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Abstract In this article we study the global existence of solutions to an initial
boundary value problem for the Mullins equation which describes the groove devel-
opment at the grain boundaries of a heated polycrystal, both the Dirichlet and the
Neumann boundary conditions are considered. For the classical solution we also inves-
tigate the large time behavior, it is proved that the solution converges to a constant, in
the L∞(Ω)−norm, as time tends to infinity.
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1. Introduction

In the present article we are interested in the global existence of solutions to an
initial boundary value problem for the Mullins equation which describes the groove
development at the grain boundaries of a heated polycrystal. When the weak solu-
tion happens to be classical we also investigate the large time behavior of the solution.
This model was proposed by Mullins in 1957, see [1]. In the classical theory of thermal
grooving, two principal mechanisms for mass transport on a metal surface can be distin-
guished, the evaporation-condensation and the surface diffusion. For some metals like
magnesium, the first mechanism plays a dominated role after a very short time. While
for some other metals, such as gold, the second mechanism dominates the process for
a very long time. We refer to [1] for more details. The initial boundary value problem
reads

ut = D
(
1 + u2

x

)−1
uxx, (1.1)

u|∂Ω = 0, (1.2)

u|t=0 = u0, (1.3)
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where the equation (1.1) must be satisfied in QT = (0, T ) × Ω, T is a certain real
number, Ω = (a, b), and ∂Ω = {a, b} with a, b being real numbers such that a < b. We
also consider the Neumann boundary condition, namely (1.2) is replaced by

ux|∂Ω = 0. (1.4)

Here u = u(t, x) is the unknown, u0 is the initial data which is given, where x, u are
Cartesian coordinates and t is the time. D is a constant defined by

D =
p0γω2

(2πM)
1
2 (kT )

3
2

,

where p0 is the vapor pressure in equilibrium with a plane surface (the curvature K = 0),
γ is the surface-free energy per unit area, ω is the molecular volume, M is the weight
of a molecule, and k is the Boltzmann constant and T is the absolute temperature,
respectively. For simplicity we assume that D = 1. As we shall see later on, we
state the existence theorem of solutions to the problems for both the Dirichlet and
the Neumann boundary conditions, we investigate mainly the problem with Dirichlet
boundary condition since many parts of the proofs for the two problems are similar,
however, we still state the key ingredients in the proof of the theorem for the problem
with the Neumann boundary condition, which is crucially different from those arising
in the Dirichlet problem.

Equation (1.1) is a model for thermal grooving of the first mechanism. We choose
the free energy function as

f(ux) =
ν

2
|ux|2,

suppose that u is a classical solution to (1.1) – (1.3), then one has

d

dt

∫

Ω
f(ux(t, x))dx=ν

∫

Ω
uxuxt = −ν

∫

Ω
uxxutdx

=−ν

∫

Ω

(
1 + u2

x

)−1
u2

xxdx

≤0. (1.5)

Therefore, the second law of thermodynamics is satisfied. If we define

J =
∫ ux dy

1 + y2
,

we find that (1.1) become ut = Jx, so J is a flux, (1.1) defines a gradient flow.
On the other hand, we can easily see that (1.1) is non-uniformly parabolic since

the coefficient of its leading term may decay to zero as ux tends to infinity. Thus, we
modify the equation to a uniformly parabolic one, to solve this approximate problem we
employ an existence theorem for quasilinear parabolic equations, see e.g. Ladyzenskaya,
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Solonnikov and Uralceva [2]. Then we pass the approximate solutions to the limit which
is just a weak solution to the original problem.

In what follows, we shall prove the global existence of weak solution and classical
solution, for the second case we also investigate the large time behavior. To do so, we
need to introduce some notations. We denote the scalar product over QT by (·, ·)T , its
corresponding norm by ‖ · ‖T , and the scalar product over Ω by (·, ·), its corresponding
norm by ‖ · ‖, respectively. We use the notation

∫ x =
∫ x
A for any fixed A ∈ R. The

standard notations for the Sobolev and Hölder spaces are adopted.

