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Abstract. We study capillary spreadings of thin films of liquids of power-law rheol-
ogy. These satisfy

ut+(uλ+2|uxxx|λ−1uxxx)x =0,

where u(x,t) represents the thickness of the one-dimensional liquid and λ>1. We look
for traveling wave solutions so that u(x,t)= g(x+ct) and thus g satisfies

g′′′=
|g−ǫ| 1

λ

g1+ 2
λ

sgn(g−ǫ).

We show that for each ǫ>0 there is an infinitely oscillating solution, gǫ, such that

lim
t→∞

gǫ =ǫ

and that gǫ→ g0 as ǫ→0, where g0≡0 for t≥0 and

g0 = cλ|t|
3λ

2λ+1 for t<0

for some constant cλ.

AMS Subject Classifications: 35J35

Chinese Library Classifications: O175.25, O175.4, O176
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1 Introduction

In this work, we study capillary spreadings of thin films of liquids of power-law rheology,
also known as Ostwald-de Waele fluids. The following equation for one-dimensional
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motion was derived in [1, 2] and is

ut+
(

uλ+2|uxxx|λ−1uxxx

)

x
=0,

where λ is a real constant and u(x,t) represents the thickness of the one-dimensional
liquid film at position x and time t. See also [3, 4]. When λ > 1, the fluid is called shear
thinning and the viscosity tends to zero at high strain rates [5]. Typical values for λ are
between 1.7 and 6.7 [6].

For gravity driven spreadings studied in [7], u(x,t) satisfies

ut−
(

uλ+2|ux|λ−1ux

)

x
=0.

If we look for traveling wave solutions of the above equation so that u(x,t)=g(x+ct) for
some nonzero c∈R, we obtain

cg′ =
(

gλ+2|g′|λ−1g′
)′

and thus
c(g−K)= gλ+2|g′|λ−1g′

for some constant K. In the case K =0 we obtain

g(z)=d(z−z0)
λ

2λ+1

for some constant d which represents a current advancing with constant speed, c, and
front located at x = −ct−z0. In particular, this differential equation has no oscillatory
traveling wave solutions. Similarly, in the case K 6= 0 there are no oscillatory traveling
wave solutions. If g′(m1)= g′(m2)=0 with m1 < m2, then it follows from the differential
equation that g(m1) = K = g(m2). Now let M be the maximum (or minimum) of g on
[m1,m2]. Then g′(M)=0 and thus g(M)=K. Thus g≡K on [m1,m2].

In this paper, we will study traveling wave solutions for capillarity-driven spreadings
in which case we obtain

cg′+
(

gλ+2|g′′′|λ−1g′′′
)′

=0

and so
cg+gλ+2|g′′′|λ−1g′′′=K.

If we expect that g will be essentially constant as t → ∞, say ǫ > 0, then this gives the
equation

c(g−ǫ)+gλ+2|g′′′|λ−1g′′′=0.

This reduces to

g′′′=d
|g−ǫ| 1

λ

g1+ 2
λ

sgn(g−ǫ), where d=− c

|c|1− 1
λ

.
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Letting y(t)= g( t
d1/3 ) gives

y′′′=
|y−ǫ| 1

λ

y1+ 2
λ

sgn(y−ǫ).

We now consider

y′′′(t)= fǫ(y(t)), (1.1)

y(t0)=y0 >0, y′(t0)=y′0, y′′(t0)=y′′0 , (1.2)

where

fǫ(y)≡ |y−ǫ| 1
λ

y1+ 2
λ

sgn(y−ǫ), y,ǫ,λ∈R, y>0, ǫ>0, λ>1. (1.3)

We note that fǫ is increasing for 0< y< (1+ 1
λ+1)ǫ, decreasing for (1+ 1

λ+1)ǫ < y< ∞,

and has an absolute maximum at y=(1+ 1
λ+1)ǫ. We also see that fǫ(y) is not integrable at

y=0 and is integrable at y=∞. Next we define

Fǫ(y)=
∫ y

ǫ
fǫ(t)dt for y>0.

We see that Fǫ(y)≥0, Fǫ is decreasing on (0,ǫ), increasing on (ǫ,∞),

lim
y→0+

Fǫ(y)=+∞, (1.4a)

and there exists 0< Fǫ,∞ <∞ such that

lim
y→∞

Fǫ(y)= Fǫ,∞. (1.4b)

Also we see that there exists 0< Lǫ <ǫ such that

Fǫ(Lǫ)= Fǫ,∞. (1.5)

We now define the following “energy” type functions which will be useful in analyz-
ing solutions of Eq. (1.1). Let

E1,y =
1

2
(y′)2−(y−ǫ)y′′ , (1.6a)

E2,y = Fǫ(y)−y′y′′,, (1.6b)

E3,y =
1

2
(y′′)2− fǫ(y)y′. (1.6c)

Note that

E′
1,y =−(y−ǫ)y′′′ =−(y−ǫ) fǫ(y)=−|y−ǫ|1+ 1

λ

y1+ 2
λ

≤0, (1.7a)

E′
2,y =−(y′′)2≤0, (1.7b)

E′
3,y =− f ′ǫ(y)(y′)2. (1.7c)
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It can be verified that

E′
3,y≤0 for 0<y≤

(

1+
1

λ+1

)

ǫ

and

E′
3,y≥0 for y≥

(

1+
1

λ+1

)

ǫ.

In this paper we prove the following:

Main Theorem. Let ǫ>0 and λ>1. There exists a solution of (1.1) with y(0)= Lǫ, y′(0)=0,
and y′′(0)=bǫ >0 and ybǫ

is decreasing on (−∞,0), oscillates infinitely often on [0,∞) and

lim
t→∞

ybǫ
(t)=ǫ. (1.8)

In addition,
lim
ǫ→0

ybǫ
(t)=y0(t), (1.9)

where

y0 =

{

0, for t≥0,

cλ|t|
3λ

2λ+1 , for t<0,
(1.10a)

where

cλ =
[ (2λ+1)3

3λ(λ−1)(λ+2)

]
λ

2λ+1
. (1.10b)

Note that y0 satisfies the limiting differential equation

y′′′=
1

y1+ 1
λ

for t<0.

Also, since λ>1 then 3λ/(2λ+1)>1 so that y0 has zero contact angle at t=0. According
to [3], there are other solutions to

y′′′ =
1

y1+ 1
λ

with nonzero contact angle at t = 0 which grow like |t|3λ/(2λ+1) at −∞. However, zero
contact angle is more physically reasonable.

2 Preliminaries

In this section, we fix ǫ > 0 and write f , F, E1,E2, and E3 instead of fǫ, Fǫ, E1,y,E2,y, and
E3,y.

Lemma 2.1. Let t0∈R. There is a solution of (1.1)-(1.2) on (t0−δ,t0+δ) for some δ>0. Also,
for

y0 >0, |y0−ǫ|+|y′0|+|y′′0 |>0,

the solution is unique and the solution varies continuously with respect to the parameters (y0,y′0,y′′0 ).
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Proof. The standard existence-uniqueness-continuous-dependence theorem applies for
all y0 >0 with y0 6=ǫ.

If y0 = ǫ then we still have existence by the Peano existence theorem. Now suppose
y0 =ǫ but that y′0 6=0. Then near t0 we have that

|(y−ǫ)−y′0(t−t0)|≤C|t−t0|2,

which implies
1

2
|y′0||t−t0|≤ |y−ǫ|≤2|y′0 ||t−t0| near t0.

Assuming without loss of generality that y′0 >0 then we see that this means

1

2
y′0|t−t0|≤ (y−ǫ)≤2y′0 |t−t0| for t near t0 and t> t0. (2.1)

Similarly, if z is another solution (1.1)-(1.2) with z0 =ǫ0, z′0 =y′0, and z′′0 =y′′0 , then

1

2
y′0|t−t0|≤ (z−ǫ)≤2y′0 |t−t0| for t near t0 and t> t0. (2.2)

Now

[y−z]=
∫ t

t0

∫ s

t0

∫ w

t0

[ f (y(x))− f (z(x))]dxdwds,

so for any fixed x we have by the Mean-Value Theorem that

f (y(x))− f (z(x))= f ′(µy(x)+(1−µ)z(x))[y(x)−z(x)]

for some 0<µ<1. Using (2.1) and that λ>1 gives for some constant C>0

| f ′(µy(x)+(1−µ)z(x))|
≤C|µy+(1−µ)z−ǫ| 1

λ−1

=C|µ(y−ǫ)+(1−µ)(z−ǫ)| 1
λ−1

≤C
(1

2
y′0

)
1
λ −1

|x−t0|
1
λ−1.

