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Abstract. Let (M,g) be a complete non-compact Riemannian manifold with the m-
dimensional Bakry-Émery Ricci curvature bounded below by a non-positive constant.
In this paper, we give a localized Hamilton-type gradient estimate for the positive
smooth bounded solutions to the following nonlinear diffusion equation

ut =∆u−∇φ·∇u−aulogu−bu,

where φ is a C2 function, and a 6=0 and b are two real constants. This work generalizes
the results of Souplet and Zhang (Bull. London Math. Soc., 38 (2006), pp. 1045-1053)
and Wu (Preprint, 2008).
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1 Introduction

Let (M,g) be an n-dimensional non-compact Riemannian manifold with the m-dimen-
sional Bakry-Émery Ricci curvature bounded below. Consider the following diffusion
equation:

ut =∆u−∇φ·∇u−aulogu−bu (1.1)

in B(x0,R)×[t0−T,t0]⊂ M×(−∞,∞), where φ is a C2 function, and a 6= 0 and b are two
real constants. Eq. (1.1) is closely linked with the gradient Ricci solitons, which are the
self-similar solutions to the Ricci flow introduced by Hamilton [3]. Ricci solitons have
inspired the entropy and Harnack estimates, the space-time formulation of the Ricci flow,
and the reduced distance and reduced volume.

Below we recall the definition of Ricci solitons (see also Chapter 4 of [4]).
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Definition 1.1. A Riemannian manifold (M,g) is called a gradient Ricci soliton if there exists
a smooth function f : M→R, sometimes called potential function, such that for some constant
c∈R, it satisfies

Ric(g)+∇g∇g f = cg (1.2)

on M, where Ric(g) is the Ricci curvature of manifold M and ∇g∇g f is the Hessian of f . A
soliton is said to be shrinking, steady or expanding if the constant c is respectively positive,
zero or negative.

Suppose that (M,g) be a gradient Ricci soliton, and c, f are described in Definition A.
Letting u = e f , under some curvature assumptions, we can derive from (1.2) that (cf. [5],
Eq. (7))

∆u+2culogu=(A0−nc)u, (1.3)

for some constant A0. Eq. (1.3) is a nonlinear elliptic equation and a special case of
Eq. (1.1). For this kind of equations, Ma (see Theorem 1 in [5]) obtained the following
result.

Theorem A. ([5]) Let (M,g) be a complete non-compact Riemannian manifold of dimension n≥3
with Ricci curvature bounded below by the constant −K :=−K(2R), where R>0 and K(2R)≥0,
in the metric ball B2R(p). Let u be a positive smooth solution to the elliptic equation

∆u−aulogu=0 (1.4)

with a > 0. Let f = logu and let ( f ,2 f ) be the maximum among f and 2 f . Then there are two
uniform positive constant c1 and c2 such that

|∇ f |2−a( f ,2 f )

≤
n
[

(n+2)c2
1+(n−1)c2

1(1+R
√

K)+c2

]

R2
+2n

(

|a|+K
)

(1.5)

in BR(p).

Then Yang (see Theorem 1.1 in [6]) extended the above result and obtained the fol-
lowing local gradient estimate for the nonlinear equation (1.1) with φ≡ c0, where c0 is a
fixed constant.

Theorem B. ([6]) Let M be an n-dimensional complete non-compact Riemannian Manifold. Sup-
pose the Ricci curvature of M is bounded below by −K :=−K(2R), where R>0 and K(2R)≥0,
in the metric ball B2R(p). If u is a positive smooth solution to Eq. (1.1) with φ≡c0 on M×[0,∞)
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and f = logu, then for any α>1 and 0<δ<1,

|∇ f |2(x,t)−αa f (x,t)−αb−α ft(x,t)

≤ nα2

2δt
+

nα2

2δ

{

2ǫ2

R2
+

ν

R2
+σ+

ǫ2

R2
(n−1)

(

1+R
√

K(2R)

)

+
K(2R)

α−1
+

nα2ǫ2

8(1−δ)(α−1)R2

}

(1.6)

in BR(p)×(0,∞), where ǫ>0 and ν>0 are some constants and where σ = a/2 if a>0; σ=−a
if a<0.

Recently, the author (see Theorem 1.1 in [2]) used Souplet-Zhang’s method in [1] and
obtained a localized Hamilton-type gradient estimate for the positive smooth bounded
solutions of the equation (1.1) with φ≡ c0.

