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1. Modelling and Problem

In Solid State Physics an important concept is that of collective excitations ([1-3]).
Collective excitations are the low-lying excited states of systems where a strong cou-
pling between particles is present. Their nature and origin can be varied and depends
on the system and interaction considered. For example, the most notable of these are
the lattice vibrations of a crystalline structure, which, when properly quantized are
called phonons. Other collective excitations of particular importance, and that we will
consider here, are spin wave excitations. These low-lying excitations occur in ferromag-
nets and correspond to the oscillations of the electron-spin-density fluctuations. To be
more specific, in a ferromagnet below the Curie temperature, due to the exchange in-
teraction, the magnetic moments associated with each lattice site are lined up so that
they all statistically point in the same direction. This corresponds to the ground state
of the system. Spin waves are the excited eigenstates of the system Hamiltonian which,
in a classical sense, correspond to the propagation of spin deviations from the original
direction.

Spin wave excitations in ferromagnetic lattices can be characterized by a spin-
exchange Hamiltonian which is invariant under lattice translation. That is, after cal-
culating the quantum equation of motion with the spin Hamiltonian, spin vectors S
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should satisfy the following relationship, (see [3-5]),

h̄

2
∂Si

∂t
=

∑

k 6=i

A

2
[Si,Sk] + [Si,h],

where i points to the ith atom. The summing index k points to a neighbor atom of
the ith site; A is the exchange integral; h̄ is Planck constant; the vector h is a given
function which may depend on Si. The square brackets [·, ·] denote the commutator of
the two vectors which describes the effect between the atoms.

i

Sk

a

Si

simple cubic lattice

A kind of materials, such as α−Fe (see [3-5]),with a ferromagnetic property is a
simple cubic lattice with lattice constant ā. Suppose that a smooth function S values
Si at the ith atom, i.e. S is continuous and smooth enough and S(x) = Si(x),
then Sk(x) = S(x ± ā), where Sk correspond to those atoms adjacent the ith atom,
x = (x1, x2, x3). Those Sks can be expanded and expressed by S as follows:

S(x1 ± ā, x2, x3) = S(x)± ∂S

∂x1
(x) +

1
2!

∂2S

∂x2
1

(x)± 1
3!

∂3S

∂x3
1

(x) + · · · ,

the same way for S(x1, x2±ā, x3), S(x1, x2, x3±ā), S(x1±ā, x2±ā, x3), · · · and so on.
Sum all Sk around x. By the symmetry of the lattices, all the items with odd

differential degree are eliminated. Therefore, we have

A

2

∑

k

Sk(x) =
∞∑

m=0

4̃mS(x),

where

4̃m =
∑

|α|=m

aαD2α
x , (m = 1, 2, · · ·) (1.1)

are elliptic operators. α is a N−tuple index, i.e. α=(α1, · · · , αN ), with {αi}i=1,···,N are
non-negative integrals, |α|= ∑N

j=1αj = m, m = 1, 2, · · · ,M. For any α defined above,
aα is a positive constant depending on ā. Then

St = S×
∞∑

m=0

4̃mS + S×h, (1.2)
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where × denotes vectorial product.
It can be seen that the Heisenberg system

St = S×Sxx + S×h (1.3)

is a primary approximation of this model (e.g. see [4]). For this second order system,
[6] and [7] obtained the existence of the weak solution.

In this paper, we consider this spin wave system in a more general case, where the
sum index in the first item in the right side of (1.2) is up to M . That is, the terms
whose differential orders are higher than 2M in (1.2) are neglected. We also allow the
zero order term h depending on S.

Denoting the unknown by Z, the problem we considered now is described as follows

Zt = Z×
M∑

m=1

4̃mZ + f(Z, x, t), in QT = Ω×[0, T ), (1.4)

with the boundary-initial conditions

dlZ

dγl

∣∣∣
∂Ω

= 0, l = 0, 1, · · · ,M − 1, on ST = ∂Ω×[0, T ), (1.5)

Z(x, 0) = Z0(x), on Ω, (1.6)

where Ω ⊂ RN is a bounded domain and ∂Ω ∈ CM−1,1; M, N ≥ 1 are integers; The
unknown Z = (Z1, Z2, Z3) and the free term f = (f1, f2, f3) are 3-dimensional (3D)
vector functions; γ is the unit outward vector to ∂Ω.

Throughout this paper, when we mention free term, we mean zero order term f .
From (1.2), in this paper, we consider f has the the following structure:

f = Z×h(Z) + ξ(Z, x, t), (1.7)

where

h(Z) = (h1(Z1), h2(Z2), h3(Z3)); hi(Z) : R → R, i = 1, 2, 3

ξ(Z, x, t) = (ξ1(Z, x, t), ξ2(Z, x, t), ξ3(Z, x, t)) : R3×RN×R → R3.

This is a nonlinear problem for a high order, strong degenerate parabolic system.
The coefficient matrix of the highest order elliptic operator of the system (1.4) is

A2M (Z) =




0 −Z3 Z2

Z3 0 −Z1

−Z2 Z1 0


 ,

which is a null definite matrix (see [6]).
The author started discussing this high order model with a linear free term under

a condition N < 2M in [8]. An ε approximation was used for help to the degeneration.
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The existence of a weak solution for that problem has been obtained. The problem has
been further developed in [9], where the periodic problem for this high order model was
considered, with a linear free term.

In this paper, we have considered nonlinearity of the free term. The linearity of
the free term now becomes a special case of our discussion. The main difficulty, which
is essential, is looking for necessary estimates, when the high order derivatives of the
nonlinear term will bring about a lot of great troublesome terms. These terms are
very hard to be dealt with in bound. We use the structure coming from the original
model to avoid this difficulty. However, when M = 1, this difficulty is not serious, such
structure of nonlinearity can be loosed. Moreover, in this paper, we have gotten off the
condition N < 2M.