Definitions 1) Weak solutions For any u0 ∈ L2(Ω). A function u which satis-
fies

u ∈ L∞(0, T ;L2(Ω)) ∩ L1(0, T ;H1
0 (Ω))

(or u ∈ L∞(0, T ;L2(Ω)) ∩ L1(0, T ;H1(Ω)) for the Neumann boundary conditions), is
called a weak solution to the problem (1.1) – (1.3) if it satisfies

(u, ϕt)T = (arctg(ux), ϕx)T − (u0, ϕ) (1.6)

for any test function ϕ ∈ C∞
0 ((−∞, T )×Ω) ( or ϕ ∈ C∞

0 ((−∞, T )×R) for the Neumann
boundary conditions ). Here arctg(ux) =

∫ ux

0
dy

1+y2 .

2) Strong solutions A function u is called a strong solution to the problem (1.1)
– (1.3) if u is a weak solution and satisfies the semi-regularity properties

u ∈ L∞(0, T ;H1
0 (Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)), ut ∈ L2(QT ).

(Remark: for the Neumann condition, the properties are ut ∈ L2(QT ) and u ∈ L∞(0, T ;
H1(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1(Ω)).)

We can state the main results as follows.
A) For the Dirichlet boundary, we have

Theorem 1.1 I) Assume that u0 ∈ H1
0 (Ω), and that the compatibility condition

u0(a) = u0(b) = 0 is satisfied.
Then there exists a unique global weak solution u such that

u ∈ L∞(0, T ;H1
0 (Ω)), ut ∈ L2(QT ).

II) Suppose that u0 satisfies the conditions in I), moreover assume that u0 ∈
W 1,∞(Ω), then there exists a unique strong solution u which satisfies furthermore that

‖ux‖L∞(QT ) ≤ C.

III) Further, if we assume that u0 ∈ C2+α(Ω̄) (here and hereafter we assume that
0 < α < 1 is a constant ) and one more compatibility condition

u0xx|x=a,b = 0
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is met. Then there exists a unique classical solution u such that

utx, uxxx ∈ L2(QT ).

Moreover
‖u(t)‖L∞(Ω) → 0

as t →∞.

B) For the Neumann boundary, we have

Theorem 1.2 I) Assume that u0 ∈ H1(Ω). Then there exists a global weak solu-
tion u such that

u ∈ L∞(0, T ;H1(Ω)), ut ∈ L2(QT ).

II) Besides the conditions for u0 in I), we assume that u0 ∈ W 1,∞(Ω), then there
exists a unique strong solution u which satisfies furthermore that

‖ux‖L∞(QT ) ≤ C.

III) Assume that u0 ∈ C2+α(Ω̄) and the compatibility conditions

u0x|x=a,b = 0, ut|t=0, x=a,b = u0xx|x=a,b

are satisfied. Then there exists a unique classical solution u such that
∫

Ω
u(t, x)dx =

∫

Ω
u0(x)dx, utx, uxxx ∈ L2(QT ).

Moreover
‖u(t)− ū0‖L∞(Ω) → 0

as t →∞. Here we used the notation f̄(t) = 1
meas (Ω)

∫
Ω f(t, x)dx.

The main difficulty in the proof of Theorem 1.1 and Theorem 1.2 is due to that
the coefficient depends nonlinearly on the first order derivative, and may decay to zero.
This leads to the difficulty for the proof of compactness of a sequence of first order
derivative of approximate solutions, this is only in L1(0, Te;H−1(Ω)), we shall use, as
in Alber and Zhu [3], the generalized form of the Aubin-Lions lemma, given by Roub́ıcěk
[4] or Simon [5], which is valid in L1. To prove the existence of classical solution we
make use of an existence theorem from the book by Ladyzenskaya etc. [2].