Theorem C. ([2]) Let (M,g) be an n-dimensional non-compact Riemannian manifold with
Ric(M)≥−K for some constant K ≥ 0. Suppose that u(x,t) is a positive smooth solution to
the parabolic equation (1.1) with φ ≡ c0 in QR,T ≡ B(x0,R)×[t0−T,t0]⊂ M×(−∞,∞). Let
f :=logu. We also assume that there exists non-negative constants α and δ such that α− f ≥δ>0.
Then there exist three dimensional constants c̃, c(δ) and c(α,δ) such that

|∇u|
u

≤
(

c̃

R
β+

c(α,δ)

R
+

c(δ)√
T

+c(δ)(|a|+K)1/2+c(δ)|a|1/2β1/2

)(

α−b

a
−logu

)

(1.7)

in QR/2,T/2, where β :=max{1,|α/δ−1|}.

The purpose of this paper is to extend Theorem C to the general nonlinear diffusion
equation (1.1) via the m-dimensional Bakry-Émery Ricci curvature.

Let us first recall some facts about the m-dimensional Bakry-Émery Ricci curvature
(please see [7–10] for more details). Given an n-dimensional Riemannian manifold (M,g)
and a C2 function φ, we may define a symmetric diffusion operator L :=∆−∇φ·∇, which
is the infinitesimal generator of the Dirichlet form

E( f ,g)=
∫

M
(∇ f ,∇g)dµ, ∀ f ,g∈C∞

0 (M),

where µ is an invariant measure of L given by dµ = e−φdx. It is well-known that L is
self-adjoint with respect to the weighted measure dµ.

The ∞-dimensional Bakry-Émery Ricci curvature Ric(L) is defined by

Ric(L) := Ric+Hess(φ),

where Ric and Hess denote the Ricci curvature of the metric g and the Hessian respec-
tively. Following the notation used in [10], we also define the m-dimensional Bakry-
Émery Ricci curvature of L on an n-dimensional Riemannian manifold as follows

Ricm,n(L) := Ric(L)−∇φ⊗∇φ

m−n
,
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where m :=dimBE(L) is called the Bakry-Émery dimension of L. Note that the number m
is not necessarily to be an integer and m≥n=dimM.

The main result of this paper can be stated in the following:

Theorem 1.1. Let (M,g) be an n-dimensional non-compact Riemannian manifold with
Ricm,n(L) ≥−K for some constant K ≥ 0. Suppose that u(x,t) is a positive smooth solution
to the diffusion equation (1.1) in QR,T ≡ B(x0,R)×[t0−T,t0]⊂ M×(−∞,∞). Let f := logu.
We also assume that there exists non-negative constants α and δ such that α− f ≥ δ > 0. Then
there exist three dimensional constants c̃, c(δ) and c(α,δ,m) such that

|∇u|
u

≤
(

c̃

R
β+

c(α,δ,m)

R
+

c(δ)√
T

+c(δ)(|a|+K)1/2+c(δ)|a|1/2β1/2

)(

α−b

a
−logu

)

(1.8)

in QR/2,T/2, where β :=max{1,|α/δ−1|}.

We make some remarks on the above theorem below.

Remark 1.1. (i). In Theorem 1.1, it seems that the assumption α− f ≥ δ>0 is reasonable.
Because from this assumption, we can get u≤ eα−δ. We say that this upper bound of u
can be achieved in some setting. For example, from Corollary 1.2 in [6], we know that
positive smooth solutions to the elliptic equation (1.4) with a <0 have u(x)≤ en/2 for all
x∈M provided the Ricci curvature of M is non-negative.

(ii). Note that the theorem still holds if m-dimensional Bakry-Émery Ricci curvature
is replaced by ∞-dimensional Bakry-Émery Ricci curvature. In fact this result can be
obtained by (2.10) in Section 2.

(iii). Theorem 1.1 generalizes the above mentioned Theorem C. When we choose
φ≡c0, we return Theorem C. The proof of our main theorem is based on Souplet-Zhang’s
gradient estimate and the trick used in [2] with some modifications.

In particular, if u(x,t)≤1 is a positive smooth solution to the diffusion equation (1.1)
with a<0, then we have a simple estimate.