Therefore

|y−z|≤
∫ t

t0

∫ s

t0

∫ w

t0

| f (y)− f (z)|dxdwds

≤C
(1

2
y′0

)
1
λ−1∫ t

t0

∫ s

t0

∫ w

t0

|x−t0|
1
λ−1|y−z|dxdwds

≤
(1

2
y′0

)
1
λ −1

(t−t0)
2
∫ t

t0

|s−t0|
1
λ−1|y−z|ds.
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It follows from (2.1) and (2.2) that the last integral on the right-hand side is defined. Thus
for some constant C>0

|y−z|≤C(t−t0)
2
∫ t

t0

|s−t0|
1
λ−1|y−z|ds. (2.3)

Letting

w=
∫ t

t0

|s−t0|
1
λ −1|y−z|ds≥0.

Then
w′= |t−t0|

1
λ −1|y−z|.

Consequently, (2.3) becomes

w′|t−t0|1−
1
λ ≤C(t−t0)

2w

so that
w′≤C|t−t0|1+ 1

λ w≤Cw for t near t0.

Therefore,
∫ t

t0

(we−Ct)′≤0

which implies w≡0 on (t0,t). Hence y≡ z on (t0,t). A similar argument shows y≡ z on
(t,t0).

Now suppose y0 = ǫ and y′0 = 0 but y′′0 6= 0. Then a similar argument as above shows
that

1

4
|y′′0 |(t−t0)

2≤|y−ǫ|≤ |y′′0 |(t−t0)
2 for t near t0.

Assuming without loss of generality that y′′0 >0, we see that this means

1

4
y′′0 (t−t0)

2≤y−ǫ≤y′′0 (t−t0)
2 for t near t0 and t> t0. (2.4)

Similarly if z is another solution then

1

4
y′′0 (t−t0)

2≤ z−ǫ≤y′′0 (t−t0)
2 for t near t0 and t> t0. (2.5)

Again by the Mean-Value Theorem we have for each fixed x

| f (y)− f (z)|= | f ′(µy(x)+(1−µ)z(x))||y(x)−z(x)|
≤C|µy+(1−µ)z−ǫ| 1

λ −1

=C|µ(y−ǫ)+(1−µ)(z−ǫ)| 1
λ−1

≤C
(1

4
y′′0

)
1
λ−1

|x−t0|
2
λ −2.
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Therefore

|y−z|≤
∫ t

t0

∫ s

t0

∫ w

t0

| f (y)− f (z)|dxdwds

≤C
(1

4
y′′0

)
1
λ−1∫ t

t0

∫ s

t0

∫ w

t0

|x−t0|
2
λ−2|y−z|dxdwds

≤C
(1

2
y′0

)
1
λ−1

(t−t0)
2
∫ t

t0

|s−t0|
2
λ −2|y−z|ds.

It follows from (2.4) and (2.5) that the last integral is defined. Therefore we have for some
constant C

|y−z|≤C(t−t0)
2
∫ t

t0

|s−t0|
2
λ−2|y−z|ds. (2.6)

Letting

w=
∫ t

t0

|s−t0|
2
λ −2|y−z|ds≥0.

Then
w′= |t−t0|

2
λ−2|y−z|

and thus (2.6) becomes

w′|t−t0|2−
2
λ ≤C(t−t0)

2w.

Consequently,

w′≤C|t−t0|
2
λ w≤Cw for t near t0.

Therefore,
∫ t

t0

(we−Ct)′≤0,

which implies that w≡0 on (t0,t). Hence y≡ z on (t0,t). A similar argument shows y≡ z
on (t,t0).

Thus we have shown that the solution is unique if y0=ǫ and either y′0=0 or y′′0 =0 but
not both.

Remark: If y0 =ǫ and y′0 =y′′0 =0, then there are nonlinearities f for which there is more than
one solution of (1.1)-(1.3). For example, if

f (y)= |y−ǫ| 1
λ sgn(y−ǫ)

then y=ǫ is a solution and

y=ǫ+aλt
3λ

λ−1 ,

where

aλ =
[3λ(2λ+1)(λ+2)

(λ−1)3

]
λ

λ−1
,
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is also a solution.

Suppose now that there is a triple (y0,y′0,y′′0 ) with

y0 >0, |y0−ǫ|+|y′0|+|y′′0 |>0 (2.7)

and suppose y0(t) is the solution of (1.1) with

y0(t0)=y0, y′0(t0)=y′0, y′′0 (t0)=y′′0 . (2.8)

Let (y0,n,y′0,n,y′′0,n) be a sequence that converges to (y0,y′0,y′′0 ) and let yn be the solution of
(1.1) with

yn(t0)=y0,n, y′n(t0)=y′0,n, y′′n(t0)=y′′0,n.

By the existence proof all of the yn’s are defined on (t0−δ,t0+δ) for some δ > 0 which
is independent of n. On this set we have that | f (yn(t))| is bounded by a constant M so
that |y′′′n |≤M and so yn,|y′n|,|y′′n |,|y′′′n | are all bounded by a constant on [t0−δ/2,t0+δ/2].
By the Arzela-Ascoli theorem a subsequence (denoted by ynk

) along with its first and
second derivatives converges uniformly to a function y with initial condition (2.8). From
Eq. (1.1) we see that y′′′nk

converges uniformly to y′′′ and y solves (1.1). With (2.7), by the
uniqueness part of the proof established earlier we must have y(t)≡y0(t) and hence ynk

converges uniformly to y0. It then follows from this that yn converges uniformly to y0 for
if not then there would be an η > 0 and a sequence tnk

∈ [t0−δ/2,t0+δ/2] with tnk
→ t∗

such that
|ynk

(tnk
)−y0(t∗)|≥η >0.

However, we could proceed through the same argument as above and find a subse-
quence ynkl

of ynk
such that ynkl

converges uniformly to y0 on [t0−δ/2,t0+δ/2] contra-
dicting the above inequality. This completes the proof of the lemma.

Lemma 2.2. Let y(t) be any solution of (1.1)-(1.2). Then there is a maximal open interval
(T1,T2) with T1 < t0 <T2 where y(t) is defined. In addition, if T1 >−∞ then y is increasing near
T1 and

lim
t→T+

1

y(t)=0, (2.9)

and if T2 <∞ then y is decreasing near T2 and

lim
t→T−

2

y(t)=0. (2.10)

Proof. Let (T1,T2) with T1 < t0 < T2 be the maximal open interval where y(t) is defined
(and y(t)>0). We now let

c1≡ inf
(T1,t0]

y(t) and c2≡ inf
[t0,T2)

y(t).

Clearly, c1 ≥0,c2≥0. If c2 >0 then from the definition of f we see that y′′′(t) is uniformly
bounded on [t0,T2). Thus if T2 < ∞ then y, y′, and y′′ are also uniformly bounded on
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[t0,T2) and so the solution y could be extended to (T1,T2+δ) for some δ>0 contradicting
the definition of T2. Thus T2=∞ if c2>0. A similar argument shows that T1=−∞ if c1>0.

So now suppose that c2 =0. Then either there is a T < T2 such that y(t) is decreasing
on (T,T2) or there is an increasing sequence of local minimums, mk, of y converging to
T2 such that y(mk+1)<y(mk) and limk→∞ y(mk)=0. However, if the latter is true then by
(1.7b) we would have

F(y(mk+1))=E2(mk+1)≤E2(mk)= F(y(mk)).

But also for large k, y(mk)<ǫ and since F is decreasing for 0<y<ǫ we would have

F(y(mk+1))≥F(y(mk))

a contradiction. Thus there is a T < T2 such that y(t) is decreasing on (T,T2). Thus (2.10)
holds. Similarly, if c1 = 0 then there is T > T1 such that y(t) is increasing on (T1,T) and
(2.9) holds. This completes the proof of the lemma.

Lemma 2.3. If there is an m such that 0<y(m)≤Lǫ, y′(m)=0, and y′′(m)≥0, then T1 =−∞,
y′ <0 and y′′>0 for t<m, and

lim
t→−∞

y(t)=∞. (2.11)

Proof. If y′′(m)>0, then there exists δ>0 such that y′ <0 on (m−δ,m). If y′′(m)=0, then
since y′′′(m)= f (y(m))<0, it follows that there exists δ>0 such that y′′ >0 on (m−δ,m).
Since y′(m)=0 it then follows that y′<0 on (m−δ,m). Thus we see that if y′′(m)≥0 then
there exists a δ>0 such that y′ <0 on (m−δ,m).

Now suppose there exists an m∗
<m such that y′(m∗)=0 and y′ <0 on (m∗,m). Then

y(m∗)>y(m) and since E2 is decreasing we see that

F(y(m∗))=E2(m∗)≥E2(m)= F(y(m))≥F∞. (2.12)

Now if y(m∗)≤ Lǫ, then since F is strictly decreasing on (0,Lǫ] we see that F(y(m∗)) <

F(y(m)) which contradicts (2.12). On the other hand, if y(m∗) > Lǫ, then we see that
F(y(m∗))<F∞ which again contradicts (2.12). Thus, no such m∗ can exist and therefore y
is decreasing for t<m. Then from Lemma 2.2 it follows that T1 =−∞.

