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1. Introduction

Ferromagnetic materials can attain a large magnetization under the action of a small
applied magnetic field. To explain this phenomenon, in 1907 Weiss suggested that any
small portion of the body exhibits a spontaneous magnetization and is magnetically
saturated even if no magnetic field is applied. In 1928 Heisenberg explained the sponta-
neous magnetization postulated by Weiss in terms of the exchange interaction. In 1935
Landau and Lifshitz [1] proposed a quantitative theory, now known as micromagnetics.

In the classical study of 1-dimensional motion of ferromagnetic chain, the so-called
Landau-Lifshitz equation for the isotropic Heisenberg chain is a special case of the
generalized systems

Mt = M ×Mxx + f(x, t, M) (1.1)

and such an equation usually appears in the study of pure material. In the past years a
lot of works contributed to the study of the soliton solution, the interaction of solitary
waves and others for the Landau-Lifshitz equation in [2 − 5]. Generally speaking, the
existence of global weak solutions for initial-boundary value problems and the Cauchy
problem of the generalized system of ferromagnetic have been established in [6− 8].

The system of Heisenberg spin chain

Mt = M ×Mxx, (1.2)

also called the Landau-Lifshitz equation, is proposed to describe the evolution of spin
field in continuous ferromagnets. In [9], Sulem, Sulem and Bardos studied the well-
posedness for the Cauchy problem of the system (1.2). In [10], Zhou, Guo and Tan
have gotten existence and uniqueness of smooth solution for the system (1.2).
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The above discussion is referred to a perfect crystal and does not allow the presence
of magnetic inclusions: impurities, dislocations and other defects. This also covers the
case where magnetic inclusions are regularly distributed; a typical example is steel. In
[11] Augusto Visintin proposed to describe the effect of defects on evolution by means
of modification of the Landau-Lifshitz equation, i.e.





Mt = M × (Mxx − ηMt

|Mt|),
M(x, 0) = M0(x),

(1.3)

where η is a positive constant to account for the average distribution of defects in
the material. For a nonhomogeneous material, η may depend on x , and may be
also replaced by a 3 × 3-tensor to account for anisotropy. In this paper for simplicity
η =constant is discussed. But the argument used here also works for the case η = η(x).

In order to avoid singularity of (1.3) where Mt = 0, with W = Mxx− ηMt√
ε2+ | Mt |2

we first study its regularized problem

{
Mt = M ×W,

M(x, 0) = M0(x).
(1.4)

Following [12], we introduce Gilbert damping to (1.4) and consider the following prob-
lem {

Mt = M ×W − αM × (M ×W ), (t, x) ∈ (0, T ]× Ω,

M(x, 0) = M0(x), x ∈ Ω,
(1.5)

where T is a positive constant and Ω = [−1, 1]. According to the classical theory of
Weiss, |M(x, t)| = 1. Hence (1.5) is equivalent to the following problem

{
Mt = M ×W + αW + α|Mx|2M, (t, x) ∈ (0, T ]× Ω,

M(x, 0) = M0(x), x ∈ Ω.
(1.6)

Our sketch is as follows. Firstly, we establish certain a priori α-independent esti-
mates for the solutions of the problem (1.6), which allow us to obtain a sufficient smooth
solution to Cauchy problem for the problem (1.4) by passing to the limit α → 0. Sec-
ondly, the existence of the sufficient smooth solution for the problem (1.6) is proved by
using the fixed point theorem and α−independent estimates.

Throughout the present paper all the positive constants depending only on η,
‖M0‖Hk(Ω), T , independent of α and ε, unless otherwise stated, will be denoted by
C and they may be different from line to line.

Theorem Suppose M0(x) is in Hk(Ω), k ≥ 4 with |M0(x)| = 1 and M0(−1) =
M0(1), then for any positive constant T ,
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(1) Let α, ε be any positive number and M(x, t) be a sufficiently smooth solution of
(1.6). Then

sup
0≤t≤T

(‖Mxx‖+ ‖Mt‖+ ‖Mx‖) ≤ C,

and
sup

0≤t≤T,0≤s≤[ k
2
]

‖Mtsxk−2s‖ ≤ C(
1
ε
), k ≥ 3.

