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Abstract In this paper, we systematically study the wellposedness, illposedness

of the Hartree equation, and obtain the sharp local wellposedness, the global existence

in Hs, s ≥ 1 and the small scattering result in Hs for 2 < γ < n and s ≥ γ

2
− 1. In

addition, we study the nonexistence of nontrivial asymptotically free solutions of the

Hartree equation.
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1. Introduction

In this paper, we study the Cauchy problem for the Hartree equation
{

iu̇ + ∆u = f(u), in R
n × R, n ≥ 1,

u(0) = ϕ(x), in R
n.

(1.1)

Here the dot denotes the time derivative, ∆ is the Laplacian in Rn, f(u) is a nonlinear

function of Hartree type such as f(u) = λ
(
V ∗ |u|2

)
u for some fixed constant λ ∈ R

and 0 < γ < n, where ∗ denotes the convolution in Rn and V is a real valued radial

function defined in Rn, here V (x) = |x|−γ . In practice, we use the integral formulation

of (1.1)

u(t) = U(t)ϕ − i

∫ t

0
U(t − s)f(u(s))ds, U(t) = eit∆. (1.2)

If the solution u of (1.1) has sufficient decay at infinity and smoothness, it satisfies

two conservation laws in [1]:

M(u(t)) =
∥∥u(t)

∥∥
L2 =

∥∥ϕ
∥∥

L2,
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E(u(t)) =
1

2

∥∥∇u(t)
∥∥2

L2 +
λ

4

∫ ∫
1

|x − y|γ
|u(t, x)|2|u(t, y)|2 dxdy = E(ϕ). (1.3)

There is a lot of works on the Cauchy problem and (small data) scattering theory of

the Hartree equation. we refer to [1–10]. They all studied in the energy space H1(Rn)

or some weighted spaces. In this paper, we prove the local wellposedness in Hs, where

s ≥ max(0, sc), sc = γ
2 − 1. Note that sc is indicated by the scaling analysis. In

addition, we prove some illposedness results for s < max(0, sc) in Section 4. Therefore

we obtain the sharp local results in this sense.

If we formally rewrite the equation (1.1) as

iu̇ + ∆u = λ
(
(−∆)−

n−γ
2 |u|2

)
u,

by the scaling analysis

uλ(t, x) = λ
n+2−γ

2 u(λ2t, λx),

we obtain the critical exponent

sc =
γ

2
− 1. (1.4)

The paper is organized as follows.

In Section 2, we consider the case s ≥ γ
2 . We prove the local wellposedness (Theorem

2.1) of the equation (1.1) in Hs, and the global wellposedness of the energy solution

(Theorem 2.2). Since s ≥ γ
2 , it is enough to obtain the solution by the contraction

mapping argument in C([0, T ];Hs) .

In Section 3, we consider the case max(0, γ
2 − 1) ≤ s < γ

2 . It is not enough to

obtain the solution by the contraction mapping argument only in C([0, T ];Hs). Here

we make use of the Strichartz estimates and prove the local wellposedness (Theorem

3.1) in C
(
[0, T ],Hs

)
∩Lq

T (Hs
r ), where (q, r) is defined by (3.1), the global wellposedness

of the energy solution (Corollary 3.1) and the small data scattering result (Theorem

3.2).

In Section 4, By the small dispersion analysis, scale and Galilean invariance, we

obtain some illposedness results (Theorem 4.1 for s < max(0, sc) and Theorem 4.2 for

s < −n
2 or 0 < s < sc). The techniques to be used originated from [11].

Last in Section 5, we give the nonexistence result (Theorem 5.1) of the nontrivial

asymptotically free solutions.

We conclude this introduction by giving some notation which will be used freely

throughout this paper. A . B,A & B denote A ≤ CB,A ≥ C−1B, respectively. For

any r, 1 ≤ r ≤ ∞, we denote by ‖ · ‖r the norm in Lr = Lr(Rn) and by r′ the conjugate

exponent defined by 1
r + 1

r′ = 1. We denote the Schwartz space by S(Rn). For any s,

we denote by Hs
r = (1 − ∆)−s/2Lr the usual Sobolev spaces and Hs = Hs

2 . Moreover,

we define the Hk,k norm:

‖u‖Hk,k =

k∑

j=0

‖(1 + |x|)k−j∂j
xu‖L2 .
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Note that if k > n/2, Hk,k norm controls both L∞ and L1 norm. We denote V (y)χ|y|≤1

by V≤(y), and V (y)χ|y|≥1 by V≥(y). We associate the variables α(r) and δ(r) defined

by

α(r) =
δ(r)

n
=

1

2
−

1

r
.

Last we denote by < ·, · > the scalar product in L2.

2. The Local and Global Existence in Hs, s ≥ γ
2

In this section, we study the local existence in Hs, s ≥ γ
2 based on the contraction

mapping argument, and the global existence of the energy solution. To do so, we should

use the following generalized Leibniz’s rule [12].

Lemma 2.1 For any s ≥ 0, we have

∥∥Ds(uv)
∥∥

Lr .
∥∥Dsu

∥∥
Lr1

∥∥v
∥∥

Lq2
+

∥∥u
∥∥

Lq1

∥∥Dsv
∥∥

Lr2
,

where Ds = (−∆)
s
2 and 1

r = 1
r 1

+ 1
q 2

= 1
q 1

+ 1
r 2

, ri ∈ (1,∞), qi ∈ (1,∞], i = 1, 2.

In addition, we also need the following maximal estimate [13] which is a direct

consequence of the sharp Hardy inequality.

Lemma 2.2 Let 0 < γ < n, we have

∥∥In−γ(|u|2)
∥∥

L∞
≤ C(n, γ)

∥∥u
∥∥2

Ḣ
γ
2
.

Based on the above estimate, we can use C(I;H
γ
2 ) alone to study (1.1), but we can

not work in C(I;H
n
2 ) alone for the nonlinear Schrödinger equations, because ‖u‖∞ .

‖u‖
H

n
2

is not valid.

Let us first introduce the following local existence result.

Theorem 2.1 Let 0 < γ < n and n ≥ 1, ϕ ∈ Hs(Rn) with s ≥ γ
2 . Then there

exists a positive time T such that (1.2) has a unique solution u ∈ C
(
[0, T ],Hs

)
with∥∥u

∥∥
L∞

T Hs ≤ C
∥∥ϕ

∥∥
Hs.

Proof We apply the same approach in [14] to deal with (1.1). Let
(
Xs

T,ρ, d
)

be a

complete metric space with metric d defined by

Xs
T,ρ =

{
u ∈ L∞

T (Hs(Rn));
∥∥u

∥∥
L∞

T Hs ≤ ρ
}
, d(u, v) =

∥∥u − v
∥∥

L∞

T L2 .