The hypotheses on the given functions for this problem are as follows:

(H1) The initial function Z0(x) : RN → R3 belongs to HM
0 (Ω) and ‖Z0‖HM (Ω) ≤ C.

(H2) The free term f(Z, x, t) is defined in (1.7), in which

|hi(Zi)| ≤ C(|Zi|+ 1), ξi(Z,x,t) =
3∑

j=1

ξji(x,t)Zj+ξ0i(x, t), i = 1, 2, 3,

where ξij ∈ L∞(0, T ;CM(Ω)), hi ∈ C(Ω) and C is a positive constant.

If the order of the system is M = 1, i.e. the system is a general second order
parabolic problem, the hypothesis of the free term can be loosed as

(H2a) In the free term f(Z, x, t) defined in (1.7), h is defined as in (H2), and ξ ∈
C1(R3×Ω×R) with |ξ(Z, x, t)| ≤ C(|Z|+ 1), where C is a positive constant.

We seek a weak solution for this problem. The sense of the weak solution is given
in the following definition.

Definition 1.1 Z∈L2(0, T ;HM
0 (Ω)) is a weak solution of the problem (1.4)-(1.6)

if for any 3D vector φ(x, t) ∈ C1(0, T ;CM
0 (Ω)), φ(x, T ) ≡ 0, there holds

∫

QT

[φt ·Z+
∑

0<|α|≤M

(−1)|α|aαDα
xZ ·

∑

0<β≤α

( α

β

)
(Dβ

xφ×Dα−β
x Z)

+φ·f(Z, x, t)
]
dxdt+

∫

Ω
φ(x, 0) ·Z0(x)dx = 0. (1.8)

The following are the main theorems obtained in this paper.

Theorem 1.2 Under the hypotheses (H1) and (H2), the problem (1.4)-(1.6) has
at least one weak solution belonging to space

Z = L∞(0, T ;HM
0 (Ω)) ∩W 1

∞(0, T ;H−(M+J)(Ω)), (1.9)
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in the sense of (1.8), with

J = [N/2] + 1 ([A] - the integer part of A). (1.10)

Theorem 1.3 Under the hypotheses (H1) and (H2a) and M = 1, the problem
(1.4)-(1.6) has at least one weak solution belonging to the space

Z = L∞
(
0, T ;H0(Ω)

)
∩W 1

∞
(
0, T ;H−J−1(Ω)

)
,

in the sense of (1.8), where J is defined as in (1.10).

The outline of the paper is as follows. Section 2 lists some preparatory lemmas.
To deal with the degeneration of the main operator, as in [8], (see also [6, 7], [9]) the
problem with the parameter ε is considered in Section 3,

Zεt = ε(−1)M+1
( M∑

m=1

4̃mZε+a0Zε

)
+Zε×

M∑

m=1

4̃mZε+Zε×h(Zε)+ξ(Zε, x, t), (1.11)

with the boundary-initial condition (1.5)-(1.6), where (−1)Ma0 in (1.11) is a large pos-
itive constant independent of ε, which will be chosen later. To overcome the difficulty
brought about the lack of the condition N < 2M (i.e. Zε is only estimated in H2M ,
not in L∞), we first consider [Zε]k×

∑M
m=14̃mZε instead of Zε×

∑M
m=14̃mZε then let

k→∞. Next, in Section 4, we give some estimates uniformly with respect to ε in Z
defined in (1.9). The ε limit process is discussed in Section 5. It is proved that the limit
of the ε-solution is just the weak solution of the problem (1.4)-(1.6). Thus, the proofs
of Theorem 1.2, 1.3 are completed. Some further remarks are collected in Section 6.

2. Preliminary Lemmas

We mention some preliminary results relevant to the later proofs here. The following
three lemmas can be found in references, which we write here without proofs.

Lemma 2.1 Let Ω ⊂ RN be a bounded domain having the cone property. If u

belongs to H2M (Ω) ∩HM
0 (Ω), the following interpolation inequality holds

‖u‖H2M (Ω) ≤ C
(
‖4̃Mu‖L2(Ω) + ‖u‖L2(Ω)

)
, (2.1)

where C is a positive constant depending only on M and N. 4̃M is defined in (1.1).

This result can be found in [10], p243.

Lemma 2.2 (Nirenberg-Gagliardo inequality) Suppose u ∈ WM
q (Ω) ∩ Lr(Ω). If

1 ≤ p, q, r ≤ ∞, θ ∈ [0, 1− j
M ] and j − N

p ≤ (1− θ)(M − N
q )− θN

r , then

‖u‖
W j

p (Ω)
≤ C‖u‖1−θ

W M
q (Ω)

‖u‖θ
Lr(Ω),

where Ω ⊂ RN has a cone property, C is some positive constant.
In particular, when r = +∞, q = 2, p = 2M

j , we have θ = 1− j
M , j = 0, 1, · · · ,M.
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This result can be found in [11], p69.