Next, we show that y has no inflection points for t<m. First we show that if y has an
inflection point, p, then y(p)>ǫ. So suppose there is a p<m with y′′(p)=0 and y′′>0 on
(p,m) and y(p)≤ǫ. Then on [p,m] we have by (1.7c)

E′
3 =− f ′(y)(y′)2≤0 since y<

(

1+
1

λ+1

)

ǫ on [p,m].

Also

E3(m)=
1

2
(y′′(m))2≥0
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so
1

2
(y′′)2− f (y)y′≥0 on [p,m].

Evaluating at p we obtain f (y(p))y′(p)≤0 and since y′(p)<0 it follows then that f (y(p))≥
0. Consequently, y(p)≥ ǫ. Since we assumed y(p)≤ ǫ we see that the only possibility is
y(p)=ǫ. However, if y(p)=ǫ then y′′′<0 on (p,m) and since y′′(p)=0 this implies y′′<0
on (p,m), which is a contradiction. Thus, y(p) > ǫ. Since y′ < 0 for t < m it follows that
y′′′>0 for t< p so if t<q< p then

y′′(t)<y′′(q)<0.

Integrating on (t,q) gives
y′(q)−y′(t)<y′′(q)(q−t).

Thus,
y′(q)−y′′(q)(q−t)<y′(t)

and the left-hand side goes to +∞ as t→−∞ contradicting with y′ < 0 for t < m. Thus
y′′>0 for t<m. Since we also have that y′<0 for t<m we then see that (2.11) holds. This
completes the proof of the lemma.

3 Existence of a solution with lim
t→∞

y(t)=ǫ

We now fix ǫ>0 and b≥0. Let yb be the solution of:

y′′′(t)= fǫ(y(t)), (3.1)

y(0)= Lǫ, y′(0)=0, y′′(0)=b, (3.2)

where Lǫ is defined in the statement after (1.4b).
We denote the maximal open interval of existence of (3.1)-(3.2) as (T1,b,T2,b). From

Lemma 2.3 it follows that T1,b =−∞.

Lemma 3.1. If b=0, then T2,b <∞.

Proof. We see that E1,yb
(0)=0 and since E′

1,yb
(t)≤0 (by (1.7a)) and E′

1,yb
(0)<0 it follows

that
E1,yb

(t)<0 on (0,T2,b).

Hence

0≤ 1

2
(y′b)

2
< (yb−ǫ)y′′b on (0,T2,b).

Then since yb(0)= Lǫ <ǫ, we see that yb <ǫ and y′′b <0 for t>0. Since y′b(0)=0 it follows
then that y′b < 0 for t > 0 and therefore yb is decreasing and concave down on (0,T2,b).
Hence yb must become zero at some finite value of t. Thus, T2,b < ∞. This completes the
proof of the lemma.
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Lemma 3.2. If b > 0 is sufficiently large, then T2,b = ∞ and y′b(t) > 0 for all t > 0 (and hence
yb(t)>0 for all t∈R by Lemma 2.3).

Proof. Since y′b(0)=0 and y′′b (0)=b>0, we see that y′b >0 on (0,δ) for some δ>0. Suppose
first that T2,b <∞. Then by Lemma 2.2, there is an M>0 such that y′b(M)=0 and y′b >0 on
(0,M). So we see that on (0,M) we have

yb(t)>yb(0)= Lǫ

and therefore
y′′′b = fǫ(yb)> fǫ(Lǫ).

Integrating on (0,t) gives
y′′b >b+ fǫ(Lǫ)t on (0,M).

Integrating again on (0,t) gives

y′b >bt+
fǫ(Lǫ)

2
t2 on (0,M).

Taking the limit as t→M− we get M≥2b/| fǫ(Lǫ)|. Therefore we see that

y′b >0 for 0< t<
b

| fǫ(Lǫ)|
.

After another integration we see that

yb > Lǫ+
b

2
t2+

fǫ(Lǫ)

6
t3 on (0,M).

Evaluating this inequality and the y′′b inequality at t=b/| fǫ(Lǫ)| we see that

yb

( b

| fǫ(Lǫ)|
)

> Lǫ+
b3

3| fǫ(Lǫ)|2
, y′′b

( b

| fǫ(Lǫ)|
)

>0.

Therefore, we see that

yb

( b

| fǫ(Lǫ)|
)

>ǫ if b is chosen sufficiently large.

Now since we already know that y′b > 0 on (0,M) so in particular this inequality is true
on the interval (b/| fǫ(Lǫ)|,M), we see that

y′′′b = fǫ(yb)>0 on
( b

| fǫ(Lǫ)|
,M

)

so that y′′b is increasing on this interval and since y′′b (b/| fǫ(Lǫ)|)>0, this implies y′′b (M)>0.
On the other hand, y′b(M) = 0 and y′b > 0 on (0,M) which implies y′′b (M)≤ 0 and so we
obtain a contradiction. Thus we see that T2,b =∞.
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So we now assume that T2,b =∞ but that yb is not increasing for all t>0. So suppose
there is an M so that y′b >0 on (0,M) and y′b(M)=0. Then repeating the same argument
as at the beginning of the proof of this lemma, we will obtain again a contradiction. Thus
this completes the proof of the lemma.

Now we define

S={b≥0 | T2,b <∞}. (3.3)

It follows that S is nonempty (since 0∈S by Lemma 3.1) and bounded above (by Lemma
3.2). Thus we define

bǫ =supS (3.4)

and note that bǫ ≥0.

Lemma 3.3. ybǫ
(t)>0 for all t. (That is, T2,bǫ

=∞ and hence bǫ >0 by Lemma 3.1).

Proof. Suppose not. Then T2,bǫ
<∞ and so by Lemma 2.2 it follows that ybǫ

is decreasing
on (T2,bǫ

−δ,T2,bǫ
) for some δ>0 and

lim
t→T−

2,bǫ

ybǫ
(t)=0. (3.5)

Since E2,ybǫ
is decreasing (by (1.7b)) we have

Fǫ(ybǫ
)−y′bǫ

y′′bǫ
=E2,ybǫ

(t)≤E2,ybǫ
(0)= Fǫ(Lǫ) for 0≤ t≤T2,bǫ

. (3.6)

Now it follows from (1.4a) and Lemma 2.2 that

lim
t→T−

2,bǫ

Fǫ(ybǫ
(t))=+∞. (3.7)

Therefore since the right hand side of (3.6) is bounded (since ǫ is fixed), it follows that

lim
t→T−

2,bǫ

y′bǫ
(t)y′′bǫ

(t)=+∞.

From this and Lemma 2.2 it follows that there exists a neighborhood of T2,bǫ
, (T2,bǫ

−
δ,T2,bǫ

) (where we decrease the size of the δ chosen at the beginning of the proof if neces-
sary), such that

0<ybǫ
(t)<ǫ, y′bǫ

(t)<0, y′′bǫ
(t)<0 for all t∈ (T2,bǫ

−δ,T2,bǫ
).

Now by Lemma 2.1, it follows that

0<yb <ǫ, y′b <0, y′′b <0 on
(

T2,bǫ
− 2

3
δ,T2,bǫ

− 1

3
δ
)
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if b is sufficiently close to bǫ. If we also require b > bǫ, then T2,b = ∞ (by definition of bǫ)
and so yb(t) > 0 for all t. Let us now denote (T2,bǫ

− 2
3 δ,Ab) as the maximal interval for

which
0<yb <ǫ, y′b <0, y′′b <0. (3.8)

From (1.1) we see that y′′′b <0 on (T2,bǫ
− 2

3 δ,Ab). Thus, 0<yb <ǫ, yb is decreasing, concave

down, and y′′b is decreasing on (T2,bǫ
− 2

3 δ,Ab). Now Ab must be finite for if Ab were infinite
then yb would be decreasing and concave down for t large forcing yb to become zero in a
finite value of t contradicting the fact that yb >0 for all t (since b > bǫ). Thus, Ab is finite.
Thus, either

yb(Ab)=0 or y′b(Ab)=0 or y′′b (Ab)=0. (3.9)

However, since b>bǫ, yb >0 for all t, the first condition is impossible. Also

yb

(

T2,bǫ
− 2

3
δ
)

<ǫ, y′b
(

T2,bǫ
− 2

3
δ
)

<0, y′′b
(

T2,bǫ
− 2

3
δ
)

<0,

and so from (3.8) we see that yb is decreasing, concave down, and y′′b is decreasing on
(T2,bǫ

− 2
3 δ,Ab). Thus

y′b(Ab)<y′b
(

T2,bǫ
− 2

3
δ
)

<0,

and

y′′b (Ab)<y′′b
(

T2,bǫ
− 2

3
δ
)

<0

which contradict (3.9). Thus the assumption that T2,bǫ
<∞ must be false and so T2,bǫ

=∞.
This completes the proof of the lemma.