We now recall some references which are related to this article. Some authors have
investigated the existence of special solutions of the Cauchy problems to the equation
(1.1), see e.g. Broadbridge [6], Kitada and Umehara [7]. As for the conserved Mullins
equation which is a fourth order nonlinear parabolic equation, we refer to Broadbridge
and Tritscher [8], Tritscher and Broadbridge [9], etc. As for the problems for the
equations where the coefficient of the principle part depends on the unknown and
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decay to zero as the unknown tends to zero, for instance, the porous media equation is
a famous model, we refer to R. Dal Passo and Luckhaus [10], Aronson, Crandall and
Peletier [11], Brezis and Crandall [12], etc.

The remaining part of this article is organized as follows: In Section 2 we are going
to establish some a priori estimates for both weak and classical solutions. Then in
Section 3 we discuss the limits of the approximate solutions by using those estimates,
thus prove the existence of solutions. Also we investigate the large time behavior of
the classical solutions.

2. A priori estimates

In this section we are going to prove the existence of classical solution and to derive
some a priori estimates for the following approximate problem

ut =
((

1 + u2
x

)−1 + κ
)

uxx, (2.1)

u|∂Ω = 0, or ux|∂Ω = 0, (2.2)

u|t=0 = uκ
0 . (2.3)

Here, κ is a positive number, we assume that

0 < κ < 1.

The initial data uκ
0 ∈ C∞

0 (Ω) is a smooth approximation of u0 such that

‖uκ
0 − u0‖H1(Ω) → 0

as κ → 0.
Employing a theorem in the book by Ladyzenskaya etc. [2], we can prove easily

the existence of classical solution uκ to the problem (2.1) – (2.3). Moreover we can
establish the following a priori estimates which are uniformly bounded in κ, and the
bounds C are independent of t. To denote a constant depending probably on t we use
CT .

Lemma 2.1 (The basic energy estimate) There hold for any t ∈ [0, T ] that

‖uκ
x‖2 +

∫ t

0

∫

Ω

(
1

1 + (uκ
x)2

+ κ

)
|uκ

xx|2dxdτ ≤ C, (2.4)

∫ t

0

∫

Ω

(∣∣∣∣
uκ

xx

1 + (uκ
x)2

∣∣∣∣
2

+ (uκ
t )2

)
dxdτ ≤ C, (2.5)

∫ t

0

∫

Ω
|arctg(uκ

x)|2 =
∫ t

0

∫

Ω

∣∣∣∣
∫ uκ

x

0

dy

1 + y2
dy

∣∣∣∣
2

dxdτ ≤ CT . (2.6)

When the initial data u0 ∈ W 1,∞(Ω), the solution satisfies for any t ∈ [0, T ]

‖uκ
x‖L∞(QT ) ≤ C. (2.7)
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Proof Suppose that (2.4) holds. Then (2.6) and (2.5) follow easily from the simple
inequalities

∣∣∣∣
∫ uκ

x

0

dy

1 + y2

∣∣∣∣ ≤
∫ |uκ

x|

0

dy

1 + y2
≤

∫ ∞

0

dy

1 + y2
dy ≤ C < ∞.

and that
1

1 + (uκ
x)2

≤ 1.

So we only need to prove (2.4).
Multiplying (2.1) by −uκ

xx and integrating the resulting equation over QT yield

1
2
‖uκ

x‖2 +
∫ t

0

∫

Ω

(
1

1 + (uκ
x)2

+ κ

)
(uκ

xx)2dxdτ =
1
2
‖uκ

0x‖2. (2.8)

which implies (2.4). As for (2.7), we follow an idea in [13], however that technique is
used here to get the Lp−bounds of the derivative of the unknown while it was used for
getting Lp−bounds of the unknown. Multiplying (2.1) by −

(∫ uκ
x y2n+1dy

)
x

for any
integer n ≥ 0 and integrating it over QT yield

0=
(

uκ
t ,−

(∫ uκ
x

y2n+1dy

)

x

)
+

∫

Ω

(uκ
x)2n+1

1 + (uκ
x)2

(uκ
xx)2dx

≥
(

uκ
xt,

∫ uκ
x

y2n+1dy

)

=
1

2n + 2
d

dt

∫

Ω
|uκ

x|2n+2dx. (2.9)

Thus, we obtain

(∫

Ω
|uκ

x(t)|2n+2dx

) 1
2n+2

≤
(∫

Ω
|uκ

x(0)|2n+2dx

) 1
2n+2

≤ ‖u0x‖L∞(Ω).