Our strategy is to prove that the following mapping

N(u)(t) = U(t)ϕ − i

∫ t

0
U(t − s)f(u)(s)ds, (2.1)

is a contraction map on Xs
T,ρ for sufficiently small T .
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First for all u ∈ Xs
T,ρ, by Lemma 2.1, Lemma 2.2 and the usual Hardy-Littlewood-

Sobolev inequality, we have

∥∥N(u)
∥∥

L∞

T Hs ≤
∥∥ϕ

∥∥
Hs + T

∥∥f(u)
∥∥

L∞

T Hs

.
∥∥ϕ

∥∥
Hs + T

(∥∥In−γ(|u|2)
∥∥

L∞

T L∞

∥∥u
∥∥

L∞

T Hs

+
∥∥In−γ(|u|2)

∥∥
L∞

T Hs
2n
γ

∥∥u
∥∥

L∞

T L
2n

n−γ

)

.
∥∥ϕ

∥∥
Hs + T

(∥∥u
∥∥2

L∞

T Ḣ
γ
2

∥∥u
∥∥

L∞

T Hs +
∥∥|u|2

∥∥
L∞

T Hs
2n

2n−γ

∥∥u
∥∥

L∞

T L
2n

n−γ

)

.
∥∥ϕ

∥∥
Hs + T

(∥∥u
∥∥2

L∞

T Ḣ
γ
2

∥∥u
∥∥

L∞

T Hs +
∥∥u

∥∥
L∞

T Hs

∥∥u
∥∥2

L∞

T L
2n

n−γ

)

.
∥∥ϕ

∥∥
Hs + T

∥∥u
∥∥2

L∞

T Ḣ
γ
2

∥∥u
∥∥

L∞

T Hs .
∥∥ϕ

∥∥
Hs + Tρ3. (2.2)

If we choose ρ and T such that

∥∥ϕ
∥∥

Hs ≤
ρ

2
, CTρ3 ≤

ρ

2
.

Then N maps Xs
T,ρ to itself.

Second, we need to show that N is a Lipschitz map for sufficiently small T . Let

u, v ∈ Xs
T,ρ, we have

d
(
N(u), N(v)

)
. T

∥∥In−γ(|u|2)u − In−γ(|v|2)v
∥∥

L∞

T L2

. T
(∥∥In−γ(|u|2)(u − v)

∥∥
L∞

T L2 +
∥∥In−γ(|u|2 − |v|2)v

∥∥
L∞

T L2

)

. T
(∥∥u

∥∥2

L∞

T H
γ
2
d(u, v) +

∥∥In−γ(|u|2 − |v|2)
∥∥

L∞

T L
2n
γ

∥∥v
∥∥

L∞

T L
2n

n−γ

)

. T
(
ρ2d(u, v) + ρ

∥∥|u|2 − |v|2
∥∥

L∞

T L
2n

2n−γ

)

. T
(
ρ2d(u, v) + ρ

∥∥u + v
∥∥

L∞

T L
2n

n−γ
d(u, v)

)

. Tρ2d(u, v).

Then N is a contraction on Xs
T,ρ if T is sufficiently small.

From (1.2) and the contraction mapping argument, we can obtain the continuity in

time and the uniqueness of solution. This completes the proof.

By the regularized argument [15,16], we can show that the conservation laws (1.3)

hold for the Hs(Rn)-regularity solution, s ≥ 1.

From the conservation laws (1.3), we obtain the following global wellposedness.

Theorem 2.2 Let s = 1, 0 < γ < n and either one of the conditions holds

(1) λ ≥ 0, 0 < γ ≤ 2;

(2) λ < 0, and 0 < γ < 2;
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(3) λ < 0, γ = 2, n ≥ 3 and
∥∥ϕ

∥∥
L2 is sufficiently small.

Let T ∗ be the maximal existence time of the solution u as in Theorem 2.1. Then

T ∗ = ∞. Moreover, ∥∥u(t)
∥∥

H1 ≤ C
∥∥ϕ

∥∥
H1e

C0t,

where C0 depends on E(ϕ) and
∥∥ϕ

∥∥
L2 .

Remark 2.1 (1) As for the case λ ≥ 0, Theorem 2.1 ensures the local existence in

H1 for 0 < γ ≤ 2, so it can also ensure the global existence in H1 by energy conservation

law. We also show that there exists the global existence (Theorem 3.1) in H1 for the

case 2 < γ < 4 in next section. For the critical case, i.e. n ≥ 5 and γ = 4, we have

established the global well-posedness and scattering result in [17,18]

(2) As for the case λ < 0, this theorem shows that there exists the global wellposed-

ness in H1 for the L2 subcritical case (0 < γ < 2), but for the L2 critical case (γ = 2),

there exists the global existence of the small solution in H1 . In addition, the small∥∥ϕ
∥∥

L2 condition can also ensure the global existence (Corollary 3.1) in H1 for the H1

subcritical case
(
2 < γ < min(4, n)

)
. As for the case λ < 0, γ = 4, n > 4, Theorem 3.2

shows that the global existence and scattering in H1 under the small
∥∥ϕ

∥∥
Ḣ1 condition.

(3) As for the case λ < 0 and γ = 2 , Kurata and Ogawa [19] gave the sharp global

existence and the blow-up results in H1 as do the papers [2], [20] and [21].

Proof As for λ ≥ 0, by (1.3), we have

∥∥u(t)
∥∥2

H
γ
2
≤

∥∥u(t)
∥∥2

H1 ≤ C
(
E(u) +

∥∥ϕ
∥∥2

L2

)
≤ C

(
E(ϕ) +

∥∥ϕ
∥∥2

L2

)
.

As for λ < 0, and 0 < γ < min(2, n), by the same estimate as in (2.1) and Young’s

inequality, we have

∣∣∣
λ

4

∫ ∫
1

|x − y|γ
|u(t, x)|2|u(t, y)|2 dxdy

∣∣∣ ≤
|λ|

4

∥∥In−γ(|u|2)
∥∥

L∞

∥∥u
∥∥2

L2

≤ C
∥∥u

∥∥2

Ḣ
γ
2

∥∥ϕ
∥∥2

L2 ≤ C
∥∥u

∥∥γ

Ḣ1

∥∥ϕ
∥∥4−γ

L2

≤ ε
∥∥u

∥∥2

Ḣ1 + C(ε)
∥∥ϕ

∥∥
8−2γ
2−γ

L2 ,

which together with (1.3) implies that

∥∥u(t)
∥∥2

H
γ
2
≤

∥∥u(t)
∥∥2

H1 ≤ C
(
E(ϕ) +

∥∥ϕ
∥∥2

L2 +
∥∥ϕ

∥∥
8−2γ
2−γ

L2

)
;

As for λ < 0, γ = 2, n ≥ 3 and
∥∥ϕ

∥∥
L2 is sufficiently small, we have

∣∣∣
λ

4

∫ ∫
1

|x − y|2

∣∣u(t, x)
∣∣2∣∣u(t, y)

∣∣2dxdy
∣∣∣ ≤ C

∥∥u
∥∥2

Ḣ1

∥∥ϕ
∥∥2

L2 ≤
1

4

∥∥u
∥∥2

Ḣ1 ,

where we use that
∥∥ϕ

∥∥
L2 is so sufficiently small that C

∥∥ϕ
∥∥2

L2 ≤ 1
4 . Therefore

∥∥u(t)
∥∥2

H
γ
2
≤ C

(
E(ϕ) +

∥∥ϕ
∥∥2

L2

)
.
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On the other hand, we have the same as in (2.2)

∥∥u(t)
∥∥

H1 .
∥∥ϕ

∥∥
H1 +

∫ t

0

∥∥u(τ)
∥∥2

Ḣ
γ
2

∥∥u(τ)
∥∥

H1dτ

.
∥∥ϕ

∥∥
H1 + C

∫ t

0

∥∥u(τ)
∥∥

H1dτ, (2.3)

Gronwall’s inequality implies that

∥∥u(t)
∥∥

H1 ≤ C
∥∥ϕ

∥∥
H1e

C0t, C0 = C
(
E(ϕ), ‖ϕ‖2

)
.