Lemma 2.3 Suppose that X, B, Y are Banach Spaces satisfying X ⊂ B ⊂ Y with
compact imbedding X → B, and for 0 < θ < 1,

‖u‖B ≤ C‖u‖1−θ
X ‖u‖θ

Y . (2.2)

Let 1<q1,q2 <∞. Then each set bounded in both Lq1(0, T ;X) and W 1
q2
(0, T ;Y) is bounded

and relatively compact in Lq(0, T ;B), for all q < q1q2

q2(1−θ)+q1(1−q2)θ , provided q2(1 −θ) +
q1(1− q2)θ>0; If q2 = 1, q < q1

1−θ ; If q1 = q2 =∞, q =∞. If q2(1−θ) + q1(1−q2)θ <0,

Lq1(0, T ;X)∩W 1
q2
(0, T ;Y) is bounded and relatively compact in C(0,T,B). In particular,

1) if X =H2(Ω), B=L2(Ω), Y =L1(Ω), q1 = 2, q2 = 1, then space L2(0, T ;H2M(Ω))∩
W 1

1 (0, T ;L1(Ω)) is compactly imbedded into L2(QT );
2) if X = HM(Ω), B = HM−1(Ω), Y = H−(M+J)(Ω), q1 = q2 =∞, then the space

L∞(0, T ;HM(Ω))∩W 1∞(0, T ;H−(M+J)(Ω)) is compactly imbedded in L∞(0, T ;HM−1(Ω)),
for J defined in (1.10).

Proof This lemma can be found in [12], p89. We only need to verify the special
cases. In fact, 1) from Lemma 2.2, we can choose θ = 4

N+4 , so that L2(0, T ;H2M (Ω))∩
W 1

1 (0, T ;L1(Ω)) is imbedded into Lq(0, T ;L2(Ω)) with 2 ≤ q < 2
1− 4

N+4

. 2) is direct.

3. The Existence of the Solution of the ε-Problem

In this section, the existence of the solution of the ε-problem (1.11) with boundary-
initial condition (1.5)-(1.6) has been discussed. The solution is considered in space

G = L∞(0, T ;HM
0 (Ω)) ∩ L2(0, T ;H2M (Ω)) ∩W 1

1 (0, T ;L1(Ω)). (3.1)

Proposition 3.1 Let G as in (3.1), then G is compactly imbedded into L2(QT ).

This is the corollary of 1) in Lemma 2.3.

Proposition 3.2 There exists a unique solution of the boundary-initial problem for
the following linear high order parabolic system in QT ,

ut = (−1)M+1ε4̃Mu + [g(x, t)]k×
( M∑

m=1

4̃mu + c0u
)

+
∑

|α|<2M

Aα(x, t)Dαu+B(x, t), (3.2)

with the boundary and initial condition

dlu

dγl

∣∣∣
∂Ω

= 0, l = 0, 1, · · · ,M − 1, on ST , (3.3)

u(x, 0) = u0(x), on Ω, (3.4)
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where (−1)Mc0 is a large positive constant dependent of ε (specialized in the proof);
g(x, t),B(x, t)∈L2(QT ) are 3D vectors, Aα(x, t)∈L∞(QT ), |α|<2M, are 3×3 matrices;

[g]k = [(g1, g2, g3)]k = ([g1]k, [g2]k, [g3]k); [g]k =

{
g, if |g| ≤ k,

k sign(g), otherwise;

and u0(x) ∈ HM
0 (Ω). Moreover, the solution belongs to G and has the estimate

sup
0≤t≤T

‖u(·, t)‖HM (Ω)+‖ut(·, t)‖L1(QT )+‖u‖L2(0,T ;H2M (Ω)) (3.5)

≤ C
(
‖u0(x)‖HM (Ω), ‖B(x, t)‖L2(QT ), ‖g(x, t)‖L2(QT ),

∑

|α|<2M

‖Aα(x, t)‖L∞(QT )

)
,

where C also depends on ε, aα, T, N , M and Ω, it is independent of k.

Proof The proof is similar to the one of Lemma 1 in [8], which requires A2M ∈
L∞(QT ). However, we need to obtain a new estimate which only depends on the
L2(QT ) norm of g, which is in a part of the main coefficient matrix A2M .

First, easy to see, the main coefficient matrix A2M (x, t)=




ε −[g3]k [g2]k

[g3]k ε −[g1]k

−[g2]k [g1]k ε




is positive definite.
Taking (3.2) get the scalar product by vector (−1)M

( ∑M
m=1 4̃mu + c0u

)
, noticing

that u · (u×v) = 0, then summing and integrating the result over Ω by parts to obtain

(−1)M

2
d

dt

(
(−1)|α|

∑

|α|=M,|α|<M

aα‖Dα
xu‖2

L2
+c0‖u‖2

L2

)
+ ε

∫

Ω
4̃Mu·

( M∑

m=1

4̃mu+c0u
)
dx

≤
∑

|α|<2M

∫

Ω

∣∣∣Aα(x, t)Dαu·
( M∑

m=1

4̃mu+c0u
)∣∣∣dx +

∫

Ω

∣∣∣B(x, t) ·
( M∑

m=1

4̃mu+c0u
)∣∣∣dx,

then integrating above inequality with respect to t, and using Lemma 2.1, 2.2 to deal
with derivative terms Dαu for 0 < |α| < 2M , we have

1
4

∑

|α|=M

‖Dα
xu(·, t)‖2

L2(Ω)+
(
(−1)Mc0−C̄

)
‖u‖2

L2(Ω)+
ε

2

∫ t

0
‖4̃Mu‖2

L2(Ω)dτ

≤ C
(
‖B‖2

L2
+‖u0‖2

HM

)
+C

(
1 +

∑

|α|<2M

‖Aα‖2
∞

)∫ t

0
‖u‖2

L2(Ω)dτ =Cm

(
1+

∫ t

0
‖u‖2

L2(Ω)dτ
)
.

where C̄ depends only on the given data aα (0 < |α| ≤ M), it is independent of ε, k

and g. Choose (−1)Mc0 such that (−1)Mc0− C̄ > 0, then c0 is independent of ε, k and
g. In the above estimate, Cm depends only on ε and on the given data. By Gronwall
inequality, we have estimates for ‖u‖2

L∞(0,T ;HM (Ω))
and ‖4̃Mu‖2

L2(QT ).
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Now let us estimate ut, from the equation, we have for 0 < t < T,

∫

Qt

|ut|dxdτ ≤ C
(
ε

∫

Qt

|4̃Mu|dxdτ +
M∑

m=1

∫

Qt

|[g]k×4̃mu|dxdτ (3.6)

+c0

∫

Qt

|[g]k×u|dxdτ +
∑

|α|<2M

∫

Qt

|AαDαu|dxdτ +
∫

Qt

|B|dxdτ
)

≤ C
(
1 +

∫

Qt

|g|2dxdτ +
∫

Qt

|u|2dxdτ +
∫

Qt

|4̃Mu|2dxdτ
)
≤ CCm.