Letting n →∞ yields (2.7), and we complete the proof of the lemma.

Lemma 2.2 There holds for any t ∈ [0, T ] that
∥∥∥∥∂t

∫ uκ
x dy

1 + y2
dy

∥∥∥∥
L1(0,T ;H−1(Ω))

≤ C. (2.10)

Proof Differentiating the equation (2.1) with respect to x, multiplying it by ϕ/(1+
(uκ

x)2), where ϕ is a test function in L∞(0, T ;H1
0 (Ω)), then integrating the resulting

equation over QT we obtain
(

uκ
xt

1 + (uκ
x)2

, ϕ

)

T

=
(

∂x

(
uκ

xx

1 + (uκ
x)2

+ κuκ
xx

)
,

ϕ

1 + (uκ
x)2

)

T

. (2.11)
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Here, we used the property that uκ
xt ∈ L2(QT ) for a classical solution uκ to problem

(2.1) – (2.3).
The above equation can be rewritten as

(
∂t

∫ uκ
x dy

1 + y2
dy, ϕ

)

T

= −
(

uκ
xx

1 + (uκ
x)2

+ κuκ
xx, ∂x

(
ϕ

1 + (uκ
x)2

))

T

. (2.12)

Thus we have
∣∣∣∣
(

∂t

∫ uκ
x dy

1 + y2
dy, ϕ

)

T

∣∣∣∣=
∣∣∣∣
(

uκ
xx

1 + (uκ
x)2

+ κuκ
xx, ∂x

(
ϕ

1 + (uκ
x)2

))

T

∣∣∣∣

≤
∣∣∣∣
(

uκ
xx

1 + (uκ
x)2

+ κuκ
xx,

ϕx

1 + (uκ
x)2

)

T

∣∣∣∣

+

∣∣∣∣∣
(

uκ
xx

1 + (uκ
x)2

+ κuκ
xx,

−2ϕuκ
xuκ

xx

(1 + (uκ
x)2)2

)

T

∣∣∣∣∣

≤
(∥∥∥∥

uκ
xx

1 + (uκ
x)2

∥∥∥∥
T

+ κ‖uκ
xx‖

)
‖ϕx‖T

+

(∥∥∥∥
uκ

xx

1 + (uκ
x)2

∥∥∥∥
2

T

+ κ2‖uκ
xx‖2

)
‖ϕ‖L∞(QT )

≤C‖ϕ‖L∞(0,T ;H1
0 (Ω)). (2.13)

Here we used the Sobolev imbedding theorem, the basic inequality 2ab ≤ a2 + b2 for
any a, b ≥ 0, and estimate (2.5). We obtain (2.10). And the proof of this lemma is
completed.

To conclude the existence of classical solution, we need more estimate and assume
that

u0 ∈ C2,α(Ω̄).

We shall apply the maximum principle for parabolic equations to the difference quotient

uκ
h(t) =

uκ(t + h)− uκ(t)
h

for any T > h > 0. Hereafter, we use uκ(t) to denote uκ(t, x) for the sake of simplicity.