(2) Let ε be any positive number. Then the initial value problem (1.4) with the peri-

odic boundary condition has a unique periodic solution M(x, t) ∈ ⋂[ k
2
]

s=0W
s,∞
loc (R+;Hk−2s(Ω))

and M(x, t) satisfies |M(x, t)| = 1 for any x ∈ Ω and for any t > 0. Especially, if
M0(x) ∈ C∞(Ω), then M(x, t) ∈ C∞([0, T ]× Ω).

(3) Let ε = 0. Then the problem (1.3) admits a solution M(x, t) such that |M(x, t)| =
1, M(x, t) ∈ L∞([0, T ];H2(Ω))

⋂
W 1,∞([0, T ];L2(Ω)).

Finally, it should be pointed out that the uniqueness of the solutions of (1.3) is still
open.

In this paper we use ‖ ‖ to replace ‖ ‖L2(Ω) and denote by ‖ ‖p the usual
‖ ‖Lp(Ω) with 2 < p ≤ ∞.

2. A Priori α-Independent Estimates

Lemma 2.1 If u(x) ∈ H1(Ω), then ‖u‖∞ ≤ C(‖Du‖ 1
2 ‖u‖ 1

2 + ‖u‖).
Proof Denote ū =

1
2

∫ 1

−1
udx then |ū| ≤ C‖u‖. By the mean value theorem,

∃x0 ∈ Ω,∀y ∈ Ω, we can get

(u− ū)2(y) = 2
∫ y

x0

ux(u− ū)dx.

Hence
‖u− ū‖2

∞ ≤ C‖ux‖‖u− ū‖ ≤ C‖ux‖‖u‖.
This completes the proof of Lemma 2.1.

Lemma 2.2 Let the assumptions in Theorem be fulfilled. Then in the classical
sense (1.5) is equivalent to (1.6).

Proof Let M(x, t) be a classical solution of the problem (1.5). By taking inner
product with M(x, t) of (1.5), it is easy to see that

1
2

∂

∂t
|M |2 = 0.

Thus we have |M(x, t)| = |M0(x)| = 1. So

−αM × (M ×W ) = α|M |2W − α(M ·W )M = αW + α|Mx|2M.
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On the other hand, if M(x, t) is a classical solution of (1.6), taking inner product with
M(x, t), we have

1
2
(1 +

αη√
ε2 + |Mt|2

)
∂

∂t
|M |2 =

α

2
∂2

∂x2 |M |2 + α|Mx|2(|M |2 − 1),

M̃ = |M(x, t)|2 − 1 satisfies




1
2(1 + αη√

ε2 + |Mt|2
) ∂
∂t

M̃ = α
2

∂2

∂x2 M̃ + α|Mx|2M̃,

M̃(x, 0) = 0.

Using the energy method we know M̃(x, t) = 0, i.e. |M(x, t)| = 1,∀x ∈ Ω, t ≥ 0.

Obviously M(x, t) is a classical solution of (1.5). This completes the proof of Lemma
2.2.

Lemma 2.3 Let the assumptions in Theorem be fulfilled and M(x, t) be a suffi-
ciently smooth solution of (1.6). Then we have

sup
0≤t≤T

‖Mx‖ ≤ ‖M0
x‖.

Proof Taking inner product of (1.6) with W and integrating over Ω, we have

−1
2

d

dt
‖Mx‖2 − η

∫ 1

−1

|Mt|2√
ε2+ | Mt |2

dx = α‖W‖2 − α

∫ 1

−1
|Mx|2M ·Wdx.

Consequently,

1
2

d

dt
‖Mx‖2 + α

∫ 1

−1
|M ×W |2dx = −η

∫ 1

−1

|Mt|2√
ε2+ | Mt |2

dx ≤ 0.

In getting the last expression we have used M ·W = −|Mx|2 and |M(x, t)| = 1. This
ends the proof of Lemma 2.3.

Lemma 2.4 Let the assumptions in Theorem be fulfilled. Then any sufficiently
smooth solution of (1.6), M(x, t) satisfies

sup
0≤t≤T

‖Mxx‖ ≤ C.