Lemma 3.4. ybǫ
(t) has a first critical point, m1,ǫ >0, which is a local maximum, and y′bǫ

>0 on
(0,m1,ǫ). Also,

ybǫ
(m1,ǫ)>ǫ, y′′bǫ

(m1,ǫ)<0, (3.10)

and
Fǫ(ybǫ

(m1,ǫ))< Fǫ(Lǫ). (3.11)

Proof. If not then y′bǫ
(t)>0 for all t>0. We will now show that this implies ybǫ

increases
without bound. If not then

lim
t→∞

ybǫ
(t)= Bǫ <∞.

In this case, we see that

lim
t→∞

y′′′bǫ
(t)=

|Bǫ−ǫ| 1
λ

B
1+ 2

λ
ǫ

sgn(Bǫ−ǫ)≡Cǫ. (3.12)

If Bǫ > ǫ then y′′′bǫ
≥Cǫ > 0 for large t and integrating three times we see that this would

imply that ybǫ
would be increasing without bound contradicting the fact that

lim
t→∞

ybǫ
(t)= Bǫ. (3.13)
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On the other hand if 0≤ Bǫ < ǫ then y′′′bǫ
≤Cǫ < 0 for large t and integrating twice we

see that this would imply that ybǫ
is decreasing for large t contradicting the fact that we

are assuming that y′bǫ
(t)>0 for all t>0. Thus it must be Bǫ = ǫ so that y′bǫ

>0 and ybǫ
< ǫ

for all t>0.
Next since y′′bǫ

(0)= bǫ >0, we see that ybǫ
must have a first inflection point pǫ >0 and

y′′bǫ
>0 on (0,pǫ). Then from (1.1) we see that y′′bǫ

is decreasing for t >0 so it follows that
y′′bǫ

<0 for t> pǫ , and it also follows that there is a qǫ > pǫ such that

y′′bǫ
<y′′bǫ

(qǫ)<0 for t>qǫ.

Integrating on (qǫ,t) gives

y′bǫ
<y′bǫ

(qǫ)+y′′bǫ
(qǫ)(t−qǫ)

which implies that y′bǫ
<0 for large enough t which contradicts that y′bǫ

>0 for t>0. Thus,
we see that if y′bǫ

>0 for all t >0 then it must be the case that ybǫ
does not stay bounded

on [0,∞).
In particular, then there is a zǫ > 0 with ybǫ

(zǫ) = ǫ and ybǫ
is increasing for all t > 0.

Thus from (1.1), y′′′bǫ
> 0 for t > zǫ. So there is a qǫ > zǫ and a cǫ > 0 such that y′′′bǫ

> cǫ for
t>qǫ hence

y′′bǫ
(t)>y′′bǫ

(qǫ)+cǫ(t−qǫ) for t>qǫ

and so we see that there is an rǫ such that y′′bǫ
(t) > 0 for t > rǫ. Integrating again we see

that y′bǫ
(t)>0 for t> rǫ and another integration gives that ybǫ

(t)>ǫ for t> rǫ .
Now if b<bǫ and b is sufficiently close to bǫ then by Lemma 2.1 yb >ǫ, y′b>0 and y′′b >0

for rǫ < t < rǫ+1. Then from (1.1) y′′′b > 0 for rǫ < t < rǫ+1. Therefore, yb, y′b, and y′′b are
increasing and yb>ǫ for rǫ<t<rǫ+1 and so we see that these conditions continue to hold
for rǫ < t < ∞, but this contradicts the fact that for b < bǫ, yb must have a zero. Thus we
finally see that ybǫ

cannot be increasing for all t>0 and so we see that there exists m1,ǫ >0
such that

y′bǫ
>0 on (0,m1,ǫ) and y′bǫ

(m1,ǫ)=0.

From calculus, it also follows that y′′bǫ
(m1,ǫ)≤0.

We next claim that ybǫ
(m1,ǫ)>ǫ. First we suppose that ybǫ

(m1,ǫ)<ǫ. Then

E1,ybǫ
(m1,ǫ)≤0 and E′

1,ybǫ
(m1,ǫ)<0

so that since E1,ybǫ
is decreasing (by (1.7a)), we see that E1,ybǫ

<0 for t>m1,ǫ. Thus

0≤ 1

2
(y′bǫ

)2
< (ybǫ

−ǫ)y′′bǫ
for t>m1,ǫ

and since ybǫ
(m1,ǫ)<ǫ we see that

ybǫ
(t)<ǫ for t>m1,ǫ and y′′bǫ

(t)<0 for t>m1,ǫ.
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Since y′bǫ
(m1,ǫ)=0, this implies ybǫ

(t) will become 0 at some finite value of t contradicting
Lemma 3.3. Thus we see that ybǫ

(m1,ǫ)≥ǫ.
Next we suppose that ybǫ

(m1,ǫ)=ǫ. In this case either

y′′bǫ
(m1,ǫ)=0 or y′′bǫ

(m1,ǫ)<0.

If y′′bǫ
(m1,ǫ)<0 then ybǫ

<ǫ on (m1,ǫ,m1,ǫ+δ) for some δ>0. Hence E′
1,ybǫ

<0 on (m1,ǫ,m1,ǫ+

δ) and by (1.7a) since E1,ybǫ
(m1,ǫ) = 0 we see that E1,ybǫ

(t) < 0 for t > m1,ǫ. Then as in
the previous paragraph this implies ybǫ

(t) will become 0 at some finite value of t again
contradicting Lemma 3.3.

Finally, we suppose that ybǫ
(m1,ǫ) = ǫ and y′′bǫ

(m1,ǫ) = 0. Since ybǫ
(t) < ǫ for 0 < t <

m1,ǫ, we have y′′′bǫ
(t)< 0 for 0< t < m1,ǫ . Thus, y′′bǫ

(t) is decreasing for 0< t < m1,ǫ . Since
y′′bǫ

(m1,ǫ)=0 this implies y′′bǫ
>0 for 0<t<m1,ǫ. However, the mean value theorem implies

that there exists a c with 0< c<m1,ǫ such that

0=y′bǫ
(m1,ǫ)−y′bǫ

(0)=y′′bǫ
(c)m1,ǫ

which contradicts with y′′bǫ
>0 for 0< t<m1,ǫ.

Thus we demonstrate that ybǫ
(m1,ǫ)>ǫ.

Next we show that y′′bǫ
(m1,ǫ) < 0. From calculus it follows that y′′bǫ

(m1,ǫ)≤ 0. so we
assume now by way of contradiction that y′′bǫ

(m1,ǫ)=0. This implies that E1,ybǫ
(m1,ǫ)=0.

Also, since ybǫ
(m1,ǫ)>ǫ we see that E′

1,ybǫ
(m1,ǫ)<0 and since E1,ybǫ

is decreasing (by (1.7a))

we see that
1

2
(y′bǫ

)2−(ybǫ
−ǫ)y′′bǫ

=E1,ybǫ
<0 for t>m1,ǫ.

Thus there is a δ >0 such that E1,ybǫ
<0 for t≥m1,ǫ +δ. Thus for b < bǫ and b sufficiently

close to bǫ we also have E1,yb
<0 for t≥m1,ǫ+δ.

Also, perhaps by choosing a smaller δ if necessary, we see that

y′bǫ
>0 on (0,m1,ǫ−δ] and ybǫ

>ǫ on [m1,ǫ−δ,m1,ǫ+δ].

So by Lemma 2.1 and since bǫ >0, if b is sufficiently close to bǫ then y′b >0 on (0,m1,ǫ−δ]
and yb > ǫ on [m1,ǫ−δ,m1,ǫ+δ]. Now if we choose b > bǫ, then by definition of bǫ we
see there exists an rb > m1,ǫ+δ such that yb(rb)= 0. Therefore by the intermediate value
theorem there is a zb with m1,ǫ+δ< zb < rb such that yb(zb)=ǫ. Hence

E1,yb
(zb)=

1

2
[y′b(zb)]

2≥0.

On the other hand, we know from earlier that since zb > m1,ǫ+δ then E1,yb
(zb)<0. Thus

we obtain a contradiction. Therefore it must be that y′′bǫ
(m1,ǫ)<0.

Finally, since E2,ybǫ
is decreasing (by (1.7b)) and E′

2,ybǫ
(0)<0 we have

E2,ybǫ
(m1,ǫ)<E2,ybǫ

(0)

and hence (3.11) holds. This completes the proof of the lemma.
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Lemma 3.5. ybǫ
(t) has a second critical point at m2,ǫ >0 which is a local minimum, and y′bǫ

<0
on (m1,ǫ,m2,ǫ). Also,

ybǫ
(m2,ǫ)<ǫ and y′′bǫ

(m2,ǫ)>0 (3.14)

and
Fǫ(ybǫ

(m2,ǫ))< Fǫ(ybǫ
(m1,ǫ)). (3.15)

Proof. The proof of this lemma is nearly identical to the proof of Lemma 3.4 and we omit
it here.