Lemma 2.3 There holds

‖uκ
t ‖L∞(QT ) ≤ ‖u0‖W 2,∞(Ω). (2.14)

Proof Suppose that there exists a classical solution uκ to the problem (2.1) –
(2.3). We omit the upper-script κ and the argument t (however we leave the argument
t + h) of unknowns, and write uκ as u for simplicity, in the following proof of this
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lemma. After straightforward computations we then see that uh satisfies

uht =
1
h

(
uxx

1 + u2
x

(t + h)− uxx

1 + u2
x

)
+

κ

h
(uxx(t + h)− uxx) (2.15)

=
(

1 + u2
x

(1 + u2
x(t + h))(1 + u2

x)
+ κ

)
uhxx − (ux(t + h) + ux) uxx

(1 + u2
x(t + h))(1 + u2

x)
uhx,

and the boundary and initial data are

uh|∂Ω =0,

uh|t=0 = û0,

where

û0 =
1
h

∫ h

0
ut(τ)dτ, and û0 →

(
1 + u2

0x

)−1
u0xx as h → 0. (2.16)

Therefore applying the maximum principle to the function uh which is a classical
solution to the above problem, we then obtain

‖uh‖L∞(QT−h) ≤ C‖û0‖L∞(QT ).

Letting h → 0, using (2.16), we get (2.14). And the proof of this lemma is completed.

Remark For the Neumann condition, we can only obtain the estimates for uκ
t , uκ

xx

in L∞(0, T ;L2(Ω)), however they are enough to get the Hölder estimate for uκ
x, with

a smaller exponent in (3.7) and (3.8). To prove these estimates, we apply the energy
estimate and use (2.7), and omit the detail.

Corollary 2.4 There hold for any t ∈ [0, T ] that

‖uκ‖L∞(0,T ;W 2,∞(Ω)) ≤ C, (2.17)

‖uκ
t ‖T + ‖uκ

xx‖T ≤ C. (2.18)

Proof Suppose that (2.17) is true, we infer (2.18) easily from the equation (2.1).
Thus we only need to prove (2.17).

From Eq. (2.1) and (2.14) we get

‖uκ
xx‖L∞(QT ) ≤ ‖uκ

t ‖L∞(QT )‖(1 + |uκ
x|2)‖L∞(QT ) ≤ C

(
1 + ‖uκ

x‖2
L∞(QT )

)
. (2.19)

By the Nirenberg inequality one has

‖uκ
x‖L∞(Ω) ≤ C‖uκ

xx‖
1
3

L∞(Ω)‖uκ
x‖

2
3 + C ′‖uκ

x‖,
so (2.19) becomes

‖uκ
xx‖L∞(QT )≤C

(
1 + sup

0≤t≤T
‖uκ

xx(t)‖
2
3

L∞(Ω)

)

≤ sup
0≤t≤T

1
2
‖uκ

xx(t)‖+ C =
1
2
‖uκ

xx‖L∞(QT ) + C, (2.20)
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from which we arrive at (2.17). Here we used the estimate (2.4) and the Young in-
equality. Thus the proof of this lemma is completed.

3. Existence and large time behavior

This section is concerned with the limits of approximate solutions and with the
large time behavior of classical solution. The proof of the existence of weak solution is
based on the following two results:

Theorem 3.1 Let B0 be a normed linear space imbedded compactly into another
normed linear space B which is continuously imbedded into a Hausdorff locally convex
space B1, and 1 ≤ p < +∞. If v, vi ∈ Lp(0, Te;B0), i ∈ N, the sequence {vi}i∈N
converges weakly to v in Lp(0, Te;B0), and {∂vi

∂t }i∈N is bounded in L1(0, Te;B1), then
vi converges to v strongly in Lp(0, Te;B).

Lemma 3.2 Let (0, Te) × Ω be an open set in R+ × Rn. Suppose functions gn, g

are in Lq((0, Te)× Ω) for any given 1 < q < ∞, which satisfy

‖gn‖Lq((0,Te)×Ω) ≤ C, gn → g almost everywhere in (0, Te)× Ω.

Then gn converges to g weakly in Lq((0, Te)× Ω).

Theorem 3.1 is a general version of Aubin-Lions lemma valid under the weak as-
sumption ∂tvi ∈ L1(0, Te;B1). This version, which we need here, is proved in [4] and
[5], separately. A proof of Lemma 3.2 can be found in [14, p.12].