Proof After differentiating (1.6) with respect to x, taking inner product with Wx

and integrating over Ω, we have

d

dt
‖Mxx‖2 + 2α‖Wx‖2 =−2α

∫ 1

−1
(|Mx|2M)x ·Wxdx− 2

∫ 1

−1
Mx ×W ·Wxdx

−2
∫ 1

−1
ηMtx · ( Mt√

ε2+ | Mt |2
)xdx = I1 + I2 + I3. (2.1)
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It is easy to see

I3 = 2
∫ 1

−1
η
[−(ε2 + |Mt|2)]Mtx ·Mtx + (Mtx ·Mt)2√

ε2 + |Mt|23 dx ≤ 0 (2.2)

and
I1 ≤ 2α‖Mx‖3

6‖Wx‖+ 4α‖Mxx‖∞‖Mx‖‖Wx‖.
From Lemma 2.1 and Lemma 2.3, it follows that ‖Mx‖2∞ ≤ C‖Mxx‖‖Mx‖. So

I1 ≤ Cα‖Mxx‖‖Wx‖+ Cα‖Mxx‖∞‖Wx‖

≤ α

2
‖Wx‖2 + Cα‖Mxx‖2 + Cα‖Mxx‖2

∞

≤ α

2
‖Wx‖2 + Cα‖Mxx‖2 + Cα

(
‖W‖2

∞ + ‖ ηMt√
ε2 + |Mt|2

‖2
∞

)

≤ α‖Wx‖2 + Cα‖Mxx‖2 + Cα‖W‖2 + Cα

≤ α‖Wx‖2 + Cα‖Mxx‖2 + Cα. (2.3)

In what follows we are going to handle the term I2. If |Mx| 6= 0, then the vectors
M, Mx,M ×Mx form an orthogonal frame of R3. We let

W = (W ·M)M +
(W ·Mx)
|Mx|2

Mx +
W ·M ×Mx

|Mx|2
M ×Mx.

Then

I2 = −2
∫ 1

−1
[(Wx ·Mx ×M)(W ·M) + (W ·M ×Mx)(Wx ·M)]dx

= 4
∫ 1

−1
|Mx|2(Mx · (M ×W )x)dx +

∫ 1

−1
(|Mx|2)x(W ·M ×Mx)dx

−2
∫ 1

−1
η

Mt ·Mx√
ε2 + |Mt|2

(W ·M ×Mx)dx− 2
∫ 1

−1
|Mx|2(W ·M ×Mxx)dx

= 5
∫ 1

−1
[Mx · (M ×W )x](|Mx|2)dx + 3

∫ 1

−1
|Mx|2(η Mt√

ε2 + |Mt|2
·M ×Mxx)dx

−2η

∫ 1

−1

Mt ·Mx√
ε2 + |Mt|2

(W ·M ×Mx)dx. (2.4)

For the second term on the right hand side of (2.4), we have

3
∫ 1

−1
|Mx|2(η Mt√

ε2 + |Mt|2
·M ×Mxx)dx ≤ 3

∫ 1

−1
|Mx|2η|Mxx|dx

≤ 3η‖Mx‖2
4‖Mxx‖ ≤ C‖Mxx‖

3
2 ≤ C‖Mxx‖2 + C. (2.5)
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For the third term on the right hand side of (2.4), we have

−2η

∫ 1

−1

Mt ·Mx√
ε2 + |Mt|2

(W ·M ×Mx)dx

≤ 2η

∫ 1

−1
|Mx|(|Mxx||Mx|+ η|Mx|)dx ≤ C‖Mxx‖2 + C. (2.6)

Integrating the first term on the right hand side of (2.4) with respect to t, we have

5
∫ t

0

∫ 1

−1
[Mx · (M ×W )x](|Mx|2)dxdτ

= 5
∫ t

0

∫ 1

−1
|Mx|2[Mx · (Mt − α|Mx|2M − αW )x]dxdτ

=
5
4
(‖Mx‖4

4 − ‖M0
x‖4

4)− 5α

∫ t

0

∫ 1

−1
|Mx|6dxdτ − 5α

∫ t

0

∫ 1

−1
|Mx|2Mx ·Wxdxdτ

≤ 1
2
‖Mxx‖2 + C +

α

2

∫ t

0
‖Wx‖2dτ + Cα

∫ t

0
‖Mxx‖2dτ. (2.7)