Now we have

‖u‖2
L∞(0,T ;HM(Ω))+‖ut‖L1(QT )+‖4̃Mu‖2

L2(QT )≤C
(
‖DM

x u0‖2
L2

,‖B‖L2 ,‖g‖L2 ,
∑

|α|<2M

‖Aα‖L∞

)
,

where C also depends on ε, aα, N, M , Ω and T and other given data , it is independent
of k. i.e. by Lemma 2.1, (3.5) has been obtained.

By the well known theory of linear parabolic system (see [13, 14]),noticing the bound
of [g]k, the solution for problem (3.2)-(3.4) exists and is in G. Its norm is independent
of k. The other part of the proof is standard as the one of Lemma 1 in [8].

Therefore, we have the existence and uniqueness results of the system (3.2) - (3.4).

Remark 3.3 For g ∈ L2(QT ), by a limit process, it is not difficult to show in QT ,

ut =(−1)M+1ε4̃Mu+g(x, t)×
( M∑

m=1

4̃mu+c0u
)

+
∑

|α|<2M

Aα(x, t)Dαu+B(x, t), (3.7)

with boundary-initial condition (3.3)-(3.4) has a solution in G.

Remark 3.4 If N ≥ 2, g ∈ L2N/N−2(QT ), the solution u of the problem (3.2)
(or (3.7)), (3.3), (3.4) belongs to the space W 1

p′(0, T ;Lp′(Ω)) for p′ = N/(N − 1). If
g ∈ L∞(QT ), the solution u belongs to G ∩H1(0, T ;L2(Ω)).

Now consider a map Tσ(u) in space B = L2(QT ). For any u ∈ B and σ ∈ [0, 1], the
image Tσ(u) of this map is the solution of the following problem

Zεkt = (−1)M+1ε
( M∑

m=1

4̃mZεk+a0Zεk

)
+ σ[u]k×

( M∑

m=1

4̃mZεk+a0Zεk

)

+σ[u]k×h(u) + σξ(u, x, t), in QT , (3.8)
dlZεk

dγl

∣∣∣
∂Ω

= 0, l = 1, · · · ,M − 1, on ST , (3.9)

Zεk(x, 0) = σZ0(x), on Ω. (3.10)

where Z0 satisfies (H1), h(·) and ξ(·, x, t) satisfy (H2) or (H2a).
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For the sake of continuity argument of Tσ, we first consider the problem with [·]k,
then let k goes to infinity to obtain the solution for problem (1.11),(1.5)-(1.6).

From Proposition 3.2, we know that the solution of the problem (3.8)-(3.10) exists
in G provided (−1)Ma0 > (−1)Mc0 where c0 is defined in Proposition 3.2, depending
only on the given data aα, for 0 < |α| ≤ M . G is compactly imbedded into B by
Corollary 3.1. That is, the map Tσ(u) is well defined and compact. For any k > 0, the
map is continuous by noticing |[u1]k − [u2]k| ≤ |u1 − u2|, we have,

‖Zεk1 −Zεk2‖B ≤ C‖u1 − u2‖B.

Also, Tσ(u) = 0 when σ = 0. Then, if there is a uniform estimate for every fixed point
Zεk in B, the map Tσ has at least a fixed point in B by Leray-Schauder’s fixed point
theorem. i.e. for σ = 1, the fixed point Zεk satisfies

Zεkt = (−1)M+1ε
( M∑

m=1

4̃mZεk+a0Zεk

)
+ [Zεk]k×

( M∑

m=1

4̃mZεk+a0Zεk

)

+[Zεk]k×h(Zεk) + ξ(Zεk, x, t), in QT , (3.11)

with boundary-initial condition (3.9)-(3.10).

Now, let us find out the uniform estimate for the map.
Take (3.11) to scalar product by (−1)M (

∑M
m=1 4̃mZεk + a0Zεk), where (−1)Ma0

is a large positive constant independent of ε and k, which will be chosen later. Then
integrate the result over Qt by parts. Let us estimate terms one by one:

s

∫

Qt

Zεkt ·
( M∑

m=1

4̃mZεk+a0Zεk

)
dxdτ =

s

2

∫ t

0
dτ

d

dτ

∫

Ω

( ∑

|α|≤M

(−1)αaαDα|Zεk|2 +a0|Zεk|2
)
dx

≥s

2

∫

Ω
a0|Zεk|2dx +

s

2

(
(−1)M

∑

|α|=M

+(−1)|α|
∑

0<|α|<M

)
aα‖Dα

xZεk‖2
L2(Ω)−C(1 +‖Z0‖HM),(3.12)

where s = (−1)M , C is independent of k and σ.