Proof of existence of weak solution Let us first prove the existence of weak
solution. From the estimate ‖uκ

x‖ ≤ C we assert that there exists a subsequence and a
function u such that

uκ ⇀∗ u,

in L∞(0, T ;H1(Ω)). We next prove that u is a weak solution to the problem.
Choosing a test function ϕ ∈ C∞

0 ((−∞, T ) × Ω) (for the Neumann condition, ϕ ∈
C∞

0 ((−∞, T ) × R), we don’t point out this again later on), multiplying (2.1) by ϕ,
integrating the resulting equation with respect to t, x, and using integration by parts
we get

0=(uκ
t , ϕ)T + ((arctg(uκ

x))x , ϕ)T

=−(uκ, ϕt)T − (uκ(0), ϕ(0))− (arctg(uκ
x), ϕx)T . (3.1)

We shall see (1.6) is satisfied provided that we prove the following results are true: For
κ → 0, there hold

(uκ, ϕt)T → (u, ϕt)T , (3.2)

(arctg(uκ
x), ϕx)T → (arctg(ux), ϕx)T , (3.3)

(uκ(0), ϕ(0)) → (u0, ϕ(0)). (3.4)
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The relations (3.2) and (3.4) are easy to check. We are going to prove (3.3). To this
end, we apply Theorem 3.1, and choose

vκ := arctg(uκ
x), p = 2

and
B0 = H1

0 (Ω), B = L2(Ω), B1 = H−1(Ω).

(for the Neumann condition, H1
0 (Ω) is changed to H1(Ω).) The spaces H1

0 (Ω) and
H−1(Ω) are reflexive and the Sobolev imbedding theorem implies that H1

0 (Ω) is com-
pactly embedded in L2(Ω). From Theorem 3.1 we thus conclude that there is a subse-
quence, still denote it by vn such that

‖vκ − v‖T → 0,

as κ → 0. Thus we can select a subsequence vκ which converges almost everywhere to
v. Recalling that vκ = arctan(uκ

x), we assert that

uκ
x converges to ux almost everywhere. (3.5)

thus
arctg(uκ

x) → arctg(ux) almosteverywhere.

It is easy to show that
‖arctg(uκ

x)‖T ≤ C,

applying Lemma 3.2 we conclude that

arctg(uκ
x) ⇀ arctg(ux)

in L2(QT ), whence
(arctg(uκ

x), ϕx)T → (arctg(ux), ϕx)T

as κ → 0, for any test function ϕ ∈ C∞
0 ((−∞, T )× Ω).

Therefore (3.1) becomes

0 = −(u, ϕt)T − (u0, ϕ(0))− (arctg(ux), ϕx)T . (3.6)

For the uniqueness of weak solution, we can prove it easily by the monotonicity of the
function arctg(y), hence the proof of the existence and uniqueness of weak solution is
completed.

Proof of existence of strong solution By definition, to prove the existence of
strong solution we only need to examine the semi-regularity. For the weak solution u

we have obtained that

u ∈ L∞(0, T ;H1(Ω)), ut ∈ L2(QT ).
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From the estimates (2.5) and (2.7) one can obtain easily that

‖u‖L2(0,T ;H2(Ω)) ≤ C, so u ∈ L2(0, T ;H2(Ω)).

And the proof of existence is completed.
Proof of existence of classical solution To prove global existence of classical

solution we need the lemma see, e.g. [2]

Lemma 3.3 Let f(t, x) be a function on QT such that
i) f is uniformly (with respect to x) Hölder continuous in t, with exponent 0 <

α ≤ 1, that is |f(t, x)− f(s, x)| ≤ C|t− s|α, and
ii) fx is uniformly (with respect to t) Hölder continuous in x, with exponent 0 <

β ≤ 1, that is |fx(t, x)− fx(t, y)| ≤ C ′|y − x|β.
Then fx is uniformly Hölder continuous in t with exponent γ = αβ/(1 + β), such

that
|fx(t, x)− fx(s, x)| ≤ C ′′|t− s|γ , ∀x ∈ Ω̄, 0 ≤ s ≤ t ≤ T.

where C ′′ is a constant which may depend on C, C ′ and α, β.