Corollary 1.1. Let (M,g) be an n-dimensional non-compact Riemannian manifold with
Ricm,n(L) ≥−K for some constant K ≥ 0. Suppose that u(x,t)≤ 1 is a positive smooth solu-
tion to the diffusion equation (1.1) with a < 0 in QR,T ≡ B(x0,R)×[t0−T,t0]⊂ M×(−∞,∞).
Then there exist two dimensional constants c and c(m) such that

|∇u|
u

≤
(

c(m)

R
+

c√
T

+c
√

K+|a|
)(

1− b

a
+log

1

u

)

(1.9)

in QR/2,T/2.

Remark 1.2. We point out that our localized Hamilton-type gradient estimate can be also
regarded as the generalization of the result of Souplet-Zhang [1] for the heat equation on
complete manifolds. In fact, the above Corollary 1.1 is similar to the result of Souplet-
Zhang (see Theorem 1.1 of [1]). From the inequality (4.4) below, we can conclude that if
φ≡ c0 and a=0, then our result can be reduced to theirs.
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The method of proving Theorem 1.1 is the gradient estimate, which is originated by
Yau [11] (see also Cheng-Yau [12]), and developed further by Li-Yau [13], Li [14] and Ne-
grin [15]. Then Hamilton [16] gave an elliptic type gradient estimate for the heat equa-
tion. But this type estimate is a global result which requires the heat equation defined
on closed manifolds. Recently, a localized Hamilton-type gradient estimate was proved
by Souplet and Zhang [1], which can be viewed as a combination of Li-Yau’s Harnack
inequality [13] and Hamilton’s gradient estimate [16]. In this paper, we obtain a local-
ized Hamilton-type gradient estimate for a general diffusion equation (1.1) as Souplet
and Zhang in [1] did for the heat equation on complete manifolds. To prove Theorem 1.1,
we mainly follow the arguments of Souplet-Zhang in [1], together with some facts about
Bakry-Émery Ricci curvature. Note that the diffusion equation (1.1) is nonlinear. So our
case is a little more complicated than theirs.

The structure of this paper is as follows. In Section 2, we will give a basic lemma to
prepare for proving Theorem 1.1. Section 3 is devoted to the proof of Theorem 1.1. In
Section 4, we will prove Corollary 1.1 in the case 0<u≤1 with a<0.

2 A basic lemma

In this section, we will prove the following lemma which is essential in the derivation
of the gradient estimate of Eq. (1.1). Replacing u by e−b/au, we only need to consider
positive smooth solutions of the following diffusion equation:

ut =∆u−∇φ·∇u−aulogu. (2.1)

Suppose that u(x,t) is a positive smooth solution to the diffusion equation (1.1) in QR,T≡
B(x0,R)×[t0−T,t0]. Define a smooth function

f (x,t) := logu(x,t)

in QR,T. By (2.1), we have
(

L− ∂

∂t

)

f +|∇ f |2−a f =0. (2.2)

Then we have the following lemma, which is a generalization of the computation carried
out in [1, 2].

Lemma 2.1. Let (M,g) be an n-dimensional non-compact Riemannian manifold with Ricm,n(L)
≥−K for some constant K ≥ 0. Let f (x,t) is a smooth function defined on QR,T satisfying the
diffusion equation (2.2). We also assume that there exist non-negative constants α and δ such
that α− f ≥δ>0. Then for all (x,t) in QR,T the function

ω := |∇log(α− f )|2 =
|∇ f |2

(α− f )2
(2.3)
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satisfies the following inequality
(

L− ∂

∂t

)

ω

≥ 2(1−α)+2 f

α− f
〈∇ f ,∇ω〉+2(α− f )ω2+2(a−K)ω+

2a f

α− f
ω. (2.4)

Proof. By (2.3), we have

ωj =
2 fi fij

(α− f )2
+

2 f 2
i f j

(α− f )3
, (2.5)

∆ω =
2| fij |2

(α− f )2
+

2 fi fijj

(α− f )2
+

8 fi f j fij

(α− f )3
+

2 f 2
i f jj

(α− f )3
+

6 f 2
i f 2

j

(α− f )4
, (2.6)

and

Lω=∆ω−φjωj

=
2| fij|2

(α− f )2
+

2 fi fijj

(α− f )2
+

8 fi f j fij

(α− f )3
+

2 f 2
i f jj

(α− f )3
+

6 f 4
i

(α− f )4
− 2 fij fiφj

(α− f )2
− 2 f 2

i f jφj

(α− f )3

=
2| fij|2

(α− f )2
+

2 fi(L f )i

(α− f )2
+

2(Rij+φij) fi f j

(α− f )2
+

8 fi f j fij

(α− f )3
+

2 f 2
i ·L f

(α− f )3
+

6 f 4
i

(α− f )4
, (2.7)

where fi :=∇i f and fijj :=∇j∇j∇i f , etc. By (2.3) and (2.2), we also have

ωt =
2∇i f ·∇i

[

L f +|∇ f |2−a f
]