After inserting (2.2)-(2.6) into (2.1), integrating with t, we can obtain

‖Mxx‖2 + α

∫ t

0
‖Wx‖2dτ ≤ C(1 + α)

∫ t

0
‖Mxx‖2dτ + C

+5
∫ t

0

∫ 1

−1
[Mx · (M ×W )x](|Mx|2)dxdτ. (2.8)

Combining (2.7) with (2.8) gives at once

‖Mxx‖2 +
α

2

∫ t

0
‖Wx‖2dτ ≤ 1

2
‖Mxx‖2 + C(1 + α)

∫ t

0
‖Mxx‖2dτ + C(1 + α).

Using Gronwall’s inequality we can obtain

sup
0≤t≤T

‖Mxx‖2 ≤ C.

Remark Let the assumptions in Theorem be fulfilled. Then any sufficiently
smooth solution of (1.6), M(x, t) satisfies

sup
0≤t≤T

‖Mt‖2 ≤ C.

Lemma 2.5 Let the assumptions in Theorem be fulfilled. Then any sufficiently
smooth solution of (1.6), M(x, t) satisfies

sup
0≤t≤T

‖Mtx‖ ≤ C.
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Proof After differentiating (1.6) with respect to t, taking inner product with Wt

and integrating over Ω, we have

d

dt
‖Mtx‖2 + 2α‖Wt‖2 = −2α

∫ 1

−1
(|Mx|2M)t ·Wtdx− 2

∫ 1

−1
Mt ×W ·Wtdx

−2
∫ 1

−1
ηMtt · ( Mt√

ε2+ | Mt |2
)tdx.

Now we integrate the above equation with respect to t, then we can obtain

‖Mtx‖2 + 2α

∫ t

0
‖Wt‖2dτ = ‖M0

tx‖2 − 2α

∫ t

0

∫ 1

−1
(|Mx|2M)t ·Wtdxdτ

−2
∫ t

0

∫ 1

−1
Mt ×W ·Wtdxdτ

−2η

∫ t

0

∫ 1

−1
Mtt · ( Mt√

ε2+ | Mt |2
)tdxdτ

= ‖M0
tx‖2 + J1 + J2 + J3. (2.9)

It is easy to see that

J3 = 2
∫ t

0

∫ 1

−1
η
[−(ε2 + |Mt|2)]Mtt ·Mtt + (Mtt ·Mt)2√

ε2 + |Mt|23 dxdτ ≤ 0. (2.10)

The argument used to I1 in Lemma 2.3 also works for J1, so we can obtain

J1 ≤ α

2

∫ t

0
‖Wt‖2dτ + Cα

∫ t

0
‖Mxt‖2dτ + Cα. (2.11)

In what follows we are going to handle the term J2. If |Mt| 6= 0, then the vectors
M, Mt,M ×Mt form an orthogonal basis of R3. Let

Wt = (Wt ·M)M +
(Wt ·Mt)
|Mt|2

Mt +
Wt ·M ×Mt

|Mt|2
M ×Mt.

Then

J2 = 2
∫ t

0

∫ 1

−1
|Mx|2Mt · (M ×W )tdxdτ

−2
∫ t

0

∫ 1

−1
(Mt ×W ·M)(−2Mx ·Mxt −W ·Mt)dxdτ

≤ 2
∫ t

0

∫ 1

−1
|Mx|2Mt · (M ×W )tdxdτ + C

∫ t

0
‖Mt‖∞‖Mxt‖‖W‖dτ

+C

∫ t

0
‖Mt‖2

∞‖W‖2dτ
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≤ 2
∫ t

0

∫ 1

−1
|Mx|2Mt · (M ×W )tdxdτ + C

∫ t

0
(‖Mxt‖

3
2 + ‖Mxt‖)dτ

≤ C

∫ t

0
‖Mxt‖2dτ + C + 2

∫ t

0

∫ 1

−1
|Mx|2Mt · (M ×W )tdxdτ. (2.12)

In getting the last expression we have used Wt ·M = −2Mx ·Mxt −W ·Mt.

