 can be differentiated in L2(Ω),

namely, the Frechet derivative S′tU exists, and Gtν0 = StU , U =

(
u

v

)
, U0 =

(
u0

v0

)
.

In fact, we set

ω(t) = Sτ (U0 + ν0)− St(U0)−Gt(U0)ν0 = U1(t)− U(t)− ν(t).

Thus we have

∂tω(t) = L1(U1)− L1(U) + L(U)ν(t) + L1(U + ν + ω)− L1(U) + L(U)ν, (4.3)

ω(0) = 0, (4.4)

where Ut = L1(U) is the operator form of the equation (1.7)-(1.8).Therefore,(4.3) can
be rewritten as the form

∂tω(t) + L(U)ω = Λ0(U, ν, ω), (4.5)

where
Λ0(U, ν, ω) = L1(U + ν + ω)− L1(U) + L(U)(ν + ω). (4.6)

By the theory of linear partial differential equations, we have the L2-estimate

‖ω(t)‖ ≤ C‖ν0‖2. (4.7)

This implies that the semi-group operator St is differentiable in L2(Ω).
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Denote by ν1(t), · · · , νJ(t) the solutions of the linear equation (4.1) corresponding
respectively to the initial data ν1(0) = ξ1, · · · , νJ(0) = ξJ , where ξ = (ξ1, ξ2, · · · , ξJ) ∈
L2(Ω). By simple computations (see [9]),we can deduce that

d

dt
‖ν1(t) ∧ · · · ∧ νJ(t)‖2 + 2Tr (L(U)QJ) ‖ν1(t) ∧ · · · ∧ νJ(t)‖2 = 0, (4.8)

where L(U) = L(StU0) is a linear map, ν → L(U)ν; ”∧ ” denotes the exterior product,
Tr the trace of an operator, and QJ(t) the orthographic projection of the space L2(Ω)
to the subspace spanned by {ν1(t), · · · , νJ(t)}. Therefore, from (4.7) we can obtain that
the change of the volume ∧J

j=0ξ of the J dimensional cube is

ωJ(t) = sup
u0∈A

sup
ξj∈L2,|ξ|≤1

‖ν1(t) ∧ · · · ∧ νJ(t)‖2
∧J

L2

≤ sup
u0∈A

exp
(
−2

∫ t

0
inf(TrL(SτU0))QJ(τ)dτ

)
. (4.9)

From the result in [9] we know that ωj(t) is sub-exponented with respect to t, i.e.,

ωj(t + t′) ≤ ωj(t)ωj(t′), t, t′ ≥ 0. (4.10)

Hence we have
lim
t→∞ωJ(t)1/t =

∏

J

≤ exp(−2qJ), (4.11)

where

qJ = lim
t→∞ sup

(
inf

u0∈A,|ξ|≤1,ξj∈CR

1
t

∫ t

0
inf(TrL(SτU0))QJ(τ)dτ

)
. (4.12)

Definition 1 The Hausdorff measure of a set X is defined by

nH(X, d) = lim
ε→0

nH(X, d, ε) = sup
ε>0

nH(X, d, ε),

where
nH(X, d, ε) = inf

∑

i

rd
i

and the infimum is taken over the balls with radii ri ≤ ε that cover the set X.
The Hausdorff dimension of a set X is defined by a number dH(X) ∈ [0,∞) which

satisfies
nH(X, d) = 0, for d > dH(X)

and
nH(X, d) = ∞, for d < dH(X).

Definition 2 The fractal dimension is defined by the number

dF (X) = lim
ε>0

sup
lg nx(ε)

lg
1
ε

,
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where nx(ε) denotes the smallest number of the balls with radii less than or equal to ε

that cover the set X.
From the results of [9] we see that

dF (X) = inf{d > 0, nF (X, d) = 0}

where
nF (X, d) = lim

ε→0
sup(εdnx(ε)).

Since nF (X, d) ≥ nH(X, d), we have
Theorem 4.1[10] Let A be an attractor of a nonlinear evolution equation ( such

as the Navier Stokes equation (1.7) etc) that is bounded in H1(Ω). Then if qJ > 0
for some J , the Hausdorff dimension of X is less than or equal to J and its fractal
dimension is less than or equal to

J

(
1 + max

1≤l≤J

−ql

qJ

)
(4.13).