(α− f )2
+

2|∇ f |2
[

L f +|∇ f |2−a f
]

(α− f )3

=
2∇ f∇L f

(α− f )2
+

4 fi f j fij

(α− f )2
− 2a|∇ f |2

(α− f )2
+

2 f 2
i L f

(α− f )3
+

2|∇ f |4
(α− f )3

− 2a f |∇ f |2
(α− f )3

. (2.8)

Combining (2.7) with (2.8), we can get

(

L− ∂

∂t

)

ω =
2| fij|2

(α− f )2
+

2(Rij+φij) fi f j

(α− f )2
+

8 fi f j fij

(α− f )3
+

6 f 4
i

(α− f )4

− 4 fi f j fij

(α− f )2
− 2 f 4

i

(α− f )3
+

2a f 2
i

(α− f )2
+

2a f f 2
i

(α− f )3
. (2.9)

Noting that Ricm,n(L)≥−K for some constant K≥0, we have

(Rij+φij) fi f j ≥
|∇φ·∇ f |2

m−n
−K|∇ f |2 ≥−K|∇ f |2. (2.10)

By (2.5), we have

ωj f j =
2 fi f j fij

(α− f )2
+

2 f 2
i f 2

j

(α− f )3
, (2.11)
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and consequently,

0=−2ωj f j +
4 fi f j fij

(α− f )2
+

4 f 4
i

(α− f )3
, (2.12)

0=
1

α− f

[

2ωj f j−
4 f 4

i

(α− f )3

]

− 4 fi f j fij

(α− f )3
. (2.13)

Substituting (2.10) into (2.9) and then adding (2.9) with (2.12) and (2.13), we can get

(

L− ∂

∂t

)

ω≥ 2| fij|2
(α− f )2

− 2K|∇ f |2
(α− f )2

+
4 fi f j fij

(α− f )3
+

2 f 4
i

(α− f )4
+

2 f 4
i

(α− f )3

+
2(1−α)+2 f

α− f
fiωi+

2a f 2
i

(α− f )2
+

2a f f 2
i

(α− f )3
. (2.14)

Note that α− f ≥δ>0 implies

2| fij|2
(α− f )2

+
4 fi f j fij

(α− f )3
+

2 f 4
i

(α− f )4
≥0.

This, together with (2.14), yields the desired estimate (2.4).

3 Proof of Theorem 1.1

In this section, we will use Lemma 2.1 and the localization technique of Souplet-Zhang [1]
to give the elliptic type gradient estimates on the positive and bounded smooth solutions
of the diffusion equation (1.1).

Proof. First we give the well-known cut-off function by Li-Yau [13] (see also [1]) as fol-
lows. We caution the reader that the calculation is not the same as that in [13] due to the
difference of the first-order term.

Let ψ=ψ(x,t) be a smooth cut-off function supported in QR,T satisfying the following
properties:

(1) ψ=ψ(d(x,x0),t)≡ψ(r,t); ψ(x,t)=1 in QR/2,T/2, 0≤ψ≤1;

(2) ψ is decreasing as a radial function in the spatial variables;

(3)
|∂rψ|

ψǫ
≤ Cǫ

R
,
|∂2

r ψ|
ψǫ

≤ Cǫ

R2
, when 0<ǫ<1;

(4)
|∂tψ|
ψ1/2

≤ C

T
.
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From Lemma 2.1, by a straight forward calculation, we have

L(ψω)− 2(1−α)+2 f

α− f
∇ f ·∇(ψω)−2

∇ψ

ψ
·∇(ψω)−(ψω)t

≥2ψ(α− f )ω2−
[

2(1−α)+2 f

α− f
∇ f ·∇ψ

]

ω−2
|∇ψ|2

ψ
ω

+(Lψ)ω−ψtω+2(a−K)ψω+2
a f

α− f
ψω. (3.1)

Let (x1,t1) be a point where ψω achieves the maximum. By Li-Yau [13], without loss of
generality we assume that x1 is not in the cut-locus of M. Then at this point, we have

L(ψω)≤0, (ψω)t≥0, ∇(ψω)=0.