The third term in the left hand side of (3.12) containing several sub terms whose
signs are changing, can be bounded by

s(−1)|α|
∑

|α|<M

aα‖Dα
xZεk(·, t)‖2

L2(Ω)≥
∑

|α|=M

aM

2
‖Dα

xZεk(·, t)‖2
L2(Ω)−Ĉ‖Zεk(·, t)‖2

L2(Ω) (3.13)

with the help of Lemma (2.2), where Ĉ = C(M, N, aM , am) is independent of ε and
k. Here aM = min|α|=M{aα}, am = max0<|α|<M{aα}. So, we can choose a0 such that
(−1)Ma0 > 2C(M, N, aM , am).

ε

∫

Qt

( M∑

m=1

4̃mZεk + a0Zεk

)
·
( m∑

m=1

4̃MZεk + a0Zεk

)
dx ≥ 0 (3.14)
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We need pay special attention on the estimate of the free item. Denoting

H(β) =
( ∫ β1

0
h1(η)dη,

∫ β2

0
h2(η)dη,

∫ β3

0
h3(η)dη

)
, (3.15)

for β = (β1, β2, β3) and using (3.11) and (H2) or (H2a) we have the following calculation:

∣∣∣
∫

Qt

( M∑

m=1

4̃mZεk + a0Zεk

)
· [Zεk]k×h(Zεk)dxdτ

∣∣∣ (3.16)

=
∣∣∣
∫

Qt

h(Zεk) ·
(
[Zεk]k×

( M∑

m=1

4̃mZεk + a0Zεk

))
dxdτ

∣∣∣

=
∣∣∣
∫

Qt

h(Zεk)·
(
Zεkt +(−1)M ε

( M∑

m=1

4̃mZεk + a0Zεk

)
− ξ(Zεk, x, t)

)
dxdτ

∣∣∣

≤
∣∣∣
∫

Ω
H(Zεk)dx−

∫

Ω
H(Z0)dx

∣∣∣+ε

4

∫

Qt

∣∣∣
M∑

m=1

4̃mZεk+a0Zεk

∣∣∣
2
dxdτ +C

(∫

Qt

|Zεk|2dxdτ +1
)

≤ C0

(∫

Ω
|Zεk|2dx+

∫

Ω
|Z0|2dx

)
+

ε

4

∫

Qt

∣∣∣
M∑

m=1

4̃mZεk+a0Zεk

∣∣∣
2
dxdτ +C

(∫

Qt

|Zεk|2dxdτ +1
)
,

where C0 only depends on the given data, it is independent of k, σ and ε. If we choose
(−1)Ma0 > 4C0, the first and second terms of the right side of (3.16) will be eliminated.
C depends on the given data, it is independent of k and σ. With all conditions above,
we should choose a0 such that

(−1)Ma0 > 4max{Ĉ, C0, c0}, (3.17)

where Ĉ is given in (3.13), C0 is defined in (3.16) and c0 is defined in Proposition 3.2,
therefore a0 can be chosen and is independent of ε, k and σ. At last,

∣∣∣
∫

Qt

ξ(Zεk, x, t)·
( M∑

m=1

4̃mZεk+a0Zεk

)
dxdτ

∣∣∣ (3.18)

≤ ε

4

∫

Qt

( M∑

m=1

4̃mZεk+a0Zεk

)
·
( M∑

m=1

4̃mZεk+a0Zεk

)
dxdτ +Cε

(
1+

∫ t

0
‖Zεk‖2

L2(Ω)dτ
)
,

where Cε depends on ε and is independent of k and σ.
All together from (3.12)-(3.18) we can obtain

(−1)M

4

∫

Ω
a0|Zεk|2dx+

1
4

∑

|α|=M

aα‖Dα
xZεk‖2

L2(Ω)+
ε

2

∫

Qt

∣∣∣
M∑

m=1

4̃mZεk+a0Zεk

∣∣∣
2
dxdτ

≤ Cε

(
1 + ‖Z0‖2

HM (Ω)+
∫ t

0
‖Zεk‖2

L2(Ω)dτ
)
, (3.19)

where Cε depends on the norm of Z0 given by (H1), the norm of f given by (H2) or
(H2a) and other given data. It depends on ε, but is independent of k and σ.



90 Liang Jin Vol.19

The left hand side of (3.19) is positive. By Gronwall inequality it yields

max
0≤t≤T

(
‖Zεk‖2

L2(Ω) + ‖DM
x Zεk‖2

L2(Ω)

)
+

ε

2
‖Zεk‖2

H2M (QT ) ≤ Cε. (3.20)

By the imbedding theorem, we have ‖Zεk‖B ≤ Cε for all fixed point Zεk, where Cε

depends on ε but is independent of k and σ, i.e. Zεk has an uniform estimate in space
B. That is, the map Tσ has at least one fixed point in space B when σ = 1. That is,
the solution of the problem (3.11), (1.5)-(1.6) exists.

Next, let k →∞, we intend to prove that the limit Zε of Zεk is just the solution of
the problem (1.11), (1.5), (1.6).

In fact, for Zεk ∈ B, with uniform (3.20), we also can obtain Zεkt ∈ L1(QT ) and
Zεk ∈ L∞(0, T ;HM(Ω))∩L2(0, T ;H2M(Ω)), whose norms are independent of k. Thus
Zεk ∈G uniformly with respect to k. By Corollary 3.1, G is compactly imbedded into
B, so that, noticing (3.20) to be uniform with respect to k, we have, when k →∞,

Zεk −→ Zε, in B strongly; [Zεk]k −→ Zε, in B strongly;

Zεk −→ Zε, in G weakly; Zεk −→ Zε, a.e. in QT .