For the last term on the right hand side of (2.12), we have

2
∫ t

0

∫ 1

−1
|Mx|2[Mt · (Mt − α|Mx|2M − αW )t]dxdτ

≤ −
∫ t

0

∫ 1

−1
(|Mx|2)t|Mt|2dxdτ + Cα

∫ t

0
‖Mt‖‖Wt‖dτ

≤ α

2

∫ t

0
‖Wt‖2dτ + Cα + C

∫ t

0
‖Mt‖2

∞‖Mxt‖dτ

≤ α

2

∫ t

0
‖Wt‖2dτ + Cα + C

∫ t

0
‖Mxt‖2dτ. (2.13)

From (2.9) to (2.13), we have

‖Mxt‖2 + α

∫ t

0
‖Wt‖2dτ ≤ C(α + 1)

∫ t

0
‖Mxt‖2dτ + C(α + 1).

Using Gronwall’s inequality, we can obtain

‖Mxt‖2 ≤ C, ∀0 ≤ t ≤ T. (2.14)

Finally
Mt = M ×W + αW + α|Mx|2M

and
−M ×Mt = −αM ×W + W + |Mx|2M

imply that

W =
1

1 + α2 {αMt −M ×Mt} − |Mx|2M.

Hence

Mxx =
1

1 + α2 {αMt −M ×Mt} − |Mx|2M +
ηMt√

ε2 + |Mt|2
, (2.15)

Mxxx =
1

1 + α2 {αMxt − (M ×Mt)x} − (|Mx|2M)x + (
ηMt√

ε2 + |Mt|2
)x

=
1

1 + α2 {αMxt − (M ×Mt)x} − (|Mx|2M)x

+η
(ε2 + |Mt|2)Mtx − (Mtx ·Mt)Mt√

ε2 + |Mt|23 . (2.16)
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From (2.14) and (2.16), it follows that

sup
0≤t≤T

‖
√

ε2 + |Mt|2Mxxx‖ ≤ C.

Lemma 2.6 Let the assumptions in Theorem be fulfilled. Then any sufficiently
smooth solution of (1.6), M(x, t) satisfies

sup
0≤t≤T

(‖Mxxxx‖+ ‖Mtt‖+ ‖Mtxx‖) ≤ C(
1
ε
).

Proof From the proof of Lemma 2.5, it follows that

‖Mtx‖2 + 2η

∫ t

0

∫ 1

−1

ε2|Mtt|2
(
√

ε2 + |Mt|2)3
dxdτ ≤ C

∫ t

0
‖Mtx‖2dτ + C.

By Lemma 2.5 and Remark of Lemma 2.4, we can obtain

∫ T

0
‖Mtt‖2dt ≤ C(

1
ε
). (2.17)

From (2.15) we can get

Mxxt =
1

1 + α2 {αMtt − (M ×Mt)t} − (|Mx|2M)t + (
ηMt√

ε2 + |Mt|2
)t,

Mxxxx =
1

1 + α2 {αMtxx − (M ×Mt)xx} − (|Mx|2M)xx + (
ηMt√

ε2 + |Mt|2
)xx. (2.18)

From (2.17) and (2.18), we can get

∫ T

0
(‖Mtxx‖+ ‖Mxxxx‖)dt ≤ C(

1
ε
).

By the same argument as we have done in the proof of Lemma 2.5 we can complete
the proof for Lemma 2.6.

Also we have the following general uniform estimates for arbitrary sufficiently
smooth solutions of (1.6).

Lemma 2.7 Let the assumptions in Theorem be fulfilled and M(x, t) be a suffi-
ciently smooth solution of (1.6). Then

sup
0≤t≤T,0≤s≤[ k

2
],k≥3

‖Mtsxk−2s‖ ≤ C(
1
ε
).
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3. Existence and Uniqueness

In this section we will prove local the existence of (1.6) with M0(x) ∈ H4(Ω) and
the uniqueness of (1.4) with M0(x) ∈ H5(Ω).