Hence at (x1,t1), by (3.1), we get

2ψ(α− f )ω2(x1,t1)≤
{

[

2(1−α)+2 f

α− f
∇ f ·∇ψ

]

ω+2
|∇ψ|2

ψ
ω−(Lψ)ω

+ψtω−2(a−K)ψω−2
a f

α− f
ψω

}

(x1,t1). (3.2)

In the following, we will introduce the upper bounds for each term of the right-hand
side (RHS) of (3.2). Following similar arguments of Souplet-Zhang ([1], p. 1050-1051), we
have the estimates of the first term of the RHS of (3.2)

[

2 f

α− f
∇ f ·∇ψ

]

ω

≤2| f |·|∇ψ|·ω3/2 =2
[

ψ(α− f )ω2
]3/4 · | f |·|∇ψ|

[ψ(α− f )]3/4

≤ψ(α− f )ω2+ c̃
( f |∇ψ|)4

[ψ(α− f )]3
≤ψ(α− f )ω2+ c̃

f 4

R4(α− f )3
; (3.3)

and

[

2(1−α)

α− f
∇ f ·∇ψ

]

ω

≤2|1−α||∇ψ|ω3/2 =(ψω2)3/4 · 2|1−α||∇ψ|
ψ3/4

≤ δ

12
ψω2+c(α,δ)

( |∇ψ|
ψ3/4

)4

≤ δ

12
ψω2+

c(α,δ)

R4
. (3.4)
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For the second term of the RHS of (3.2), we have

2
|∇ψ|2

ψ
ω =2ψ1/2ω · |∇ψ|2

ψ3/2
≤ δ

12
ψω2+c(δ)

( |∇ψ|2
ψ3/2

)2

≤ δ

12
ψω2+

c(δ)

R4
. (3.5)

For the third term of the RHS of (3.2), since Ricm,n(L)≥−K, by the generalized Laplacian
comparison theorem (see [9] or [10]),

Lr≤ (m−1)
√

Kcoth(
√

Kr).

Consequently, we have

−(Lψ)ω =−
[

(∂rψ)Lr+(∂2
r ψ)·|∇r|2

]

ω

≤−
[

∂rψ(m−1)
√

Kcoth(
√

Kr)+∂2
r ψ
]

ω

≤−
[

∂rψ(m−1)

(

1

r
+
√

K

)

+∂2
r ψ

]

ω

≤
[

|∂2
r ψ|+2(m−1)

|∂r ψ|
R

+(m−1)
√

K|∂rψ|
]

ω

≤ψ1/2ω
|∂2

r ψ|
ψ1/2

+ψ1/2ω2(m−1)
|∂rψ|
Rψ1/2

+ψ1/2ω(m−1)

√
K|∂rψ|
ψ1/2

≤ δ

12
ψω2+c(δ,m)





( |∂2
r ψ|

ψ1/2

)2

+

( |∂rψ|
Rψ1/2

)2

+

(√
K|∂rψ|
ψ1/2

)2




≤ δ

12
ψω2+

c(δ,m)

R4
+

c(δ,m)K

R2
. (3.6)

Now we estimate the fourth term:

|ψt|ω =ψ1/2ω
|ψt|
ψ1/2

≤ δ

12

(

ψ1/2ω
)2

+c(δ)

( |ψt|
ψ1/2

)2

≤ δ

12
ψω2+

c(δ)

T2
. (3.7)

Notice that we have used Young’s inequality below in obtaining (3.3)-(3.7):

ab≤ ap

p
+

bq

q
, ∀ p,q>0 with

1

p
+

1

q
=1.

Finally, we estimate the last two terms:

−2(a−K)ψω≤2(|a|+K)ψω≤ δ

12
ψω2+c(δ)(|a|+K)2; (3.8)
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and

−2
a f

α− f
ψω≤2

|a|·| f |
α− f

ψω≤ δ

12
ψω2+c(δ)a2 f 2

(α− f )2
. (3.9)

Substituting (3.3)-(3.9) to the RHS of (3.2) at (x1,t1), we get

2ψ(α− f )ω2 ≤ψ(α− f )ω2+ c̃
f 4

R4(α− f )3
+

δ

2
ψω2+

c(α,δ)

R4
+

c(δ)

R4
+

c(δ,m)

R4

+
c(δ,m)K

R2
+

c(δ)