In order to simplify notation a bit we now write E1,ǫ,E2,ǫ, and E3,ǫ instead of E1,ybǫ
,

E2,ybǫ
, and E3,ybǫ

, respectively.
Continuing in this way we see that there is a sequence of extrema with

m1,ǫ <m2,ǫ <m3,ǫ <m4,ǫ < ···

such that the m2k,ǫ are local minima, the m2k−1,ǫ are local maxima, y is monotone of
(mn,ǫ,mn+1,ǫ), and since E2,ǫ is decreasing, we have

Fǫ(ybǫ
(mk+1,ǫ))< Fǫ(ybǫ

(mk,ǫ)).

Note that this implies

ybǫ
(m2k,ǫ)<ybǫ

(m2k+2,ǫ)<ǫ and ǫ<ybǫ
(m2k+1,ǫ)<ybǫ

(m2k−1,ǫ). (3.16)

We now let
Mǫ = lim

n→∞
mn,ǫ (3.17)

and note that Mǫ ≤∞.

Lemma 3.6. ybǫ
(t) oscillates infinitely often, and

lim
t→M−

ǫ

ybǫ
(t)=ǫ, lim

t→M−
ǫ

y′bǫ
(t)=0, lim

t→M−
ǫ

y′′bǫ
(t)=0.

Proof. We have 0≡m0,ǫ <m1,ǫ <m2,ǫ <m3,ǫ < ··· and

Fǫ(Lǫ)> Fǫ(ybǫ
(m1,ǫ))> Fǫ(ybǫ

(m2,ǫ))> Fǫ(ybǫ
(m3,ǫ))> ··· .

Also, there exists zk,ǫ such that

0< z1,ǫ <m1,ǫ < z2,ǫ <m2,ǫ < z3,ǫ < ··· , ybǫ
(zn,ǫ)=ǫ, lim

n→∞
zn,ǫ = Mǫ.

Next we observe that since y′bǫ
(mk)=y′bǫ

(mk+1)=0 the extrema of y′bǫ
on (mk,ǫ,mk+1,ǫ)

must occur at points p where y′′bǫ
(p)=0 so

1

2
[y′bǫ

(p)]2 =E1,ǫ(p)≤E1,ǫ(0)=(ǫ−Lǫ)bǫ.
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Thus for every k≥0

|y′bǫ
(t)|≤

√

2(ǫ−Lǫ)bǫ ≡Kǫ on [mk,ǫ,mk+1,ǫ].

Then since mk,ǫ →Mǫ as k→∞ we obtain

|y′bǫ
(t)|≤

√

2(ǫ−Lǫ)bǫ≡Kǫ on [0,Mǫ]. (3.18)

Next, since E1,ǫ is decreasing, E1,ǫ(zk,ǫ)= 1
2 [y′bǫ

(zk,ǫ)]
2≥0, and zk,ǫ →Mǫ we see that

lim
t→M−

ǫ

E1,ǫ(t)= e1,ǫ ≥0. (3.19)

Integrating (1.7a) on (0,t) we obtain

E1,ǫ(t)=(ǫ−Lǫ)bǫ−
∫ t

0
(ybǫ

−ǫ) fǫ(ybǫ
).

Using (3.19) and taking limits as t→M−
ǫ give

(ǫ−Lǫ)bǫ = e1,ǫ+
∫ Mǫ

0
(ybǫ

−ǫ) fǫ(ybǫ
).

Thus we see that
∫ Mǫ

0
(ybǫ

−ǫ) fǫ(ybǫ
) is finite. (3.20)

We have y′′′bǫ
>0 on (z1,ǫ,m1,ǫ) so that y′′bǫ

is increasing on (z1,ǫ,m1,ǫ). Also from Lemma 3.4
we know that y′′bǫ

(m1,ǫ)<0 therefore it follows that y′′bǫ
<0 on (z1,ǫ,m1,ǫ). Therefore, ybǫ

is
concave down on (z1,ǫ,m1,ǫ) and so it follows that

ybǫ
−ǫ≥ ybǫ

(m1,ǫ)−ǫ

m1,ǫ−z1,ǫ
(t−z1,ǫ) on (z1,ǫ,m1,ǫ). (3.21)

Similarly, since y′′bǫ
>0 on (z2,ǫ,m2,ǫ) we see that

ybǫ
−ǫ≤ ybǫ

(m2,ǫ)−ǫ

m2,ǫ−z2,ǫ
(t−z2,ǫ) on (z2,ǫ,m2,ǫ). (3.22)

Thus, it follows from (3.21) that

∫ m1,ǫ

z1,ǫ

(ybǫ
−ǫ) f (ybǫ

)dt=
∫ m1,ǫ

z1,ǫ

|ybǫ
−ǫ|1+ 1

λ

y
1+ 2

λ

bǫ

dt

≥ 1

ybǫ
(m1,ǫ)

1+ 2
λ

|ybǫ
(m1,ǫ)−ǫ

m1,ǫ−z1,ǫ
|1+ 1

λ

∫ m1,ǫ

z1,ǫ

(t−z1,ǫ)
1+ 1

λ dt

=
λ

2λ+1

|ybǫ
(m1,ǫ)−ǫ|1+ 1

λ

ybǫ
(m1,ǫ)

1+ 2
λ

(m1,ǫ−z1,ǫ).
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Also, by the mean value theorem and (3.18) we have

|ybǫ
(m1,ǫ)−ǫ|= |ybǫ

(m1,ǫ)−ybǫ
(z1,ǫ)|

= |y′bǫ
(c1,ǫ)||(m1,ǫ−z1,ǫ)|≤Kǫ|m1,ǫ−z1,ǫ|.

Thus
∫ m1,ǫ

z1,ǫ

(ybǫ
−ǫ) fǫ(ybǫ

)≥ λ|ybǫ
(m1,ǫ)−ǫ|2+ 1

λ

(2λ+1)Kǫybǫ
(m1,ǫ)

1+ 2
λ

. (3.23)

A similar inequality holds over (z2,ǫ,m2,ǫ) and thus

∫ m2,ǫ

z2,ǫ

(ybǫ
−ǫ) fǫ(ybǫ

)≥ λ|ybǫ
(m2,ǫ)−ǫ|2+ 1

λ

(2λ+1)Kǫybǫ
(m2,ǫ)1+ 2

λ

.

Now using (3.16) we see that

∫ m2,ǫ

z2,ǫ

(ybǫ
−ǫ) fǫ(ybǫ

)≥ λ|ybǫ
(m2,ǫ)−ǫ|2+ 1

λ

(2λ+1)Kǫybǫ
(m1,ǫ)

1+ 2
λ

.

Similarly we can show

∫ mk,ǫ

zk,ǫ

(ybǫ
−ǫ) fǫ(ybǫ

)≥ λ|ybǫ
(mk,ǫ)−ǫ|2+ 1

λ

(2λ+1)Kǫybǫ
(m1,ǫ)

1+ 2
λ

. (3.24)

Next using (3.20) and the fact that (ybǫ
−ǫ) fǫ(ybǫ

)≥0 for all t we obtain

∞>

∫ M,ǫ

0
(ybǫ

−ǫ) fǫ(ybǫ
)dt

≥
∞

∑
k=1

∫ mk,ǫ

zk,ǫ

(ybǫ
−ǫ) fǫ(ybǫ

)dt

≥ λ

(2λ+1)Kǫybǫ
(m1,ǫ)

1+ 2
λ

∞

∑
k=1

|ybǫ
(mk,ǫ)−ǫ|2+ 1

λ .

Thus
∞

∑
k=1

|ybǫ
(mk,ǫ)−ǫ|2+ 1

λ <∞.

Consequently,
lim
k→∞

|ybǫ
(mk,ǫ)−ǫ|=0

and since mk,ǫ →M−
ǫ and the mk,ǫ are extrema of ybǫ

we see that

lim
t→M−

ǫ

|ybǫ
(t)−ǫ|=0. (3.25)
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Then by (1.1) we obtain
lim

t→M−
ǫ

y′′′bǫ
(t)=0. (3.26)

We also know that E′
2,ǫ ≤0 (by (1.7b)) and by (1.7c) and (3.25) we know that E′

3,ǫ ≤0 for t
close to Mǫ so that

lim
t→M−

ǫ

E2,ǫ(t)= e2,ǫ, lim
t→M−

ǫ

E3,ǫ(t)= e3,ǫ. (3.27)

Also since E2,ǫ(mk,ǫ)≥0 and E3,ǫ(mk,ǫ)≥0 and since mk,ǫ →Mǫ we see that

e2,ǫ ≥0 and e3,ǫ ≥0. (3.28)

From (3.18) and (3.25) it follows that

fǫ(ybǫ
)ybǫ

→0 as t→M−
ǫ .

Combining this with (3.27) we see that

lim
t→M−

ǫ

1

2
(y′′bǫ

)2 = e3,ǫ.