That is, Zε ∈ G. Thus, for any φ ∈ C∞(QT ), as k→∞, [Zεk]k,Zεk→Zε in B, and

∫

QT

[
− φ·(Zεkt−Zεt) + φ·(−1)M+1ε

( M∑

m=1

4̃m(Zεk−Zε)+a0(Zεk−Zε)
)

+φ·
(
[Zεk]k−Zε

)
×

( M∑

m=1

4̃mZεk+a0Zεk

)
+φ·Zε×

( M∑

m=1

4̃m(Zεk−Zε)+a0(Zεk−Zε)
)

+φ·
(
[Zεk]k−Zε

)
×h(Zεk)+φ·Zε×

(
h(Zεk)−h(Zε)

)
+φ·

(
ξ(Zεk)−ξ(Zε)

)]
dxdt → 0,

∫

QT

[
φ ·

(
[Zεk]k×a0Zεk

)]
dxdt →

∫

QT

[
φ ·

(
Zε×a0Zε

)]
dxdt = 0.

That is, Zε is the solution of the problem (1.11), (1.5)-(1.6). We have

Theorem 3.5 Problem (1.11), (1.5)-(1.6) admits at least one solution in space G.

4. The ε-Independent Estimates

In this section, we want to obtain the following estimates, which are the key esti-
mates in this paper:

sup
0≤t≤T

‖Zε(·, t)‖HM (Ω) ≤ C, (4.1)

sup
0≤t≤T

‖Zεt(·, t)‖H−(M+J)(Ω) ≤ C, (4.2)

where C is independent of ε, J is defined in (1.10).
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First, we suppose (H2) is satisfied. Now let us estimate (4.1).
Taking (1.11) get the scalar product by the vector Zε, then integrating the result

in domain Qt, we have

∫

Qt

Zε ·Zεtdxdτ = (−1)M+1ε

∫

Qt

Zε ·
( M∑

m=1

4̃mZε+a0Zε

)
dxdτ (4.3)

+
∫

Qt

Zε·Zε×
M∑

m=1

4̃mZεdxdτ +
∫

Qt

Zε ·Zε×h(Zε)dxdτ +
∫

Qt

Zε ·ξ(Zε, x, t)dxdτ,

where

(−1)M+1ε

∫

Ω
Zε ·

( M∑

m=1

4̃mZε + a0Zε

)
dxdτ (4.4)

≤ −εC
[ ∑

|α|=M

aα

2
‖Dα

xZε‖2
2 − C(M, N, aM , am)‖Zε‖2

2 + (−1)Ma0‖Zε‖2
2

]
≤ 0

as long as (3.17) holds. So that, noting the second and third term in the right side of the
inequality (4.3) equal to 0 and take count on (H2),

∫
Ω |Zε|2dx ≤ C

(
1+

∫ t
0

∫
Ω |Zε|2dxdτ

)
.

Thus by Gronwell Inequality we have ,

max
0≤t≤T

∫

Ω
|Zε|2dx ≤ C, (4.5)

where C is independent of ε.
Taking (1.11) get the scalar product by the vector (−1)M (

∑M
m=1 4̃mZε + a0Zε),

then integrating the result in the domain Qt, we have

∫

Qt

(−1)M
( M∑

m=1

4̃mZε + a0Zε

)
·Zεtdxdτ (4.6)

= −ε(−1)2M
∫

Qt

( M∑

m=1

4̃mZε+a0Zε

)
·
( M∑

m=1

4̃mZε+a0Zε

)
dxdτ

+(−1)M
[ ∫

Qt

( M∑

m=1

4̃mZε+a0Zε

)
·Zε×

M∑

m=1

4̃mZεdxdτ

+
∫

Qt

( M∑

m=1

4̃mZε+a0Zε

)
·Zε×h(Zε)dxdτ +

∫

Qt

( M∑

m=1

4̃mZε+a0Zε

)
·ξ(Zε, x, t)dxdτ

]
,

where the left side of the above inequality can be estimated as

∫

Qt

(−1)M
( M∑

m=1

4̃mZε+a0Zε

)
·Zεtdxdτ

=
1
2

∫

Ω

( M∑

|α|=1

(−1)M+|α|aα(|Dα
xZε|2−|Dα

xZ0|2)+(−1)Ma0(|Zε|2−|Z0|2)
)
dx
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Treat it as (3.13) and (4.4), then the first item of the right side of above inequality
can be found a low bound as

∫

Ω

( M∑

|α|=1

(−1)M+|α|aα|Dα
xZε|2+(−1)Ma0|Zε|2

)
dx

≥
[ ∑

|α|=M

aα

2
‖Dα

xZε‖2
L2(Ω)−C(M,N,aM ,am)‖Zε‖2

L2(Ω)+(−1)Ma0‖Zε‖2
L2(Ω)

]

≥
[ ∑

|α|=M

aα

2
‖Dα

xZε‖2
L2(Ω) + (−1)M a0

2
‖Zε‖2

L2(Ω)

]
> 0 (4.7)

−ε

∫

Qt

(−1)2M
( M∑

m=1

4̃mZε+a0Zε

)
·
( M∑

m=1

4̃mZε+a0Zε

)
dxdτ ≤ 0, (4.8)

∫

Qt

(−1)M
( M∑

m=1

4̃mZε+a0Zε

)
·Zε×

M∑

m=1

4̃mZεdxdτ = 0. (4.9)

By (H2) and (1.11), for the free term, denoting H(·) as defined in (3.15), we have

∫

Qt

M∑

m=1

4̃mZε ·Zε×h(Zε)dxdτ =
∫

Qt

h(Zε)·
(
Zε×

M∑

m=1

4̃mZε

)
dxdτ (4.10)

=
∫

Qt

h(Zε)·
(
Zεt+ε(−1)M

( M∑

m=1

4̃mZε+a0Zε

)
−Zε×h(Zε)−ξ(Zε, x, t)