Lemma 4.1[7] (A generalization of the Sobolev-Lieb-Thirring inequality) Let Ω ⊂
Rn be a bounded domain, and {φ1, φ2, · · · , } an orthogonal basis in L2(Ω). φi ∈ Hm,

and for almost every x ∈ Ω, set ρ(x) =
N∑

J=1
|φj |2. Then we have the estimate

∫

Ω

ρ(x)1+
2
n dx ≤ k0

|Ω| 2m
n

N∑

j=1

∫

Ω

|φj |2dx + k0

N∑

j=1

∫

Ω

|Dmφj |2dx (4.14),

where the constant k0 depends on m,n, Ω, but it is independent of N and φj.
Theorem 4.2 Under the conditions of Theorem 3.3, the Hausdorff and fractal

dimensions of the global attractor of the problem (1.7)-(1.10) are finite, and

dH(A) ≤ J0, dF (A) ≤ 2J0, (4.15)

where J0 is the smallest integer which satisfies

J0 ≥ (
b

a
)1/2,

where

a =
min(α, γ)
4k0γD2

,

b =
min(α, γ)

4D2
+

1
2
‖f ′′(u)‖∞ +

1
2
‖g′′(v)‖∞ + ‖ux‖∞ + ‖vx‖∞ − b0.

Proof On account of the result of Theorem 4.1, we need to estimate the lower
bound of Tr (L(U)QJ).
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Suppose that {φ1, φ2, · · · , φJ} is an orthogonal basis of the subspace QJL2, we have

Tr (L(U)QJ) =
∑

j=1

[
(−αφjxx − βφjxxx + (f ′(u)φj)x + 2(vψj)x −G1uφj −G1vψj , φj)

+(−γψjxx + (g′(v)ψj)x + 2(uφj + vψj)x −G2uφj −G2vψj , ψj)
]

=
∑

j=1


α‖φjx‖2 + γ‖ψjx‖2 +

1
2

∫

Ω

f ′′(u)uxφ2
jdx +

∫

Ω

uxφ2
jdx +

∫

Ω

vxψ2
j dx

+2
∫

Ω

vxφjψjdx−
∫

Ω

(G1uφ2
j + G1vφjψj + G2uφjψj + G2vψ

2
j )dx

+
1
2

∫

Ω

g′′(v)vxψ2
j dx




≥min(α, γ)


 1

k0

∫

Ω

ρ3(x)dx− 1
(2D)2

J


 + b0J

−
(

1
2
‖f ′′(u)‖∞ +

1
2
‖g′′(v)‖∞‖vx‖∞ + ‖ux‖∞ + ‖vx‖∞

)

−
(

1
2
‖f ′′(u)ux‖∞ +

1
2
‖g′′(v)vx‖∞ + ‖ux‖∞ + ‖vx‖∞

)
J, (4.16)

where

J =
∫

Ω

ρ(x)dx ≤



∫

Ω

ρ3(x)dx)1/3(2D




2/3

, (4.17)

∫

Ω

ρ3(x)dx ≥ J3

(2D)2
, (4.18)

ρ(x) =
J∑

j=1

|Φj |2. (4.19)

Hence

Tr (L(U)QJ) ≥min(α, γ)
k0(2D)2

J3 + (b0 − min(α, γ)
(2D)2

)J

−
(

1
2
‖f ′′(u)‖∞ +

1
2
‖g′′(v)‖∞ + ‖ux‖∞ + ‖vx‖∞

)
J > 0,

if J > (
b

a
)

1
2 , where

a =
min(α, γ)
4k0γD2

,

b =
min(α, γ)

4D2
+

1
2
‖f ′′(u)‖∞ +

1
2
‖g′′(v)‖∞ + ‖ux‖∞ + ‖vx‖∞ − b0.
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Let J0 − 1 ≤ (
b

a
)

1
2 ≤ J0.

In view of
ql

qJ0

≤ bl − al3

aJ3
0 − bJ0

≤
2b

√
b
3a

3(aJ3
0 − bJ0)

from Theoerm 4.1 we finally obtain

dH(A) ≤ J0,

dF (A) ≤ J0


1 +

2b
√

b
3a

aJ3
0 − bJ0


 .

The proof of the theorem is thus completed.
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