T2
+c(δ)(|a|+K)2+c(δ)a2 f 2

(α− f )2
. (3.10)

Recall that α− f ≥δ>0, (3.10) implies

ψω2(x1,t1)≤ c̃
f 4

R4(α− f )4
+

1

2
ψω2(x1,t1)+

c(α,δ)

R4
+

c(δ,m)

R4
+

c(δ,m)K

R2

+
c(δ)

T2
+c(δ)(|a|+K)2 +c(δ)a2 f 2

(α− f )2
. (3.11)

Furthermore, we need to estimate the RHS of (3.11). If f ≤0 and α≥0, then we have

f 4

(α− f )4
≤1,

f 2

(α− f )2
≤1; (3.12)

if f >0, by the assumption α− f ≥δ>0, we know that

f 4

(α− f )4
≤ (α−δ)4

δ4
=
(α

δ
−1
)4

,
f 2

(α− f )2
≤
(α

δ
−1
)2

. (3.13)

Plugging (3.12) (or (3.13)) into (3.11), we obtain

(ψω2)(x1,t1)≤
c̃β4+c(α,δ,m)

R4
+

c(δ,m)K

R2
+

c(δ)

T2
+c(δ)(|a|+K)2+c(δ)a2β2, (3.14)

where β :=max{1,|α/δ−1|}. The above inequality implies, for all (x,t) in QR,T

(ψ2ω2)(x,t)≤ψ2(x1,t1)ω2(x1,t1)≤ψ(x1,t1)ω2(x1,t1)

≤ c̃β4+c(α,δ,m)

R4
+

c(δ,m)K

R2
+

c(δ)

T2
+c(δ)(|a|+K)2+c(δ)a2β2. (3.15)

Note that ψ(x,t)=1 in QR/2,T/2 and ω = |∇ f |2/(α− f )2. Therefore we have

|∇ f |
α− f

≤
(

c̃β4+c(α,δ,m)

R4
+

c(δ,m)K

R2
+

c(δ)

T2
+c(δ)(|a|+K)2+c(δ)a2β2

)1/4

. (3.16)

Since f = logu, we get the following estimate for Eq. (2.1)

|∇u|
u

≤
(

c̃β4+c(α,δ,m)

R4
+

c(δ)

T2
+c(δ)(|a|+K)2+c(δ)a2β2

)1/4
(

α−logu
)

. (3.17)

Replacing u by eb/au gives the desired estimate (1.8). This completes the proof of Theorem
1.1.
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4 Proof of Corollary 1.1

Proof. The proof is similar to that of Theorem 1.1. We still use the technique of a cut-off
function in a local neighborhood of Riemannian manifolds. For 0<u≤1, we let f = logu.
Then f ≤0. Set

ω := |∇log(1− f )|2 =
|∇ f |2

(1− f )2
.

By Lemma 2.1, we have

(

L− ∂

∂t

)

ω≥ 2 f

1− f
〈∇ f ,∇ω〉+2(1− f )ω2−2(|a|+K)ω. (4.1)

We define a smooth cut-off function ψ = ψ(x,t) in the same way as Section 3. Follow all
steps as in the last section (see also pp. 1050-1051 in [1]), we can easily get the following
inequality

2(1− f )ψω2 ≤ (1− f )ψω2+
c f 4

R4(1− f )3
+

ψω2

2
+

c

R4

+
c(m)

R4
+

c(m)K

R2
+

c

T2
+c(|a|+K)2, (4.2)

where we used similar estimates (3.3)-(3.9) with the difference that these estimates do not
contain the parameter δ. Using the same method as that in proving Theorem 1.1, for all
(x,t) in QR/2,T/2 we can get

ω2(x,t)≤ c(m)

R4
+

c(m)K

R2
+

c

T2
+c(|a|+K)2

≤ c(m)

R4
+

c(m)

R2
(|a|+K)+

c

T2
+c(|a|+K)2

≤ c(m)

R4
+

c

T2
+c(|a|+K)2. (4.3)

Again, using the same argument in the proof of Theorem 1.1 gives

|∇ f |
1− f

≤ c(m)

R
+

c√
T

+c
√

K+|a|, (4.4)

where c is a constant depending only on n, c(m) is a constant depending only on n and
m.

Since f = logu, we get

|∇u|
u

≤
(

c(m)

R
+

c√
T

+c
√

K+|a|
)

·
(

1+log
1

u

)

. (4.5)

At last, replacing u by eb/au above yields (1.9).
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