This completes the proof.

Because the regularity is a local property, and the estimate

∥∥u(t)
∥∥

Hs .
∥∥ϕ

∥∥
Hs + C

∫ t

0

∥∥u(τ)
∥∥

Hsdτ,

holds for s ≥ 1 as in (2.3), we have the following corollary.

Corollary 2.1 Let s ≥ 1, 0 < γ < n and either one of the conditions holds

(1) λ ≥ 0, 0 < γ ≤ 2;

(2) λ < 0, and 0 < γ < 2;

(3) λ < 0, γ = 2, n ≥ 3 and
∥∥ϕ

∥∥
L2 is sufficiently small.

Let T ∗ be the maximal existence time of the solution u as in Theorem 2.1. Then

T ∗ = ∞. Moreover,

∥∥u(t)
∥∥

Hs ≤ C
∥∥ϕ

∥∥
Hse

C0t, C0 = C
(
E(ϕ), ‖ϕ‖2

)
.

3. The Local and Global Existence in Hs, max(0, γ
2 − 1) ≤ s <

γ
2

In this section, we study the local existence in the lower regularity space Hs,

max(0, γ
2 − 1) ≤ s < γ

2 , and the corresponding global existence. To do so, we should

introduce the Strichartz estimate [15].

Definition 3.1 We say that a pair (q, r) is admissible if

2

q
= n

(1

2
−

2

r

)

and

2 ≤ r






≤ ∞, n = 1

< ∞, n = 2;

≤ 2n
n−2 , n ≥ 3.
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Proposition 3.1 The following properties hold:

1. For every ϕ ∈ L2(Rn), the function t 7→ U(t)ϕ belongs to

Lq(R;Lr(Rn)) ∩ C(R;L2(Rn))

for every admissible pair (q, r). Furthermore, there exists a constant C such that

∥∥U(t)ϕ
∥∥

Lq(R,Lr)
≤ C

∥∥ϕ
∥∥

L2 ,

for every ϕ ∈ L2(Rn).

2. Let I be an interval of R (bounded or not), J = I, and t0 ∈ J . If (p, ρ) is an

admissible pair and f ∈ Lp′(I, Lρ′(Rn)), then for every admissible pair (q, r), the

function

t 7→ Φf (t) =

∫ t

t0

U(t − s)f(s)ds,

for t ∈ I belongs to Lq(I, Lr(Rn)) ∩ C(J ;L2(Rn)). Furthermore, there exists a

constant C independent of I such that

∥∥Φf (t)
∥∥

Lq(I,Lr)
≤ C

∥∥f
∥∥

Lp′ (I,Lρ′)
,

for every f ∈ Lp′(I, Lρ′(Rn)).

For 0 < γ < n and max(0, γ
2 − 1) ≤ s < γ

2 , there is a particular admissible pair

(q, r) defined by
1

q
=

γ − 2s

6
,

1

r
=

1

2
+

2s − γ

3n
, (3.1)

which will play a crucial role in our estimate and come from scaling relation

1

r′
+ 1 =

1

2
+ 2

(1

r
−

s

n

)
+

γ

n
.

Now we can state the local existence results in the lower regular space Hs.

Theorem 3.1 Let 0 < γ < n and ϕ ∈ Hs(Rn) with max(0, γ
2 − 1) ≤ s < γ

2 . Then

there exists a positive time T such that (1.2) has a unique solution u ∈ C
(
[0, T ],Hs

)
∩

Lq
T (Hs

r ), where (q, r) is defined by (3.1). In particular, one have the global wellposedness

in H1(Rn) for λ ≥ 0, 2 < γ ≤ 4, and γ < n by the energy conservation laws.

Note that this result is similar to Proposition 3.1 in [14]. The difference between

them is that we can give the sharp local existence in Hs, which is indicated by the

scaling analysis, while Proposition 3.1 in [14] didn’t give the sharp local existence for

the semirelativistic Hartree equation. In addition, we shall use the arguments [22], [11]
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to obtain some ill-posedness results in Section 4 for s < max(0, sc). Hence we obtain

the sharp local wellposedness in this sense.

Proof Let
(
Y s

T,ρ, d
)

be a complete metric space with metric d defined by

Y s
T,ρ =

{
u ∈ L∞

T (Hs(Rn)) ∩ Lq
T (Hs

r (Rn));
∥∥u

∥∥
L∞

T Hs +
∥∥u

∥∥
Lq

T (Hs
r )

≤ ρ
}
,

d(u, v) =
∥∥u − v

∥∥
L∞

T Hs∩Lq
T (Hs

r )
.

Our strategy is to prove that the following mapping (2.1) is a contraction map on Y s
T,ρ

for sufficiently small T .

First for all u ∈ Y s
T,ρ, by Proposition 3.1, Lemma 2.1 and the usual Hardy-Littlewood-

Sobolev inequality, we have

∥∥N(u)
∥∥

L∞

T Hs +
∥∥N(u)

∥∥
Lq

T (Hs
r )

≤
∥∥ϕ

∥∥
Hs +

∥∥f(u)
∥∥

Lq′

T Hs
r′

.
∥∥ϕ

∥∥
Hs +

(∥∥In−γ(|u|2)
∥∥

Lq′

T L
3n

γ−2s

∥∥u
∥∥

L∞

T Hs

+
∥∥In−γ(|u|2)

∥∥
L

6
6+4s−2γ
T Hs

3n
2γ−s

∥∥u
∥∥

Lq
T L

6n
3n−2s−2γ

)

.
∥∥ϕ

∥∥
Hs +

(∥∥|u|2
∥∥

Lq′

T L
3n

3n−2s−2γ

∥∥u
∥∥

L∞

T Hs +
∥∥|u|2

∥∥
L

6
6+4s−2γ
T Hs

3n
3n−s−γ

∥∥u
∥∥

Lq
T L

6n
3n−2s−2γ

)

.
∥∥ϕ

∥∥
Hs +

(∥∥u
∥∥2

L2q′

T L
6n

3n−2s−2γ

∥∥u
∥∥

L∞

T Hs

+
∥∥u

∥∥
L

6
6+4s−2γ
T L

6n
3n−2s−2γ

∥∥u
∥∥

L∞

T Hs

∥∥u
∥∥

Lq
T L

6n
3n−2s−2γ

)

.
∥∥ϕ

∥∥
Hs + T θ

∥∥u
∥∥2

Lq
T Hs

r

∥∥u
∥∥

L∞

T Hs .
∥∥ϕ

∥∥
Hs + T θρ3 (3.2)

where θ = 1 + s − γ
2 . Here we use the Sobolev embedding Hs

r →֒ L
6n

3n−2s−2γ .