Now from the estimates (2.14) and (2.17) we obtain easily that

|uκ(t, x)− uκ(s, x)|=
∣∣∣∣
∫ t

s
uκ

t (τ, x)dτ

∣∣∣∣
≤‖uκ

t ‖L∞(QT )|t− s| ≤ C|t− s|, (3.7)

and

|uκ
x(t, x)− uκ

x(t, y)|=
∣∣∣∣
∫ y

x
uκ

xx(t, ξ)dξ

∣∣∣∣
≤‖uκ

xx‖L∞(QT )|y − x| ≤ C|y − x|. (3.8)

This shows that to apply Lemma 3.3 to the function uκ
x, we can choose the parameters

as follows
α = β = 1, whence γ = 1.

Therefore, for any α < 1 we also have

uκ
x ∈ C

α
2

,α(QT ), and ‖ux‖C
α
2 ,α(QT )

≤ C.

Hence there exist two constants λ, Λ which are independent of κ ∈ (0, 1] and depend
only on the norm of uκ

x in L∞(QT ), such that

λ ≤ 1
1 + (uκ

x)2
+ κ ≤ Λ.

Thus, by the estimate of Schauder type see e.g. Friedman[15] for the uniformly par-
abolic equations we obtain

‖uκ‖
C1+ α

2 ,2+α(QT )
≤ C, (3.9)
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from which we can conclude easily the existence of classical solution to the problem
(1.1) – (1.3).

It remains to show that utx, uxxx ∈ L2(QT ). To this end, we use (2.15). For any
fixed h > 0 we can easily find the limit version of (2.15) as κ → 0. Multiplying it by
uh, integrating the resulting equation and using integration by parts we obtain

0=
1
2

d

dt
‖uh‖2 +

∫

Ω

1 + u2
x(t)

(1 + u2
x(t + h))(1 + u2

x(t))
|uhx|2dx

+
∫

Ω

(
1 + u2

x(t)
(1 + u2

x(t + h))(1 + u2
x(t))

)

x

uhxuhdx

+
∫

Ω

(ux(t + h) + ux(t))uxx(t)
(1 + u2

x(t + h))(1 + u2
x(t))

uhx(t)uhdx

=
1
2

d

dt
‖uh‖2 + I1 + I2 + I3. (3.10)

By estimate (2.17) we have that there exists a constant C such that

I1 ≥ C‖uhx‖2, (3.11)

|I2|, |I3| ≤ ε‖uhx‖2 + Cε‖uh‖2, (3.12)

Thus, combination of (3.10) – (3.12) yields

1
2

d

dt
‖uh‖2 + C‖uhx‖2 ≤ ε‖uhx‖2 + Cε‖uh‖2. (3.13)

Letting ε ≤ 1
2C and integrating (3.13) with respect to t we arrive at

‖uh(t)‖2 + C

∫ t

0
‖uhx‖2dτ ≤ C

∫ t

0
‖uh‖2dτ + ‖uh(0)‖2. (3.14)

Since we investigate the classical solution u, sending h → 0 and using the lower semi-
continuity of the L2−norm ‖ · ‖T , we infer from (3.14) that

‖ut(t)‖2 + C

∫ t

0
‖utx‖2dτ ≤ lim

h→0
‖uh(t)‖2 + C lim inf

h→0

∫ t

0
‖uhx‖2dτ

≤C lim inf
h→0

(∫ t

0
‖uh‖2dτ + ‖uh(0)‖2

)

=C

∫ t

0
‖ut‖2dτ + ‖ut(0)‖2 ≤ C. (3.15)

Here, we used the estimate (2.18) and eq. (2.1). Therefore we obtain

∫ t

0
‖utx‖2dτ ≤ C, (3.16)
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from this and eq. (2.1), using the estimates (2.17) and (2.18) we get further that
∫ t

0
‖uxxx‖2dτ ≤ C. (3.17)

We turn to study the asymptotic behavior as time goes to infinity. Firstly we prove
that

‖ux(t)‖ → 0, (3.18)

as t →∞. For simplicity of notations, we set

y(t) = ‖ux(t)‖2.