First of all we consider the following problem
{

Mt = A(x, t)Mxx + F (x, t), (t, x) ∈ (0, T ]× Ω,

M(x, 0) = 0, x ∈ Ω,
(3.1)

where M(x, t) is a vector in R3, A(x, t) is a real matrix.

Hypothesis: F (x, t), A(x, t) ∈ H1([0, T ];L2(Ω))
⋂

L2([0, T ];H2(Ω)) and
A + At

2
is a uniformly positive matrix, i.e. ∃λ0 > 0 satisfying

A + At

2
ξ · ξ ≥ λ0|ξ|2,∀ξ ∈ R3, (x, t) ∈ Ω× [0, T ].

[13] tells us that (3.1) has a classical solution.

Lemma 3.1 Let the above hypothesis be fulfilled and let M(x, t) be a sufficiently
smooth solution of (3.1). Then

sup
0≤τ≤t

(‖Mt‖2
H1 + ‖M‖2

H3) +
∫ t

0
(‖M‖2

H4 + ‖Mt‖2
H2 + ‖Mtt‖2)dτ

≤ C

∫ t

0
(‖F‖2

H2 + ‖Ft‖2 + ‖AxMxxx‖2 + ‖AxxMxx‖2 + ‖AtMxx‖2)dτ,

for some constant C depending only on λ0.

Proof Taking inner product of (3.1) with Mxx and integrating over Ω, we have

−1
2

d

dt
‖Mx‖2 =

∫ 1

−1

A + At

2
Mxx ·Mxxdx +

∫ 1

−1
F (x, t) ·Mxxdx.

Integration with respect to t yields

‖Mx‖2 + λ0

∫ t

0
‖Mxx‖2dτ ≤ 1

λ0

∫ t

0
‖F‖2dτ.

This ends the proof of Lemma 3.1 by the same steps.
Consider the following problem

{
Mt = A(x, t)Mxx + B(x, t)M, (t, x) ∈ (0, T ]× Ω,

M(x, 0) = 0, x ∈ Ω.
(3.2)

Lemma 3.2 If
A + At

2
ξ · ξ ≥ 0,∀ξ ∈ R3 and A(x, t), B(x, t) ∈ H1([0, T ];H1(Ω)),

then the solution of (3.2) is unique.
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Proof Taking inner product of (3.2) with Mxx and integrating over Ω, we have

−1
2

d

dt
‖Mx‖2 =

∫ 1

−1

A + At

2
Mxx ·Mxxdx +

∫ 1

−1
BM ·Mxxdx.

Using
A + At

2
ξ · ξ ≥ 0 and integrating by parts, we can obtain

d

dt
‖Mx‖2 ≤ C(‖M‖∞‖Mx‖+ ‖Mx‖2). (3.3)

Taking inner product of (3.2) with M and integrating over Ω, we have

−1
2

d

dt
‖M‖2 =

∫ 1

−1
AMxx ·Mdx +

∫ 1

−1
BM ·Mdx.

Integration by parts yields

d

dt
‖M‖2 ≤ C(‖M‖∞‖Mx‖+ ‖M‖2 + ‖Mx‖2). (3.4)

Using (3.3), (3.4) and Lemma 2.1, we can get

d

dt
(‖M‖2 + ‖Mx‖2) ≤ C(‖M‖2 + ‖Mx‖2).

Using Gronwall’s inequality we can prove Lemma 3.2.
Defining

|||M |||2t = sup
0≤τ≤t

(‖Mt‖2
H1 + ‖M‖2

H3) +
∫ t

0
(‖M‖2

H4 + ‖Mt‖2
H2 + ‖Mtt‖2)dτ,

all constants depending only on η, λ0, ‖M0‖H4 , ε, α will be still denoted by C. Set

B(M, Mt) = I +
η√

ε2 + |Mt|2
[αI + A(M)],

where Mi = Mi(x, t) is a function, i = 1, 2, 3 and I a unit matrix, ε a positive constant.

M t =
(

M1 M2 M3

)
,

A(M) =




0 −M3 M2

M3 0 −M1

−M2 M1 0


 .