If we choose ρ and T such that

C
∥∥ϕ

∥∥
Hs ≤

ρ

2
, CT θρ3 ≤

ρ

2
.

Then N maps Y s
T,ρ to itself.

Second, we need to show that N is a contraction map for sufficiently small T . Let

u, v ∈ Y s
T,ρ, we have

d
(
N(u), N(v)

)
.

∥∥In−γ(|u|2)(u − v)
∥∥

Lq′

T Hs
r′

+
∥∥In−γ(|u|2 − |v|2)v

∥∥
Lq′

T Hs
r′

. (3.3)

By Lemma 2.1, Hölder inequality and Hardy inequality, we have

∥∥In−γ(|u|2)(u − v)
∥∥

Lq′

T Hs
r′

.
∥∥In−γ(|u|2)

∥∥
Lq′

T L
3n

γ−2s

∥∥u − v
∥∥

L∞

T Hs

+
∥∥In−γ(|u|2)

∥∥
L

6
6+4s−2γ
T Hs

3n
2γ−s

∥∥u − v
∥∥

Lq
T L

6n
3n−2s−2γ
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.
∥∥u

∥∥2

L2q′

T L
6n

3n−2s−2γ

∥∥u − v
∥∥

L∞

T Hs

+
∥∥u

∥∥
L

6
6+4s−2γ
T L

6n
3n−2s−2γ

∥∥u
∥∥

L∞

T Hs

∥∥u − v
∥∥

Lq
T L

6n
3n−2s−2γ

. T θ
(∥∥u

∥∥2

Lq
T Hs

r

∥∥u − v
∥∥

L∞

T Hs

+
∥∥u

∥∥
Lq

T Hs
r

∥∥u
∥∥

L∞

T Hs

∥∥u − v
∥∥

Lq
T Hs

r

)

. T θρ2d(u, v).

Similarly, ∥∥In−γ(|u|2 − |v|2)v
∥∥

Lq′

T Hs
r′

.T θρ2d(u, v).

Substituting the above estimates into (3.3), we can conclude N is a contraction on

Y s
T,ρ if T is sufficiently small. This completes the proof.

Now for λ < 0, we can also show that the local energy solutions can be extended

globally in time by using the energy conservation law.

Corollary 3.1 Let λ < 0, 2 < γ < min(4, n), n ≥ 3, ϕ ∈ H1(Rn) and
∥∥ϕ

∥∥
L2 is

sufficiently small. Then (1.2) has a unique solution u ∈ C
(
[0,∞);H1

)
∩ Lq

loc

(
H1

r

)
,

where (q, r) is defined by (3.1).

Note that one can obtain the sharp condition for the global wellposedness in H1(Rn)

as does the paper [23].

Proof Let T ∗ be the maximal existence time. We prove that T ∗ is infinite by

contradiction.

Suppose that T ∗ < ∞, then Theorem 3.1 implies that
∥∥u(T ∗)

∥∥
H1

r
= ∞.

For any t < T ∗, we have by (1.3)

1

2

∥∥u(t)
∥∥2

H1 ≤
1

2

∥∥u(t)
∥∥2

L2 +
∣∣E(u)

∣∣ +
∣∣λ
4

∫ ∫
1

|x − y|γ
|u(t, x)|2|u(t, y)|2 dxdy

∣∣

≤
1

2

∥∥ϕ
∥∥2

L2 +
∣∣E(ϕ)

∣∣ + C
∥∥u(t)

∥∥2

L
2n

n−γ+2

∥∥u(t)
∥∥2

H1

≤
1

2

∥∥ϕ
∥∥2

L2 +
∣∣E(ϕ)

∣∣ + C
∥∥ϕ

∥∥4−γ

L2

∥∥u(t)
∥∥γ

H1.

The smallness of
∥∥ϕ

∥∥
L2 implies that

∥∥u(t)
∥∥2

H1 ≤ C
(∥∥ϕ

∥∥2

L2 +
∣∣E(ϕ)

∣∣) < ∞, ∀ t < T ∗.

This implies that ‖u(T ∗)‖H1 < ∞, Hence we have T ∗ = ∞. This completes the proof.

So far, we have obtained the global existence in H1 for the case λ > 0, 0 < γ < 4

and γ < n or the case λ < 0, 0 < γ < 2; and also show that the small
∥∥ϕ

∥∥
L2 condition

ensures the global existence in H1 for the case λ < 0, 2 ≤ γ < min(4, n).

Finally under the small
∥∥ϕ

∥∥
Ḣsc

assumption, we will not only obtain the global

existence in Hs, s ≥ γ
2 − 1 for the case 2 < γ < n, n ≥ 3, but also obtain the scattering
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result in Hs. This result is similar to that in [24–28]. Note that the energy scattering

result for 2 < γ < min(4, n) has been obtain by Ginibre and Velo [1] and Nakanishi [9].

The authors recently obtain the energy scattering result for the H1-critical Hartree

equation in [17,18] by energy deduction in [29–31] and for the Klein-Gordon equation

with a cubic convolution nonlinearity [32].

Theorem 3.2 Let 2 < γ < n, n ≥ 3, and s ≥ γ
2 − 1. Then there exists ρ such that

for any ϕ ∈ Hs with
∥∥ϕ

∥∥
Ḣsc

≤ ρ, (1.2) has a unique solution u ∈ (C ∩ L∞)(R,Hs) ∩

L4(R,Hs
2n

n−1

). Moreover, there is ϕ+ ∈ Hs such that

∥∥u(t) − U(t)ϕ+
∥∥

Hs → 0 as t → ∞.

Proof Let
(
Ωs

ρ,R, d
)

be a complete metric space with metric d defined by

Ωs
ρ,R =

{
u ∈ L4(R,Hs

2n
n−1

),
∥∥u

∥∥
L4(R,Ḣsc

2n
n−1

)
≤ ρ,

∥∥u
∥∥

L4(R,Ḣs
2n

n−1

)
≤ R

}
,

d(u, v) =
∥∥u − v

∥∥
L4(L

2n
n−1 )

.

Then we have from Proposition 3.1 and Lemma 2.1

∥∥N(u)
∥∥

L4(R,Ḣsc
2n

n−1

)
≤ C

∥∥ϕ
∥∥

Ḣsc
+ C

∥∥f(u)
∥∥

L
4
3 (Ḣsc

2n
n+1

)

≤ C
∥∥ϕ

∥∥
Ḣsc

+ C
∥∥u

∥∥2

L4(L
2n

n−γ+1 )

∥∥u
∥∥

L4(Ḣsc
2n

n−1

)

≤ C
∥∥ϕ

∥∥
Ḣsc

+ C
∥∥u

∥∥3

L4(Ḣsc
2n

n−1

)
;

∥∥N(u)
∥∥

L4(R,Ḣs
2n

n−1

)
≤ C

∥∥ϕ
∥∥

Ḣs + C
∥∥u

∥∥2

L4(Ḣsc
2n

n−1

)

∥∥u
∥∥

L4(Ḣs
2n

n−1

)
.