Once we have
∫ ∞

0
y(t)dt ≤ C, (3.19)

∫ ∞

0

∣∣∣∣
d

dt
y(t)

∣∣∣∣ dt ≤ C. (3.20)

then we conclude easily that y(t) → 0 as t →∞. Thus it remains to prove (3.19) and
(3.20).

We are now going to prove (3.19). Invoking the boundary condition u|x=a,b = 0,
by the mean value theorem, we assert that for any given t ≥ 0 there exists a point
x0 = x0(t) such that

ux(t, x0(t)) = 0,

thus integrating (2.1) with respect to x over (x0, x) one has

ux(t, x) = ux(t, x0(t)) +
∫ x

x0(t)
(1 + u2

x)utdy =
∫ x

x0(t)
(1 + u2

x)utdy,

and

∫ t

0

∣∣∣∣
∫

Ω
ux(t, x)dx

∣∣∣∣
2

dτ =
∫ t

0

∣∣∣∣∣
∫

Ω

∫ x

x0(t)
(1 + u2

x)utdydx

∣∣∣∣∣
2

dτ

≤C

∫ t

0

∫

Ω

(
u2

t + u2
x

)
dxdτ ≤ C. (3.21)

Therefore, by the Poincaré inequality and the estimates (2.4)and (2.17) we obtain that
∫ ∞

0
y(t)dt≤C

∫ ∞

0

(‖ux − ūx‖2 + ‖ūx‖2
)
dt

≤C

∫ ∞

0
‖uxx‖2 +

(∫

Ω
uxdx

)2

dt ≤ C. (3.22)
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For the Neumann boundary value problem, it is easy to handle. We then prove (3.19).
We now want to prove (3.20). Multiplying (1.1) by −uxx and integrating the re-

sulting equation, we obtain

1
2

d

dt
‖ux(s)‖2 = −

∫

Ω

|uxx|2
1 + (ux)2

(s)dx. (3.23)

Integrating (3.23) with respect to t yields

‖ux(t)‖2 + 2
∫ t

0

∫

Ω

u2
xx

1 + u2
x

dxdτ = ‖ux(0)‖2 ≤ C.

This is the limit version of (2.8). Thus, from (3.23) we arrive at
∫ t

0

∣∣∣∣
d

dt
‖ux‖2

∣∣∣∣ dτ = 2
∫ t

0

∫

Ω

u2
xx

1 + u2
x

dxdτ ≤ C, (3.24)

that is ∫ ∞

0

∣∣∣∣
d

dt
y(t)

∣∣∣∣ dt ≤ C.

By combining the above with (3.19) we show that

y(t) → 0, as t →∞.

Using the Nirenberg inequality

‖u‖L∞(Ω) ≤ C‖ux‖
1
2 ‖u‖ 1

2 ,

and estimate ‖u‖ ≤ C, one has

‖u(t)‖L∞(Ω) ≤ C‖ux(t)‖ 1
2 → 0

as t →∞. Thus the proof of Theorem 1.1 is completed.
For the Neumann boundary, we prove this in a different way. Integrating the equa-

tion (1.1) with respect to x yields

d

dt

∫

Ω
u(t, x)dx =

∫

Ω

uxx

1 + u2
x

(t, x)dx =
∫ ux dy

1 + y2

∣∣∣∣
b

a

= 0.

Thus
∫
Ω u(t, x)dx =

∫
Ω u0(x)dx. Applying the Poincaré inequality we have

‖u(t)− ū0‖ = ‖u(t)− ū(t)‖ ≤ C‖ux(t)‖ → 0.

So
‖u(t)− ū0‖H1(Ω) → 0.

By combination of the above with the Sobolev imbedding theorem we get

‖u(t)− ū0‖L∞(Ω) → 0, as t →∞.

Hence the proof of Theorem 1.2 is completed.
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