Then the problem (1.6) is equivalent to the following problem
{

B(M, Mt)Mt = [αI + A(M)]Mxx + α|Mx|2M, (t, x) ∈ (0, T ]× Ω,

M(x, 0) = M0(x), x ∈ Ω.
(3.5)
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Without loss of generality, we may assume M0(x) ∈ C∞(Ω). Set

M(x, t) = V (x, t) + M0(x).

Then V (x, t) satisfies
{

B(V, Vt,M
0)Vt = [αI + A(V + M0)]Vxx + F (V, Vx), (t, x) ∈ (0, T ]× Ω,

V (x, 0) = 0, x ∈ Ω,
(3.6)

where

F (V, Vx)=
[
αI + A(V + M0)

]
M0

xx + α
∣∣Vx + M0

x

∣∣2 (
V + M0

)

= F (0, 0) + B0(V ) + B1(V )Vx + B2(V )|Vx|2

for some smooth vector B0(V ), B2(V ) and smooth matrix B1(V ).

Lemma 3.3 Set B = I + η√
ε2 + |Mt|2

[αI + A(M)] and D = αI + A(M). Then

B−1D + (B−1D)t

2
ξ · ξ ≥ αε

ε + αη
|ξ|2,∀α, ε, η ∈ R+, ξ ∈ R3.

Proof With a =
√
|Mt|2 + ε2

η + α, we have

B =
η√

ε2 + |Mt|2
[aI + A(M)].

Hence

B−1D + (B−1D)t = (a− α)(aI + A(M))−1[(αI + A(M))(aI + A(M))t

+(aI + A(M))(αI + A(M))t](aI + A(M))−t

= (a− α)(aI + A(M))−1[(αI + A(M))(aI −A(M))

+(aI + A(M))(αI −A(M))](aI + A(M))−t

= 2(a− α)(aI + A(M))−1[αaI + A(M)At(M)](aI + A(M))−t,

then for any ξ ∈ R3, with (aI + A(M))−t · ξ = ζ, we have

B−1D + (B−1D)t

2
ξ · ξ = (a− α)

[
αa|ζ|2 + A(M)At(M)ζ · ζ]

.

On the other hand, ξ = (aI + A(M))t · ζ and

|ξ|2 = a2|ζ|2 + A(M)At(M)ζ · ζ,
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B−1D + (B−1D)t

2
ξ · ξ = (a− α)

α

a
(a2|ζ|2 +

a

α
A(M)At(M)ζ · ζ)

≥ (a− α)
α

a
(a2|ζ|2 + A(M)At(M)ζ · ζ)

≥ (a− α)
α

a
|ξ|2 ≥ αε

ε + αη
|ξ|2

namely, ∃λ0(α, ε) > 0 independent of M, Mt satisfying

B−1D + (B−1D)t

2
ξ · ξ ≥ λ0|ξ|2, ∀ξ ∈ R3.

Define Σ = {V | |||V |||T0 ≤ q}, for some constants T0, q to be specified. For arbitrary
T0, q > 0 and V ∈ Σ, consider the following problem

{
B(V, Vt,M

0)Ut =
[
αI + A(V + M0)

]
Uxx + F (V, Vx), (t, x) ∈ (0, T ]× Ω,

U(x, 0) = 0, x ∈ Ω.
(3.7)

Lemma 3.4 (3.7) has a local solution in Σ.

Proof Denote

B(V ) = B(V, Vt,M
0), D(V ) = αI + A(V + M0).

For arbitrary V ∈ Σ, from Lemma 3.1, it follows that

|||U |||2T0
≤ C

∫ T0

0
(‖B−1(V )F (V, Vx)‖2

H2 + ‖[B−1(V )F (V, Vx)]t‖2)dt

+C

∫ T0

0
(‖(B−1(V )D(V ))xUxxx‖2 + ‖(B−1(V )D(V ))xxUxx‖2

+‖(B−1(V )D(V ))tUxx‖2)dt

≤ Cq4 + Cq2T0 + Cq2|||U |||2T0

≤ Cq4 + Cq2T0 +
1
2
|||U |||2T0

.

Consequently

|||U |||2T0
≤ Cq4 + Cq2T0 ≤ q2

if q ≤ q∗ and T ≤ T∗, for some sufficiently small constants q∗, T∗,depending only on
ε, α, η, λ0, ‖M0‖H4 .