Similarly

∥∥N(u) − N(v)
∥∥

L4(R,L
2n

n−1 )
≤ C

∥∥f(u) − f(v)
∥∥

L
4
3 (L

2n
n+1 )

≤ C
(∥∥u

∥∥2

L4(L
2n

n−γ+1 )
+

∥∥v
∥∥2

L4(L
2n

n−γ+1 )

)∥∥u − v
∥∥

L4(L
2n

n−1 )

≤ C
(∥∥u

∥∥2

L4(Ḣsc
2n

n−1

)
+

∥∥v
∥∥2

L4(Ḣsc
2n

n−1

)

)
d(u, v).

If we choose R and sufficiently small ρ such that

C
∥∥ϕ

∥∥
Ḣsc

≤
ρ

2
, C

∥∥ϕ
∥∥

Ḣs ≤
R

2
, 2Cρ2 ≤

1

2
.

then N maps Ωs
ρ,R to itself and is a contraction map. According to Proposition 3.1, we

obtain u ∈ (C ∩ L∞)(R,Hs). This proves the existence part.
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To prove the scattering, let us define a function ϕ+ by

ϕ+ = ϕ − i

∫ ∞

0
U(−s)f(u)(s)ds.

Then since the solution u is in Ωs
ρ,R, ϕ+ ∈ Hs, therefore it holds that

∥∥u(t) − u+(t)
∥∥

Hs . C
∥∥u

∥∥2

L4(t,∞;Ḣsc
2n

n−1

)

∥∥u
∥∥

L4(t,∞;Hs
2n

n−1

)

−→ 0 as t → ∞.

This completes the proof.

4. Ill-Posedness in Hs, s < max(0, sc)

In this section, we prove the ill-posedness in some sense for (1.1). Our proof relies

heavily on the methods of small dispersion analysis and scale and Galilean invariance,

which are initiated in [11] by M. Christ, J. Colliander, T. Tao. The main difficulty here

lies in small dispersion analysis due to the non-local nonlinearity.

The main results are the following.

Theorem 4.1 For any s < max(0, sc), the Cauchy problem (1.1) fails to be well-

posed in Hs in the following sense: for any 0 < δ, ε < 1 and for any t > 0 there exist

solutions u1, u2 of (1.1) with initial data u1(0), u2(0) ∈ S(Rn) such that

‖u1(0)‖Hs , ‖u2(0)‖Hs ≤ Cε;

‖u1(0) − u2(0)‖Hs < Cδ;

‖u1(t) − u2(t)‖Hs > cε,

for some C ≫ 1 as well as some 0 < c ≪ 1.

Theorem 4.2 Suppose either 0 < s < sc = γ
2 − 1 or s ≤ −n

2 , for any ε > 0, there

exist a solution of (1.1) and t > 0 such that u(0) ∈ S(Rn),

‖u(0)‖Hs < Cε;

‖u(t)‖Hs > Cε−1, 0 < t < ε.

For n = 1, 2, the ill-posedness results are relatively simple, see Figure 1. because

γ < n, sc = γ/2 − 1 ≤ 0, we need not consider the case 0 < s < sc. For n > 2,

sc > 0, so the case 0 < s < sc come up and it seems more complicated, see Figure 2.

As for the case s ≤ −n
2 , the solution of (4.1) transfers its energy to decreasingly lower

frequencies; while as for the case 0 < s < sc, n ≥ 3, the solution of (4.1) transfers its

energy to increasingly higer frequencies. But for the case −n
2 < s ≤ 0, the interaction

is more complicated, only weak illposedness can be obtained. We hope to prove the

local wellposedness for s ≥ sc, 0 < γ < 2 by the Fourier truncation norm method.
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In order to analyze the behavior of equation (1.1), we begin to analyze the small

dispersion version

iut + ν2△u = (V ∗ |u|2)u, u(0, x) = φ0(x), (4.1)

and the corresponding ordinary differential equation

ivt = (V ∗ |v|2)v, v(0, x) = φ0(x). (4.2)

In fact, the solutions of (4.2) can be written as following

v = φ0e
−itV ∗|φ0|2. (4.3)

If the solution of (4.1) can be approximated by that of (4.2) in some sense, we can learn

much information because the solution of (4.2) is well understood.

Lemma 4.1 Let n ≥ 1, k > n/2 be an integer, let φ0 be a Schwartz function. Then

there exists C, c depending on all the above parameters, such that if 0 < ν ≤ c is a

sufficiently small real number, then for T = c| log ν|c there exists a solution u(t, x) ∈

C1([−T, T ],Hk,k) of (4.1) satisfying

‖u(t) − v(t)‖Hk,k ≤ Cν for all |t| ≤ c| log ν|c.

Proof We define F : C → C by

F (z) := (V ∗ |z|2)z.
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Let w = u − v, where u and v are solutions of (4.1) and (4.2), respectively. Then w

solves 




iwt + ν2∆w = −ν2∆v + (V ∗ |w + v|2)(w + v) − (V ∗ |v|2)v
.
= −ν2∆v + F (v + w) − F (v),

w(0, x) = 0.

Thus it suffices to prove

sup
|t|<T

‖w‖Hk,k ≤ Cν.

We have the energy inequality

∂t‖w‖Hk,k ≤ C‖ − ν2∆v + (F (v + w) − F (v))‖Hk,k + C‖w‖Hk,k .

Since φ0 is Schwartz, ‖∆v(t)‖Hk,k ≤ C(1 + |t|)k+2. We consider the pointwise bound

for ‖(V ∗ |w + v|2)(w + v) − (V ∗ |v|2)v‖Hk,k .

F (v + w) − F (v)

=

∫
V (y)

(
|w + v|2(x − y)(w + v)(x) − |v|2(x − y)v(x)

)
dy

=

∫
V (y)

(
2Re(wv) + |w|2

)
(x − y)v(x)dy

+

∫
V (y)

(
|v|2 + 2Rewv + |w|2

)
(x − y)w(x)dy.

We take one term 2

∫
V (y)Re

(
v(x− y)w(x− y)

)
v(x)dy as an example to estimate,

the other terms can be similarly estimated.
∥∥∥2

∫
V (y)Re(v(x − y)w(x − y))v(x)dy

∥∥∥
Hk,k

.

k∑

j=1

∥∥∥(1 + |x|)k−j∂j
x

∫
V (y)v(x − y)w(x − y)v(x)dy

∥∥∥
L2

.

k∑

j=1

∥∥∥(1 + |x|)k−j

∫
V (y)v(x − y)w(x − y)∂j

xv(x)dy
∥∥∥

L2

+

k∑

j=1

∥∥∥(1 + |x|)k−j

∫
V (y)v(x − y)∂j

xw(x − y)v(x)dy
∥∥∥

L2

+

k∑

j=1

∥∥∥(1 + |x|)k−j

∫
V (y)∂j

xv(x − y)w(x − y)v(x)dy
∥∥∥

L2

:= I1 + I2 + I3.