)
dxdτ

=
∫

Ω
(H(Zε)−H(Z0))dx+ε(−1)M

∫

Qt

h(Zε)·
( M∑

m=1

4̃mZε+a0Zε

)
dxdτ−

∫

Qt

h·ξdxdτ,

where, by (H2) the last term of above (4.10) is bounded by C(1+
∫
QT
|Zε|2dxdτ), then

bounded by a constant which independent of ε from (4.5). Take count on (4.5), the
first term in the right side of (4.10) can be estimated as

∣∣∣
∫

Ω
H(Zε)dx−

∫

Ω
H(Z0)dx

∣∣∣ ≤ C
(
1 + ‖Zε‖2

L2(Ω) + ‖Z0‖2
L2(Ω)

)
≤ C ′ (4.11)

where C ′ is independent of ε and by (H2) the second term of the right side of (4.10)
has the estimate

∣∣∣ ε(−1)M
∫

Qt

h(Zε)·
( M∑

m=1

4̃mZε + a0Zε

)
dxdτ

∣∣∣ (4.12)

≤ ε

2

∫

Qt

( M∑

m=1

4̃mZε + a0Zε

)
·
( M∑

m=1

4̃mZε+a0Zε

)
dxdτ +

ε

2

∫

Qt

|h(Zε)|2dxdτ

≤ ε

2

∫

Qt

( M∑

m=1

4̃mZε+a0Zε

)
·
( M∑

m=1

4̃mZε+a0Zε

)
dxdτ +C

(
1 +

∫

Qt

|Zε|2dxdτ
)

The first term in the right side of the above inequality (4.12) can be eliminated by (4.8)
and the second term is bounded by a constant which independent of ε from (4.5).
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Now let us treat the last term of the right side of (4.10). By (H2), we have

∣∣∣
∫

Qt

ξ(Zε, x, t)·
( M∑

m=1

4̃mZε+a0Zε

)
dxdτ

∣∣∣ (4.13)

=
∣∣∣
∫

Qt

M∑

m=1

Dmξ(Zε, x, t)·
M∑

m=1

DmZεdxdτ +a0

∫

Qt

ξ(Zε, x, t)·Zεdxdτ
∣∣∣

≤ C

∫

Qt

( ∑

|α|=M

|Dα
xZε|2+|Zε|2+1

)
dxdτ

where C depends on the L∞(0, T ;HM (Ω)) norms of ξij . It is independent of ε.
All together of above estimates, we have

∑

|α|=M

‖Dα
xZε‖2

L2
(t)+‖Zε‖2

L2
(t) ≤ C

(
1 +

∫ t

0
[

∑

|α|=M

‖Dα
xZε‖2

L2
(τ)+‖Zε‖2

L2
(τ)]dτ

)
,

which leads to (4.1) by Gronwall Inequality, where C depends only on the given data.
It is independent of ε.

Secondly, let us consider (4.2).
Now, choose ψ(x) ∈ HM+J

0 (Ω), where J is defined in (1.10). Take (1.11) to scalar
product by ψ(x) , then integrate it over Ω, there comes

∫

Ω
ψ(x)·Zεt(x, t)dx=

∫

Ω
(−1)M+1εψ ·

( M∑

m=1

4̃mZε+a0Zε

)
dx+

∫

Ω
ψ ·Zε×

M∑

m=1

4̃mZεdx

+
∫

Ω
ψ ·Zε×h(Zε)dx +

∫

Ω
ψ · ξ(Zε, x, t)dx

≤ εC‖ψ‖HM
0 (Ω)‖Zε‖HM

0 (Ω) + C
∑

0<|β|≤M

‖Dβ
xψ‖L∞(Ω)

∑

|α|≤M

‖Dα
xZε‖2

L2(Ω)

+C
(
‖Zε‖L2(Ω) + 1

)
‖ψ‖L∞(Ω) ≤ C‖ψ‖HM+J

0 (Ω).

where C depends only on the given data. It is independent of ε.
Since HM+J

0 →CM
0 , for all M, Zεt∈H−(M+J)(Ω), a.e.in [0, T ]. (4.2) follows, and

Zε ∈ Z = L∞
(
0, T ;HM

0 (Ω)
)
∩W 1

∞
(
0, T ;H−(M+J)(Ω)

)
, (4.14)

and Zε has a uniform bound in space Z. By 2) of Lemma 2.3, space Z is imbedded
into space L∞(0, T ;HM−1(Ω)) compactly.

Now we consider a special case M = 1, when the hypothesis on the free term f

can be more general as (H2a). Actually, viewing all estimates we have done above, we
can find out that the most difficult part is to get an ε independent bound for the term∣∣∣
∫
Ω

( ∑M
m=1 4̃mZε + a0Zε

)
· f(Zε)dx

∣∣∣ .
On (H2a), the estimate of Zε×h(Zε), the first part of f , should be the same as the

one of (H2). For the second part ξ(Zε, x, t), where ξ is no more linear with respect to
Zε, should be treated in a different way.
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If ξ is nonlinear and the order M is high, it will bring about many trouble terms.
However if M = 1, we can directly calculate it as

∫

Qt

4Zε · ξ(Zε)dxdτ =
∑

|α|=1

∫

Qt

Dα
xZε ·Dα

xξ(Zε, x, t)dxdτ

≤
∑

|α|=1

∫

Qt

(∣∣∣ ∂ξ

∂Zε

∣∣∣|Dα
xZε|2 +

∑

|α|=1

∣∣∣ ∂ξ

∂xα

∣∣∣|Dα
xZε|

)
dxdτ

≤ C
( ∫ t

0

( ∑

|α|=1

‖Dα
xZε‖2

L2(Ω) + ‖Zε‖2
L2(Ω)

)
dτ + 1

)
,

where C is independent of ε.