For arbitrary V 1, V 2 ∈ Σ, U i(i = 1, 2) are the corresponding solutions of the problem
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(3.7), then we have

|||U1 − U2|||2T0
≤ C

∫ T0

0
‖[B−1(V 1)D(V 1)−B−1(V 2)D(V 2)][U2

xx + F (V 2, V 2
x )]‖2

H2dt

+C

∫ T0

0
‖{[B−1(V 1)D(V 1)−B−1(V 2)D(V 2)][U2

xx + F (V 2, V 2
x )]}t‖2dt

+C

∫ T0

0
‖B−1(V 1)D(V 1)[F (V 1, V 1

x )− F (V 2, V 2
x )]‖2

H2dt

+C

∫ T0

0
‖[B−1(V 1)D(V 1)(F (V 1, V 1

x )− F (V 2, V 2
x ))]t‖2dt

+C

∫ T0

0
{‖[B−1(V 1)D(V 1)]x(U1

xxx − U2
xxx)‖2

+‖[B−1(V 1)D(V 1)]xx(U1
xx − U2

xx)‖2

+‖[B−1(V 1)D(V 1)]t(U1
xx − U2

xx)‖2}dt

≤ Cq2|||V 1 − V 2|||2T0
+ Cq2|||U1 − U2|||2T0

≤ Cq2|||V 1 − V 2|||2T0
+

1
2
|||U1 − U2|||2T0

,

i.e.

|||U1 − U2|||2T0
≤ Cq2|||V 1 − V 2|||2T0

≤ 1
4
|||V 1 − V 2|||2T0

if q ≤ q∗ and T ≤ T∗, for some smaller constants q∗, T∗,depending only on ε, α, η, λ0,

‖M0‖H4 . By the fixed point theorem, we know (3.6) has a local solution in Σ.

Lemma 3.5 With M0 ∈ H5(Ω), the solution of (1.4) is unique.
Proof Let M1, M2 be the solutions of (1.4), i.e.

M1
t = A(M1)(M1

xx − η
M1

t√
ε2 + |M1

t |2
),

M2
t = A(M2)(M2

xx − η
M2

t√
ε2 + |M2

t |2
).

Let M = M1 −M2, then M satisfies





[I + ηA(M1)
∫ 1

0
B̂(M̂t) |M̂t=M2

t +λ(M1
t −M2

t ) dλ]Mt,

= A(M1)Mxx −A(M2 − ηM2
t√

ε2 + |M2
t |2

)M

M(x, 0) = 0,

(3.8)
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with b =
√

ε2 + |M̂t|2, M̂ t = (M̂1, M̂2, M̂3). We have

B̂(M̂t) =
1
b3




b2 − M̂t
2
1 −M̂t1M̂t2 −M̂t1M̂t3

−M̂t1M̂t2 b2 − M̂t
2
2 −M̂t1M̂t3

−M̂t1M̂t3 −M̂t1M̂t3 b2 − M̂t
2
3


 .

It is easy to see B̂(M̂t) >
ε2

b3
. On the other hand, with

R = I + ηA(M1)
∫ 1

0
B̂(M̂t)dλ,

R−1A(M1) + At(M1)R−t = R−1[A(M1)Rt + At(M1)R]R−t

= 2ηR−1A(M1)
∫ 1

0
B̂(M̂t)dλAt(M1)R−t

≥ 0.

Hence, the uniqueness of (3.8) immediately comes from Lemma 3.2 and
hence M1(x, t) ≡ M2(x, t).

The end of the proof for Theorem: The proof for (1) in Theorem is the immediate
consequence of Lemma 2.3, Lemma 2.4, Remark and Lemma 2.7. Although the local
existence in Lemma 3.4 depends on α and ε, in view of a priori α-independent estimates,
the extension method of local solutions gives: for arbitrary T > 0, (1.6) has a periodic

solution in
⋂[ k

2
]

s=0W
s,∞([0, T ];Hk−2s(Ω)). Then by passing to the limit α → 0 and

Lemma 3.5, (2) in Theorem is proved. At last, passing to the limit ε → 0 ends the
proof of Theorem.
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