We estimate I1 first. By Young inequality and γ < n,

‖V ∗ (vw)‖L∞ . ‖V≥ ∗ (vw)‖L∞ + ‖V≤ ∗ (vw)‖L∞
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. ‖V≥‖L∞‖v‖L2‖w‖L2 + ‖V≤‖L1‖v‖L∞‖w‖L∞

. ‖v‖Hk,k‖w‖Hk,k .

So

I1 .‖(1 + |x|)k−j∂j
xv‖L2‖V ∗ (vw)‖L∞ . ‖v‖2

Hk,k‖w‖Hk,k .

We estimate I2 next.

I2 .
∥∥∥

∫

|x−y|>|x|
V≤(y)v(x − y)(1 + |x|)k−j∂j

xw(x − y)v(x)dy
∥∥∥

L2
(a)

+
∥∥∥

∫

|x−y|>|x|
V≥(y)v(x − y)(1 + |x|)k−j∂j

xw(x − y)v(x)dy
∥∥∥

L2
(b)

+
∥∥∥

∫

|x−y|<|x|
V≤(y)v(x − y)(1 + |x|)k−j∂j

xw(x − y)v(x)dy
∥∥∥

L2
(c)

+
∥∥∥

∫

|x−y|<|x|
V≥(y)v(x − y)(1 + |x|)k−j∂j

xw(x − y)v(x)dy
∥∥∥

L2
. (d)

By Young inequality, Sobolev imbedding and Hölder inequality,

(a) . ‖V≤‖L1

∥∥(1 + | · |)k−j∂j
xw

∥∥
L2‖v‖

2
L∞ . ‖v‖2

Hk,k‖w‖Hk,k ;

(b) . ‖V≥‖L∞

∥∥(1 + | · |)k−j∂j
xw

∥∥
L2‖v‖L1‖v‖L∞ . ‖v‖2

Hk,k‖w‖Hk,k ;

(c) .
∥∥∥

∫

|x−y|<|x|
V≤(y)v(x − y)(1 + |x − y|)k−j(1 + |y|)k−j∂j

xw(x − y)v(x)dy
∥∥∥

L2

.
∥∥∥

∫
V≤(y)v(x − y)(1 + |x − y|)k−j∂j

xw(x − y)dy
∥∥∥

L2
‖v‖L∞

. ‖V≤‖L1

∥∥(1 + | · |)k−j∂j
xw

∥∥
L2‖v‖

2
L∞

. ‖v‖2
Hk,k‖w‖Hk,k ;

(d) .
∥∥∥

∫

|x−y|<|x|
V≥(y)v(x − y)(1 + |x|)−j∂j

xw(x − y)dy
∥∥∥

L∞

‖(1 + | · |)kv‖L2

.
∥∥∥

∫

|y|<|2x|
V≥(y)v(x − y)(1 + |y|)−j∂j

xw(x − y)dy
∥∥∥

L∞

‖v‖Hk,k

. ‖(1 + | · |)−jV≥‖L∞‖∂j
xw‖L2‖v‖L2‖v‖Hk,k

. ‖v‖2
Hk,k‖w‖Hk,k .

We can estimate I3 in the same way, so we get

∂t‖w‖Hk,k ≤ Cν2(1 + |t|)C + C(1 + |t|)C(‖w‖Hk,k + ‖w‖3
Hk,k ).

Under a priori assumption that w(t) is bounded in Hk,k, e.g. ‖w‖Hk,k ≤ 1, we get

‖w‖Hk,k ≤ Cν2eC(1+|t|)C
,
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if t ≤ c| log ν|c for suitably small c and ν.

Now we can exploit Lemma 4.1 to prove Theorem 4.1 and Theorem 4.2.

In order to prove Theorem 4.1, it suffices to consider −n
2 < s < 0 only. In fact, if

0 < s < sc or s < −n
2 , Theorem 4.1 follows from Theorem 4.2. Let w(x) be an arbitrary

nonzero Schwartz function. Let a ∈ [1/2, 1], ν ∈ (0, 1] be parameters. If φ0 = aw(x),

v(a,ν)(t, x) = v(t, x) is the solution of (4.1) with initial data v(a,ν)(0, x) = aw(x). From

Lemma 4.1, ∥∥v(a,ν)(t) − v(a,0)(t)
∥∥

Hk,k ≤ Cν,

for all |t| ≤ c| log ν|c, where

v(a,0)(t) = aw(x)e(−itV ∗|aw|2(x)).

By scaling and Galilean invariance of (1.1), we obtain a family of solutions u =

u(a,ν,ρ,µ), where a ∈ [1/2, 1], 0 < ν ≪ 1, 0 < ρ ≪ 1, µ ∈ Rn, and

u = u(a,ν,ρ,µ) = ρ−
n
2
+ γ

2
−1eiµ·x/2e−i|µ|2t/4v(a,ν)(ρ−2t, ρ−1ν(x − µt)).

Lemma 4.2 Let 0 6= w ∈ S(Rn), s < 0, and suppose a,a′ are in [1/2, 1], 0 < ν <

ρ ≪ 1. Then ∥∥u(a,ν,ρ,µ)(0)
∥∥

Hs ≤ Cρ−
n
2
+ γ

2
−1|µ|s(ρ/ν)n/2,

and ∥∥u(a,ν,ρ,µ)(0) − u(a′,ν,ρ,µ)(0)
∥∥

Hs ≤ Cρ−
n
2
+ γ

2
−1|µ|s(ρ/ν)n/2|a − a′|.

Moreover,

∥∥u(a,ν,ρ,µ)(t) − u(a′,ν,ρ,µ)(t)
∥∥

Hs ≥Cρ−
n
2
+ γ

2
−1|µ|s

(ρ

ν

)n
2

(∥∥∥v(a,ν)
( t

ρ2

)
− v(a′,ν)

( t

ρ2

)∥∥∥
2

− C| log ν|C
(ρ

ν

)−k
|µ|−s−k

)
, (4.4)

whenever |t| ≤ c| log ν|cρ2.

Proof The proof of the lemma is similar with that of Lemma 3.1 of [11] except

that ρ
− 2

p−1 is replaced by ρ−
n
2
+ γ

2
−1.

Proof of Theorem 4.1 Now we set ρ = νσ, where σ is a small positive number

to determined. Then we choose any vector µ such that

ρ−
n
2
+ γ

2
−1|µ|s(ρ/ν)n/2 = ε.

Thus

|µ| = ν
1

s
[ n
2
−σ(γ

2
−1)]ε

1

s .

We may choose σ sufficiently small such that n
2 − σ(γ

2 − 1) is positive. Note that

s < 0, so the power to ν is negative. As a consequence, |µ| grows faster than any power
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of | log ν| as ν → 0.