Since y′bǫ
is bounded (by (3.18)) we see that the only possibility is that e3,ǫ =0 thus

lim
t→M−

ǫ

y′′bǫ
=0. (3.29)

Now using (3.19), (3.25), and (3.29) we see that

lim
t→M−

ǫ

1

2
(y′bǫ

)2 = lim
t→M−

ǫ

E1,ǫ = e1,ǫ. (3.30)

Since ybǫ
is bounded (by (3.25)) we see that the only possibility is that e1,ǫ =0 and so

lim
t→M−

ǫ

y′bǫ
(t)=0. (3.31)

Using (3.25), (3.29), and (3.31) completes the proof of the lemma.

One final note, if Mǫ <∞ then since

lim
t→M−

ǫ

ybǫ
(t)=ǫ, lim

t→M−
ǫ

y′bǫ
(t)=0, lim

t→M−
ǫ

y′′bǫ
(t)=0,

we see that we may extend ybǫ
(t) for t≥Mǫ by simply defining

ybǫ
(t)≡ǫ for t≥Mǫ.

Then whether Mǫ <∞ or Mǫ =∞ we see that

lim
t→∞

ybǫ
(t)=ǫ.
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4 Determination of lim
ǫ→0

ybǫ(t)

Lemma 4.1. Let Lǫ be defined by (1.5). Then

Lǫ = L1ǫ where 0< L1 <1. (4.1)

Proof. First we denote

I =
∫ ∞

1

(t−1)
1
λ

t1+ 2
λ

dt. (4.2)

Next, by definition we have

Fǫ(y)=
∫ y

ǫ

|s−ǫ| 1
λ sgn(s−ǫ)

s1+ 2
λ

ds.

Making the change of variables s=ǫt we obtain

Fǫ(y)=ǫ−
1
λ F1(y/ǫ). (4.3)

Hence, by (1.4b), (4.2), and (4.3) we see that

Fǫ,∞ = lim
y→∞

Fǫ(y)=ǫ−
1
λ

∫ ∞

1

(t−1)
1
λ

t1+ 2
λ

dt=ǫ−
1
λ I.

Also, by the statement after (1.4b) and (4.3) we see that

ǫ−
1
λ

∫ 1

Lǫ
ǫ

(1−t)
1
λ

t1+ 2
λ

dt= Fǫ(Lǫ)= Fǫ,∞ =ǫ−
1
λ I.

So we see from (4.2) and the above line that

∫ ∞

1

(t−1)
1
λ

t1+ 2
λ

dt= I =
∫ 1

Lǫ
ǫ

(1−t)
1
λ

t1+ 2
λ

dt,

which implies that Lǫ/ǫ is independent of ǫ since I does not depend on ǫ (by (4.2)). Thus
Lǫ/ǫ= L1. Also, from the statement after (1.4b) we see that 0< Lǫ <ǫ and thus 0< L1 <1.
This completes the proof of the lemma.

Lemma 4.2. If

b> [3 f 2
ǫ (Lǫ)(ǫ−Lǫ)]

1
3 , (4.4)

then yb(t)>0 for all t≥0 (and thus b 6∈S (see (3.3))). Hence,

bǫ ≤ [3 f 2
ǫ (Lǫ)(ǫ−Lǫ)]

1
3 . (4.5)
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Proof. Since
yb(0)= Lǫ, y′b(0)=0, y′′b (0)=b>0,

it follows that yb(t) is initially increasing and so yb(t)> Lǫ on (0,δ) for some δ>0. So on
this interval we have

y′′′b > fǫ(Lǫ).

Successively integrating on (0,t] we get

y′′b >b+t fǫ(Lǫ), y′b >bt+
t2 fǫ(Lǫ)

2
, yb > Lǫ+

bt2

2
+

t3 fǫ(Lǫ)

6
.

Next, we observe that

y′b >0, y′′b >0 for 0< t≤ b

| fǫ(Lǫ)|
.

From the inequality for yb and (4.4) we see that

yb

( b

| fǫ(Lǫ)|
)

> Lǫ+
b3

3| fǫ(Lǫ)|2
> Lǫ+ǫ−Lǫ =ǫ.

Then since

y′b
( b

| fǫ(Lǫ)|
)

>0, y′′b
( b

| fǫ(Lǫ)|
)

>0,

it follows from (1.1) that

y′′′b

( b

| fǫ(Lǫ)|
)

>0.

This in fact implies hence y′b >0 and y′′b >0 for all t>b/| fǫ(Lǫ)| so that in fact yb(t)>0 for
all t≥0. This completes the proof of the lemma.

Lemma 4.3.

bǫ ≤
Q

ǫ
1
3 + 2

3λ

where Q=

(

3(1−L1)
1+ 2

λ

L
2+ 4

λ

1

)
1
3

.

Proof. We know that Lǫ = L1ǫ by Lemma 4.1 so that

| fǫ(Lǫ)|= | fǫ(L1ǫ)|= (1−L1)
1
λ

L
1+ 2

λ
1

1

ǫ1+ 1
λ

.

Substituting this equation and that Lǫ = L1ǫ into the consequence of Lemma 4.2 we see
that

b3
ǫ ≤3 f 2

ǫ (Lǫ)(ǫ−Lǫ)=
3(1−L1)

2
λ

L
2+ 4

λ

1

1

ǫ2+ 2
λ

(1−L1)ǫ=
Q3

ǫ1+ 2
λ

.

Taking cube roots we see that this completes the proof of the lemma.
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Lemma 4.4. ybǫ
→0 and y′bǫ

→0 uniformly on compact subsets of [0,∞).

Proof. Since E1,ǫ is decreasing by (1.7a), for t≥0 we have by Lemma 4.3 that

1

2
(y′bǫ

)2−(ybe
−ǫ)y′′bǫ

=E1,ǫ≤E1,ǫ(0)=(ǫ−Lǫ)bǫ ≤ǫbǫ ≤Qǫ
2
3 (1− 1

λ ). (4.6)

Also, since
y′bǫ

(0)=0 and lim
t→M−

ǫ

y′bǫ
(t)=0 (by Lemma 3.6)

we see that the maximum of |y′bǫ
| occurs at some point p where y′′bǫ

(p) = 0. Evaluating
(4.6) at p gives

1

2
(y′bǫ

(p))2 ≤Qǫ
2
3 (1− 1

λ ).

Thus
|y′bǫ

(t)|≤
√

2Qǫ
1
3 (1− 1

λ ) for all t≥0.

Consequently,
|y′bǫ

(t)|→0 uniformly on [0,∞).

Now letting P>0 and integrating on [0,P] we see that

|ybǫ
(t)−Lǫ|≤P

√

2Qǫ
1
3 (1− 1

λ )

and since Lǫ → 0 as ǫ→ 0 (by Lemma 4.1) we see that ybǫ
(t)→ 0 uniformly on compact

subsets of [0,∞). This completes the proof of the lemma.

We now investigate the behavior of ybǫ
(t) as t→−∞. From Lemma 2.3 we know that

y′bǫ
(t)<0, y′′bǫ

(t)>0 for t<0 and lim
t→−∞

ybǫ
(t)=∞.

Thus, for t sufficiently negative we have that

ybǫ
(t)>

(

1+
1

λ+1

)

ǫ

and thus by (1.7c) E′
3,ǫ ≥0 if t is sufficiently negative. Thus, there exists t0,ǫ <0 such that

E3,ǫ(t)≤E3,ǫ(t0,ǫ) for t< t0,ǫ. Thus,

1

2
(y′′bǫ

)2− fǫ(ybǫ
)y′bǫ

≤E3,ǫ(t0,ǫ) for t< t0,ǫ.

Since y′bǫ
<0 for t<0 and ybǫ

> (1+ 1
λ+1)ǫ>ǫ for t< t0,ǫ we see that

0≤ 1

2
(y′′bǫ

)2≤E3,ǫ(t0,ǫ), 0≤− fǫ(ybǫ
)y′bǫ

≤E3,ǫ(t0,ǫ) for t< t0,ǫ.
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Thus E3,ǫ(t)≥0 for t< t0,ǫ and since E3,ǫ(t) is increasing for t< t0,ǫ it follows that

lim
t→−∞

E3,ǫ(t)= e3,ǫ ≥0.

Since y′′′bǫ
= fǫ(ybǫ

)>0 for t< t0,ǫ, we see that y′′bǫ
is increasing for t< t0,ǫ and since we also

have y′′bǫ
>0 for t<0, it follows that

lim
t→−∞

y′′bǫ
(t)= Aǫ ≥0.

Combining this with the fact that E3,ǫ has a limit as t→−∞ it follows that

lim
t→−∞

− fǫ(ybǫ
)y′bǫ

=Gǫ≥0.

Lemma 4.5.

lim
t→−∞

fǫ(ybǫ
)y′bǫ

=0.

Proof. Suppose that Gǫ >0. Then there exists a sufficiently negative t1,ǫ such that

− fǫ(ybǫ
)y′bǫ

≥ Gǫ

2
for t< t1,ǫ.