So that, in the case of M = 1 and (H2a), we obtain (4.1) from (4.10) as well. The
other estimates should be same or simpler to be obtained.

5. The Limit Process

Now we consider the limit process when ε tends to 0. From the result of Section 3,
Zε ∈ G exists and for any 3D vector φ(x, t) ∈ C1(0, T ;CM

0 (Ω)), φ(x, T ) ≡ 0, we have
∫

QT

[
φt ·Zε + ε

∑

|α|≤M

(−1)M+|α|+1aαDα
xφ ·Dα

xZε (5.1)

+
∑

0<|α|≤M

(−1)|α|aαDα
xZε ·

∑

0<β≤α

( α

β

)(
Dβ

xφ×Dα−β
x Zε

)

+φ ·Zε×h(Zε) + φ · ξ(Zε, x, t)
]
dxdt +

∫

Ω
φ(x, 0) ·Z0(x)dx = 0.

Since Zε ∈ Z uniformly with respect to ε and Z is compact in L∞(0, T ;HM−1(Ω)),
when ε → 0, there exists Z ∈ Z such that

Zε −→ Z in L∞(0, T ;HM−1(Ω)) strongly; Zε −→ Z in L∞(0, T ;HM(Ω)) weakly;

Zε −→ Z a.e. in QT .

So, when ε → 0,
∫

QT

φt ·Zεdxdt −→
∫

QT

φt ·Zdxdt;

ε
∣∣∣
∫

QT

∑

|α|≤M

(−1)M+|α|+1aαDα
xφ·Dα

xZεdxdt
∣∣∣ ≤ εC max

0≤t≤T
‖Zε‖HM (Ω)−→ 0;

∫

QT

∑

0<|α|≤M

(−1)|α|aαDα
xZε ·

∑

0<β≤α

( α

β

)(
Dβ

xφ×Dα−β
x Zε

)
dxdt

=
∫

QT

∑

0<|α|≤M

(−1)|α|aαDα
xZε ·

∑

0<β≤α

( α

β

)(
Dβ

xφ×Dα−β
x (Zε −Z)

)
dxdt
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+
∫

QT

∑

0<|α|≤M

(−1)|α|aαDα
x (Zε −Z)·

∑

0<β≤α

( α

β

)(
Dβ

xφ×Dα−β
x Z

)
dxdt

+
∫

QT

∑

0<|α|≤M

(−1)|α|aαDα
xZ ·

∑

0<β≤α

( α

β

)(
Dβ

xφ×Dα−β
x Z

)
dxdt

−→
∫

QT

∑

0<|α|≤M

(−1)|α|aαDα
xZ ·

∑

0<β≤α

( α

β

)(
Dβ

xφ×Dα−β
x Z

)
dxdt;

∫

QT

φ ·Zε×h(Zε)dxdt −→
∫

QT

φ ·Z×h(Z)dxdt;
∫

QT

φ · ξ(Zε, x, t)dxdt −→
∫

QT

φ · ξ(Z, x, t)dxdt.

The third limit above should be treated carefully, it holds because when β = 0,

Dα
xZε · (Dβ

xφ×Dα−β
x Zε) = Dα

xZ · (Dβ
xφ×Dα−β

x Z) = 0,

so that the first term of the second equation of it can be bounded by

∣∣∣
∫

QT

∑

0<|α|≤M

(−1)|α|aαDα
xZε ·

∑

0<β≤α

( α

β

)(
Dβ

xφ×Dα−β
x (Zε −Z)

)
dxdt

∣∣∣

≤ C

∫ T

0
‖Zε‖HM(Ω)‖Zε −Z‖HM−1(Ω)dt −→ 0,

and the second term turns to
∫

QT

∑

0<|α|≤M

(−1)|α|aαDα
x (Zε −Z)·

∑

0<β≤α

( α

β

)(
Dβ

xφ×Dα−β
x Z

)
dxdt −→ 0.

Therefore, the limit Z is just the weak solution of Problem (1.4)-(1.6) defined in
Definition 1.1. The main Theorem 1.2 and 1.3 have been proved.

6. Some Remarks

Remark 6.1 Linear free term, as in [8], is a special case of (H2)when h=0.

Remark 6.2 When M = 1, the nonlinearity of the free term f can be free of
the structure (1.7), when simply let h = 0. However, in (H2a), the condition for the
nonlinearity of ξ(Z) cannot cover the case of Z×h(Z). For this reason, when we
discuss the case M = 1, we still let f be as in (1.7) with a nonlinear ξ(Z).

Remark 6.3 Instead of (1.5), if the problem has the boundary condition

dlZ

dγl

∣∣∣
∂Ω

= 0, l = M, · · · , 2M − 1, on ∂Ω×[0, T ) (6.1)

then we also have the same results as Theorem 1.2 and Theorem 1.3.
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The proof of the theorem does not require many changes with boundary condition (6.1)
instead of (1.5). The integral by parts can still be available in this case.

Remark 6.4 If boundary condition (1.5) is replaced by the non-homogeneous one:

dlZ

dγl

∣∣∣
∂Ω

= gl, l = 0, · · · ,M − 1, on ∂Ω×[0, T ), (6.2)

where gls are in some suitable spaces, we also have the same results as Theorem 1.2
and Theorem 1.3 by transforming the problem into a homogeneous one.

Remark 6.5 If N < 2M is satisfied, the imbedding theorem of HM to L∞ is
available. The solution of the problem is then in the space L∞(QT ). Moreover, if there
exists j, 0 ≤ j < M, such that N < 2(M − j), and N ≥ 2(M − j− 1), the solution also
belongs to the space L∞(0, T ;Cj,M−j−N

2 (Ω)).
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