Now we can construct u satisfying Theorem 4.1. From Lemma 4.2,

∥∥u(a,ν,ρ,µ)(0)
∥∥

Hs +
∥∥u(a′,ν,ρ,µ)(0)

∥∥
Hs ≤ Cε,

and ∥∥u(a,ν,ρ,µ)(0) − u(a′,ν,ρ,µ)(0)
∥∥

Hs ≤ Cε|a − a′|.

Meanwhile, there exists a time T = T (a, a′) > 0 such that

∥∥v(a,ν)(T ) − v(a′,ν)(T )
∥∥

L2 > c,

for ν sufficiently small and T ≤ c| log ν|c. So we have

∥∥u(a,ν,ρ,µ)(ρ2T ) − u(a′,ν,ρ,µ)(ρ2T )
∥∥

Hs ≥ cε − C(ρ/ν)−k|µ|−s−k| log ν|C ,

whenever T < c| log ν|c.

Because −n
2 < s < 0 and k > n

2 ,

(ρ/ν)−k|µ|−s−k = νk−n
2
(1+ k

s
)−σk+σ(1+ k

s
)(γ

2
−1)ε−

s+k
s → 0

as long as σ is chose sufficiently small. So we get that

∥∥u(a,ν,ρ,µ)(ρ2T ) − u(a′,ν,ρ,µ)(ρ2T )
∥∥

Hs ≥ cε.

Finally, letting ν → 0, and ρ2T → 0. Theorem 4.1 is proved, which shows that the

solution map is not uniformly continuous.

For 0 = s < sc, we defer to the end of the section. This completes the proof.

Proof of Theorem 4.2

Case 1: 0 < s < sc. We still apply the family u(a,ν,ρ,0). Suppose that a ∈ [1/2, 2].

We have

u(a,ν,ρ,0)(0, x) = ρ−n/2+γ/2−1aw(νx/ρ).

One can compute that

∥∥u(a,ν,ρ,0)(0)
∥∥2

Hs =a2ρ−n+γ−2(ρ/ν)2n

∫
|ŵ(ρν−1ξ)|2(1 + |ξ|2)sdξ

∼ρ−n+γ−2(ρ/ν)n−2s

∫

|η|≥ρν−1

|ŵ(η)|2|η|2sdη

+ ρ−n+γ−2(ρ/ν)n
∫

|η|≤ρν−1

|ŵ(η)|2dη

=ρ−n+γ−2(ρ/ν)n−2s

∫

Rn

|ŵ(η)|2|η|2sdη

− ρ−n+γ−2(ρ/ν)n−2s

∫

|η|≤ρν−1

|ŵ(η)|2
(
(ρ/ν)2s − |η|2s

)
dη.
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For any s > −n/2,

∥∥u(a,ν,ρ,0)(0)
∥∥

Hs = cρ−n/2+γ/2−1(ρ/ν)n/2−s
(
1 + O((ρ/ν)s+n/2)

)
,

where c 6= 0. In particular, if s > −n/2 and ρ < ν

∥∥u(a,ν,ρ,0)(0)
∥∥

Hs . ρ−n/2+γ/2−1(ρ/ν)n/2−s = ρsc−sνs−n/2.

Recall now that s < sc and that ε is assumed to satisfy

ρsc−sνs−n/2 = ε.

In other words, we take ρ = νσ and σ = n/2−s
sc−s > 1, then as ν → 0, 0 ≤ ρ ≤ ν, and

∥∥u(a,ν,ρ,0)(0)
∥∥

Hs ≤ Cε.

Now the solution of (4.2) v(a,0)(t, x) = aw(x)e−ia2V ∗|w|2t satisfies that

∂j
xv(a,0)(t, x) = aw(x)tj [ia2∂x(V ∗ |w|2)]jeia2V ∗|w|2t + O(tj−1).

By Lemma 4.1 and the log-convexity of Sobolev norm, we have that if ν ≪ 1 and

1 ≪ t ≪ c| log ν|c, ∥∥v(a,ν)(t)
∥∥

Hs ∼ ts. (4.5)

Now we verify that u(a,ν,ρ,0) satisfies Theorem 4.2. As above, we have

∥∥u(a,ν,ρ,0)(ρ2t)
∥∥2

Hs ≥ cρ−n/2+γ/2−1(ρ/ν)n/2−s
∥∥v(a,ν)(t)

∥∥
Hs ≥ cεts.

If we choose t depending on ε large enough, ν, ρ sufficiently small depending on ε

and t, Theorem 4.2 follows.

Case 2: s < −n/2. We assume now that ŵ(ξ) = O(|ξ|k) as ξ → 0, for some

k > −s − n/2. So if ρ ≤ ν,

∫

Rn

|ŵ(η)|2|η|2sdη < ∞,

and ∫

|η|≤ρν−1

|ŵ(η)|2
(
(ρ/ν)2s − |η|2s

)
dη ≤ C(ρν−1)n+2s+2k ≤ C < ∞.

So we get that
∥∥u(a,ν,ρ,0)(0)

∥∥
Hs ≤ Cε as Case 1. Moreover, w and a can be chosen so

that ∣∣∣
∫

v(a,0)(1, y)dy
∣∣∣ ≥ c,

for some constant c > 0. This means
∣∣∣ ̂[v(a,0)(1)](0)

∣∣∣ ≥ c.
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Since ̂v(a,0)(1) is rapidly decreasing, we thus see by continuity that for |ξ| ≤ c,

∣∣ ̂[v(a,0)(1)](ξ)
∣∣ ≥ c.

By Lemma 4.1, we have

∣∣ ̂[v(a,ν)(1)](ξ) − ̂[v(a,0)(1)](ξ)
∣∣ ≤ Cν.

We can get similarly as before,

∥∥u(a,ν,ρ,0)(ρ2t)
∥∥

Hs ≥ cε(ρ/ν)n/2+s.

As ν → 0, ρ/ν → 0, (ρ/ν)n/2+s → ∞ since s < −n/2.

Case 3: s = −n/2. We can bound

∥∥u(a,ν,ρ,0)(ρ2t)
∥∥

H−n/2 ≥ cε log (ρ/ν).

As ν → 0, ρ/ν → 0, cε log (ρ/ν) → ∞.

Finally we prove Theorem 4.1 for 0 = s < sc. In this case (4.5) does not hold

because of L2 conservation law. But we can still prove Theorem 4.2 as long as we

modify the above procedure slightly. Suppose a, a′ are distinct numbers in [1/2, 2], we

can find t, (|a − a′|−1 ≤ t ≤ c| log ν|c), such that

∥∥v(a,0)(t) − v(a′,0)(t)
∥∥

L2 ≥ c > 0.

By Lemma 4.1, this implies that for ν small enough

∥∥v(a,ν)(t) − v(a′,ν)(t)
∥∥

L2 ≥ c > 0.

Coming back to u(a,ν,ρ,0), we can obtain that

∥∥u(a,ν,ρ,0)(ρ2t) − u(a′,ν,ρ,0)(ρ2t)
∥∥

L2 ≥ cε.

However a direct computation shows that

∥∥u(a,ν,ρ,0)(ρ2t)
∥∥

L2 ≤ Cε,

and ∥∥u(a,ν,ρ,0)(ρ2t) − u(a′,ν,ρ,0)(ρ2t)
∥∥

L2 ≤ Cε|a − a′|.