Therefore
∫ t1,ǫ

t
− fǫ(ybǫ

)y′bǫ
ds≥

∫ t1,ǫ

t

Gǫ

2
ds

so that

∞> Fǫ,∞≥Fǫ(ybǫ
(t))≥−Fǫ(ybǫ

(t1,ǫ))+Fǫ(ybǫ
(t))≥ Gǫ

2
(t1,ǫ−t) for t< t1,ǫ.

However, as t→−∞ the right hand side goes to ∞ as t→−∞ which is a contradiction
to the above inequality. Hence it must be that Gǫ = 0. This completes the proof of the
lemma.

Lemma 4.6.

lim
t→−∞

−y′bǫ√
ybǫ

−ǫ
=

√

2Aǫ.

Proof. Since E′
1,ǫ ≤ 0 and E1,ǫ(0) = (ǫ−Lǫ)bǫ ≥ 0, it follows that E1,ǫ ≥ 0 for t ≤ 0. Since

y′bǫ
(t)<0 for t<0 and ybǫ

(t)>ǫ for t sufficiently negative we see that

( −y′bǫ√
ybǫ

−ǫ

)′
=

E1,ǫ

(ybǫ
−ǫ)

3
2

>0

for t sufficiently negative. Thus the function within the bracket above is positive and
increasing for t sufficiently negative. Consequently,

lim
t→−∞

−y′bǫ√
ybǫ

−ǫ
=Vǫ ≥0.
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Also, since

0≤E1,ǫ =
1

2
(y′bǫ

)2−(ybǫ
−ǫ)y′′bǫ

for t<0

and ybǫ
(t)>ǫ, for t sufficiently negative we have

(y′bǫ
)2

ybǫ
−ǫ

≥2y′′bǫ
.

Taking limits as t→−∞ we obtain V2
ǫ ≥ 2Aǫ. Thus, if Vǫ = 0 then Aǫ = 0. If Vǫ > 0, then

since ybǫ
(t)→∞ as t→−∞ then also −y′bǫ

→∞ as t→−∞. Thus we may apply L’Hopital’s
rule and obtain

V2
ǫ = lim

t→−∞

(y′bǫ
)2

ybǫ
−ǫ

= lim
t→−∞

2y′bǫ
y′′bǫ

y′bǫ

=2Aǫ.

Thus in all cases we obtain Vǫ =
√

2Aǫ. This completes the proof of the lemma.

We now define

wǫ(t)=
1

ǫ
ybǫ

(

ǫ
2λ+1

3λ t
)

(4.7)

and observe that wǫ satisfies

wǫ(t)

|t| 3λ
2λ+1

=
ybǫ

(s)

|s| 3λ
2λ+1

,
w′

ǫ(t)

|t| λ−1
2λ+1

=
y′bǫ

(s)

|s| λ−1
2λ+1

, |t| λ+2
2λ+1 w′′

ǫ (t)= |s| λ+2
2λ+1 y′′bǫ

(s), (4.8)

where s=ǫ
2λ+1

3λ t. Also, we see that wǫ satisfies

w′′′
ǫ =

|wǫ−1| 1
λ

w
1+ 2

λ
ǫ

sgn(wǫ−1)= f1(wǫ), (4.9)

wǫ(0)=
Lǫ

ǫ
= L1 by Lemma 4.1,

w′
ǫ(0)=0, w′′

ǫ (0)=ǫ
1
3 + 2

3λ bǫ.

We also define

Ẽ1,ǫ =
1

2
(w′

ǫ)
2−(wǫ−1)w′′

ǫ , Ẽ2,ǫ = F1(wǫ)−w′
ǫw′′

ǫ , (4.10)

Ẽ3,ǫ =
1

2
(w′′

ǫ )2− f1(wǫ)w′
ǫ. (4.11)

Note that

Ẽ′
1,ǫ =−(wǫ−1)w′′′

ǫ =−(wǫ−1) f1(wǫ)=−|wǫ−1|1+ 1
λ

w
1+ 2

λ
ǫ

≤0, (4.12)

Ẽ′
2,ǫ =−(w′′

ǫ )2≤0, (4.13)

Ẽ′
3,ǫ =− f ′1(wǫ)(w′

ǫ)
2 (4.14)
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so that

Ẽ′
3,ǫ ≤0 for 0<wǫ ≤1+

1

λ+1
and Ẽ′

3,ǫ≥0 for wǫ≥1+
1

λ+1
.

In Lemma 4.3 we showed that ǫ
1
3 + 2

3λ bǫ ≤Q, where Q is independent of ǫ. Thus there
is a subsequence of the ǫ (still denoted ǫ) such that

lim
ǫ→0

ǫ
1
3 + 2

3λ bǫ = c0≥0

and for which wǫ converges uniformly on compact sets to w0 and w0 satisfies

w′′′
0 =

|w0−1| 1
λ

w
1+ 2

λ
0

sgn(w0−1)= f1(w0), (4.15a)

w0(0)= L1, w′
0(0)=0, w′′

0 (0)= c0 ≥0. (4.15b)

We note in fact that c0 > 0 for if c0 = 0 then since w′′′
0 (0)< 0 we see that w′′

0 is decreasing
near t=0 so that w′′

0 <0 for t>0 and t small. From (4.10) it follows that w0 continues to be
concave down and decreasing so that w0 becomes 0 at some finite value of t, say t0. Since
wǫ→w0 uniformly on compact sets and since wǫ >0 (since ybǫ

>0 by Lemma 3.3) then wǫ

must have a local minimum, tǫ, near t0 and wǫ(tǫ)<L1. However, this implies from (4.13)

F1(wǫ(tǫ))= Ẽ2,ǫ(tǫ)≤ Ẽ2(0)= F1(L1).

On the other hand, since 0<wǫ(tǫ)<L1 and F1 is decreasing on (0,L1) we have F1(wǫ(tǫ))>
F1(L1) which is a contradiction. Thus c0 >0.

Lemma 4.7.

lim
t→−∞

w′′
ǫ (t)=0 for ǫ>0.

Proof. From Lemma 2.3 it follows that y′bǫ
<0 and y′′bǫ

>0 for t<0 and also that ybǫ
→∞ as

t→−∞. Hence from (4.7) we see that w′
ǫ <0 and w′′

ǫ >0 for t<0 and also that wǫ→∞ as
t→−∞. Thus, w′

0≤0, w′′
0 ≥0, and w0→∞ as t→−∞.

Thus from (4.14) we see that Ẽ′
3,ǫ ≥ 0 for t sufficiently negative. Thus Ẽ3,ǫ defined by

(4.11) is increasing for t sufficiently negative and since − f1(wǫ)w′
ǫ ≥ 0 for t sufficiently

negative we see that 0≤ 1
2(w′′

ǫ )2 and 0≤− f1(wǫ)w′
ǫ are both bounded above for t suffi-

ciently negative. Also, w′′′
ǫ >0 for t sufficiently negative and since w′′

ǫ >0 for t sufficiently
negative, it follows that

lim
t→−∞

w′′
ǫ (t)= Hǫ for some Hǫ ≥0.

Assume now by the way of contradiction that Hǫ >0. Then it follows that

lim
t→−∞

w′
ǫ =−∞
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and it follows then from L’Hopital’s rule that

lim
t→−∞

w′
ǫ(t)

t
= Hǫ, lim

t→−∞

wǫ(t)

t2
=

Hǫ

2
, lim

t→−∞

(w′
ǫ)

2

wǫ−1
=2Hǫ. (4.16)

Integrating (4.9) for t sufficiently negative when wǫ≥1 we obtain

w′′
ǫ −Hǫ =

∫ t

−∞

[wǫ−1]
1
λ

w
1+ 2

λ
ǫ

dt=
∫ t

−∞

1

w
1+ 1

λ
ǫ

(

1− 1

wǫ

)
1
λ

dt.

Using L’Hopital’s rule and (4.16) it follows that

lim
t→−∞

|t|1+ 2
λ [w′′

ǫ −Hǫ]=
λ

λ+2

( 2

Hǫ

)1+ 1
λ
. (4.17)

Also, we know from (4.12) that Ẽ1,ǫ defined by (4.10) satisfies

Ẽ′
1,ǫ =−|wǫ−1|1+ 1

λ

w
1+ 2

λ
ǫ

=− 1

w
1
λ
ǫ

∣

∣

∣
1− 1

wǫ

∣

∣

∣

1+ 1
λ

and so integrating on (t,0) gives:

Ẽ1,ǫ =
1

2
(w′

ǫ)
2−(wǫ−1)w′′

ǫ = Ẽ1,ǫ(0)+
∫ 0

t

1

w
1
λ
ǫ

∣

∣

∣
1− 1

wǫ

∣

∣

∣

1
λ +1

dt.

We now first consider the case where 1 < λ < 2. The integral on the right converges as
t→−∞ since limt→−∞ wǫ/t2 = Hǫ/2 and λ<2 (by (1.3)). Thus, Ẽ1,ǫ(t)→ Jǫ for some Jǫ as
t→−∞ and thus for t sufficiently negative

1

2
(w′

ǫ)
2−(wǫ−1)w′′

ǫ − Jǫ =−
∫ t

−∞

1

w
1
λ
ǫ

(

1− 1

wǫ

)
1
λ +1

dt.