Since |a−a′| can be arbitrary small, this contradicts uniform continuity of the solution

map. This completes the proof.
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5. Nonexistence of the Nontrivial Asymptotically Free Solutions

Finally, we prove the nonexistence of the nontrivial asymptotically free solution in

this section. In do so, we need the following dispersion of L2-norm of the Schrödinger

equation, see [33].

Proposition 5.1 Let u be a global solution of (1.1) with E(u) = E(ϕ) < ∞. Let

B be a compact subset of Rn. Then, for any R > 0 and T > 0, we have

∫

B(R)

∣∣u(T, x)
∣∣2dx ≥

∫

B

∣∣u(0, x)
∣∣2dx − C(E(ϕ))

T

R
,

where B(R) :=
{
x ∈ Rn;∃ y ∈ B, s.t.

∣∣x − y
∣∣ ≤ R

}
.

Now we can state the nonexistence of the nontrivial asymptotically free solution.

Theorem 5.1 Assume that 0 < γ ≤ 1 for n ≥ 3 and 0 < γ < n
2 for n = 1, 2.

Suppose that u is a smooth global solution in C(0,∞;H1)∩C1(0,∞;H−1) to (1.1) and

there exists a smooth function ϕ+ ∈ H1 ∩ L1 such that

∥∥u(t) − u+(t)
∥∥

L2 → 0 as t → ∞, (5.1)

where u+(t) = U(t)ϕ+. Then u = u+ = 0.

Proof Let us define a function of H(t)∗ by

H(t) = sign(λ) Im < u(t), u+(t) > .

Then H(t) is uniformly bounded on t and

d

dt
H(t) = sign(λ) Im < ut(t), u

+(t) > +sign(λ) Im < u(t), (u+)t(t) >

= sign(λ) Im < i∆u − iλIn−γ(|u|2)u, u+ > + sign(λ) Im < u, i∆u+ >

= −|λ| Re < In−γ(|u|2)u, u+ >

= −|λ| Re(J1 + J2 + J3),

where
J1 =< In−γ(|u+|2)u+, u+ >;

J2 =< In−γ(|u|2 − |u+|2)u+, u+ >;

J3 =< In−γ(|u|2)(u − u+), u+ > .

Suppose ϕ+ 6= 0. Then we will obtain a contradiction to the uniform boundedness

of H(t) on t.

∗There is a mistake in the definition of H(t) in [14]. We should replace Re with Im .
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To estimate each Ji, we need the following time decay estimate.

∥∥U(t)ϕ+
∥∥

L∞
. t−

n
2

∥∥ϕ+
∥∥

L1 , for ϕ+ ∈ L1. (5.2)

As for J2, by Lemma 2.2, we have

∣∣J2

∣∣ =
∣∣ < |u|2 − |u+|2, In−γ(|u+|2) >

∣∣

≤
∥∥u − u+

∥∥
L2

(∥∥u
∥∥

L2 +
∥∥u+

∥∥
L2

)∥∥In−γ(|u+|2)
∥∥

L∞

.
∥∥u − u+

∥∥
L2

(∥∥u
∥∥

L2 +
∥∥u+

∥∥
L2

)∥∥u+
∥∥2

L
2n

n−γ

.
∥∥u − u+

∥∥
L2

(∥∥u
∥∥

L2 +
∥∥u+

∥∥
L2

)∥∥u+
∥∥2− 2γ

n

L2

∥∥u+
∥∥ 2γ

n
L∞

.

From (5.1) and (5.2), we have

∣∣J2

∣∣ = o(|t|−γ). (5.3)

As for J3, we have

∣∣J3(t)
∣∣ =

∣∣ < |u|2, In−γ

(
(u − u+)u+

)
>

∣∣

≤
∥∥u

∥∥2

L2

∥∥(u − u+)u+
∥∥

L
n

n−γ
.

∥∥u
∥∥2

L2

∥∥u − u+
∥∥

L2

∥∥u+
∥∥

L
2n

n−2γ

.
∥∥u

∥∥2

L2

∥∥u − u+
∥∥

L2

∥∥u+
∥∥1− 2γ

n

L2

∥∥u+
∥∥ 2γ

n
L∞

.

From (5.1) and (5.2), we also have

∣∣J3

∣∣ = o(|t|−γ). (5.4)

As for J1, if |x| ≤ At for some A > 1 which will be determined later, then for any

t > 0

In−γ(|u+|2)(x) ≥

∫

|y|≤At

|u+(y)|2

|x − y|γ
dy ≥

1

(2At)γ

∫

|y|≤At
|u+(y)|2 dy. (5.5)

Now we prove that ∫

|y|≤At
|u+(y)|2 dy &

∥∥ϕ+
∥∥2

L2 , (5.6)

for large t.

Choose a large R such that
∥∥ηRϕ+

∥∥2

L2 ≥ 2
3

∥∥ϕ+
∥∥2

L2 and
∥∥∇(ηRϕ+)

∥∥2

L2 ≥ 1
2

∥∥∇ϕ+
∥∥2

L2 ,

where ηR is a smooth cut-off function supported in the ball of radius 2R with center

at the origin. Then

∥∥u+
∥∥2

L2(|x|≤At)
≥

∥∥U(t)
(
ηRϕ+

)∥∥2

L2(|x|≤At)
−

∥∥U(t)
(
(1 − ηR)ϕ+

)∥∥2

L2(|x|≤At)

≥
∥∥U(t)

(
ηRϕ+

)∥∥2

L2(|x|≤At)
−

∥∥U(t)
(
(1 − ηR)ϕ+

)∥∥2

L2

≥
∥∥U(t)

(
ηRϕ+

)∥∥2

L2(|x|≤At)
−

∥∥ϕ+
∥∥2

L2(|x|≥R)
. (5.7)
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Hence choosing

A > 1 +

∥∥ϕ+
∥∥2

L2

2C(
∥∥∇ϕ+

∥∥2

L2)
,

and t is large enough such that

2R

A − 1
< t <

2R
∥∥ϕ+

∥∥2

L2

3C(
∥∥∇ϕ+

∥∥2

L2)
.

then we have from Proposition 5.1

∥∥U(t)(ηRϕ+)
∥∥2

L2(|x|<At)
≥

∥∥ηRϕ+
∥∥2

L2(|x|<2R)
− C(

∥∥∇(ηRϕ+)
∥∥2

L2)
t

2R

≥
∥∥ηRϕ+

∥∥2

L2 − C(
∥∥∇ϕ+

∥∥2

L2)
t

2R

≥
2

3

∥∥ϕ+
∥∥2

L2 −
1

3

∥∥ϕ+
∥∥2

L2 =
1

3

∥∥ϕ+
∥∥2

L2 .

Choosing t large enough, this helps us to get (5.6) and

J1(t) ≥ t−γ . (5.8)

by (5.5).

Now from (5.3), (5.4) and (5.4), we obtain that for t sufficient enough

d

dt
H(t) & t−γ .

This is a contradiction to the uniform boundedness of H(t) on t.
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