Also, since wǫ(0)= L1 <1 and wǫ→∞ as t→−∞ it follows then that there exists a t1,ǫ <0
such that wǫ(t1,ǫ)=1. Then we see since Ẽ′

1,ǫ≤0 (by (4.12)) that

Jǫ ≥ Ẽ1,ǫ(t1,ǫ)=
1

2
(w′

ǫ(t1,ǫ))
2≥0.

Thus
Jǫ ≥0. (4.18)

Moreover, by L’Hopital’s rule it follows that

lim
t→−∞

|t| 2
λ−1

(1

2
(w′

ǫ)
2−(wǫ−1)w′′

ǫ − Jǫ

)

=− λ

2−λ

( 2

Hǫ

)
1
λ
. (4.19)
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Combining (4.17) and (4.19) we obtain

lim
t→−∞

|t| 2
λ−1

(1

2
(w′

ǫ)
2−Hǫwǫ−(Jǫ−Hǫ)

)

=− 2λ2

4−λ2

( 2

Hǫ

)
1
λ
. (4.20)

It follows from (4.20) that

lim
t→−∞

(1

2
(w′

ǫ)
2−Hǫwǫ−(Jǫ−Hǫ)

)

=0. (4.21)

We also know that when wǫ >1

(

− w′
ǫ√

wǫ−1

)′
=

Ẽ1,ǫ

(wǫ−1)
3
2

and since Ẽ1,ǫ → Jǫ as t→−∞ we see that

lim
t→−∞

[

(wǫ−1)
3
2

(

− w′
ǫ√

wǫ−1

)′]
= Jǫ

and from the second result of (4.16) it follows that

lim
t→−∞

[

t3
(

− w′
ǫ√

wǫ−1

)′]
=

2
√

2Jǫ

H
3
2
ǫ

.

Using (4.16) again and applying L’Hopital’s rule we see that

lim
t→−∞

[

t2
( w′

ǫ√
wǫ−1

+
√

2Hǫ

)

]

=

√
2Jǫ

H
3
2
ǫ

. (4.22)

Now let δ>0. Then for t sufficiently negative we have by (4.22)

0≤−w′
ǫ ≤

[√
2Hǫ +

(−
√

2Jǫ

H
3
2
ǫ

+δ
) 1

t2

]

√

wǫ−1.

Squaring both sides and simplifying we obtain

1

2
(w′

ǫ)
2≤Hǫ(wǫ−1)+

√
2Hǫ(wǫ−1)

t2

(−
√

2Jǫ

H
3
2
ǫ

+δ
)

+
1

2

(−
√

2Jǫ

H
3
2
ǫ

+δ
)2 (wǫ−1)

t4

and then

1

2
(w′

ǫ)
2−Hǫwǫ−(Jǫ−Hǫ)

≤
√

2Hǫ(wǫ−1)

t2

(−
√

2Jǫ

H
3
2
ǫ

+δ
)

+
1

2

(−
√

2Jǫ

H
3
2
ǫ

+δ
)2 wǫ−1

t4
− Jǫ. (4.23)
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Taking limits in (4.23) using (4.16) and (4.22) yields

0≤−2Jǫ +
H

3
2
ǫ√
2

δ.

This along with (4.18) gives

0≤ Jǫ ≤
H

3
2
ǫ

2
√

2
δ.

Finally, since δ>0 is arbitrary we see therefore that Jǫ =0.

Therefore limt→−∞ Ẽ1,ǫ =0 but since Ẽ′
1,ǫ≤0 and Ẽ1,ǫ(t1,ǫ)≥0 it follows that Ẽ1,ǫ≡0 on

(−∞,t1,ǫ). Thus

−|wǫ−1|1+ 1
λ

w
1+ 2

λ
ǫ

= Ẽ′
1,ǫ≡0 on (−∞,t1,ǫ)

and thus wǫ≡1 on (−∞,t1,ǫ) contradicting that

lim
t→−∞

wǫ

t2
=

Hǫ

2
>0.

Hence it must be the case that Hǫ=0 completing the proof of the lemma in the case where
1<λ<2.

We now consider the case where λ≥2. We see from (4.16) and the equation after (4.17)
that if λ≥2 then

lim
t→−∞

Ẽ1,ǫ =∞. (4.24)

Next, we see that

1

2
(w′

ǫ)
2−Hǫ(wǫ−1)= Ẽ1,ǫ+(wǫ−1)(w′′

ǫ −Hǫ).

Using (4.17) w′′
ǫ −Hǫ ≥0 for sufficiently negative t and (4.24), we obtain

lim
t→−∞

1

2
(w′

ǫ)
2−Hǫ(wǫ−1)=∞. (4.25)

Also from the equation after (4.21) we see that

(

− w′
ǫ√

wǫ−1

)′
=

Ẽ1,ǫ

(wǫ−1)
3
2

,

which gives

lim
t→−∞

[

(wǫ−1)
3
2

(

− w′
ǫ√

wǫ−1

)′]
=∞.
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Also it follows from the second result of (4.16) that

lim
t→−∞

[

t3
(

− w′
ǫ√

wǫ−1

)′]
=∞.

Then by L’Hopital’s rule we see that

lim
t→−∞

[

t2
( w′

ǫ√
wǫ−1

+
√

2Hǫ

)

]

=∞. (4.26)

For M>0 large and t sufficiently negative we see from (4.26) that

0≤−w′
ǫ ≤

(√
2Hǫ−

M

t2

)

√

wǫ−1.

Squaring both sides and rewriting gives

1

2
(w′

ǫ)
2−Hǫ(wǫ−1)≤−M

√
2Hǫ

(wǫ−1

t2

)

+
M2

2t2

(wǫ−1

t2

)

.

However, as t→−∞ the left hand side goes to ∞ by (4.25) and by (4.16) the right hand
side goes to −MH3/2

ǫ /
√

2≤ 0. This is a contradiction. As a result, if λ≥ 2, then it also
must have Hǫ =0. This completes the proof of the lemma.

Lemma 4.8. There are constants c1>0 and c2>0 with c1,c2 independent of ǫ and c1,ǫ>0, c2,ǫ>0
with

lim
ǫ→0

c1,ǫ = lim
ǫ→0

c2,ǫ =0

such that
ybǫ

(s)

|s| 3λ
2λ+1

≥ c1 on (−∞,−c1,ǫ);
−y′bǫ

(s)

|s| λ−1
2λ+1

≥ c2 on (−∞,−c2,ǫ).

Proof. Recall that
Ẽ′

2,ǫ =(F1(wǫ)−w′
ǫw′′

ǫ )′=−(w′′
ǫ )2≤0.

Integrating on (t,0) and using (4.3) gives for t<0
∫ ∞

1
f1(s)ds= F1,∞ = F1(L1)≤F1(wǫ)−w′

ǫw′′
ǫ =

∫ wǫ

1
f1(s)ds−w′

ǫw′′
ǫ .

Thus
∫ ∞

wǫ

f1(s)ds≤−w′
ǫw′′

ǫ . (4.27)

Recall from the remark at the beginning of Lemma 4.7 that limt→−∞ wǫ = ∞ and along
with the fact that wǫ(0)=L1 <1 we see that there exists t2,ǫ <0 such that wǫ(t2,ǫ)=2. Thus
for t< t2,ǫ we have

∫ ∞

wǫ

f1(s)ds=
∫ ∞

wǫ

|s−1| 1
λ

s1+ 2
λ

ds≥ 1

2
1
λ

∫ ∞

wǫ

1

s1+ 1
λ

ds=
λ

2
1
λ

w
− 1

λ
ǫ . (4.28)
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Thus from (4.27)-(4.28) we see that

−w′
ǫw′′

ǫ ≥
λ

2
1
λ

w
− 1

λ
ǫ when t< t2,ǫ.

Multiplying this by −w′
ǫ >0 gives

(w′
ǫ)

2w′′
ǫ ≥

λ

2
1
λ

w
− 1

λ
ǫ (−w′

ǫ)

and integrating on (t,t2,ǫ) and using that w′
ǫ <0 gives

−(w′
ǫ)

3≥ 3λ2

2
1
λ (λ−1)

(

w
1− 1

λ
ǫ −21− 1

λ

)

. (4.29)

Now let t3,ǫ <0 be such that wǫ(t3,ǫ)=3. Then for t< t3,ǫwe have

w
1− 1

λ
ǫ −21− 1

λ ≥
(

1−(
2

3
)1− 1

λ

)

w
1− 1

λ
ǫ .

Thus, using this in (4.29) we obtain

1
(

1−( 2
3 )1− 1

λ

)
1
3

∫ t3,ǫ

t

−w′
ǫ

w
1
3 (1− 1

λ )
ǫ

ds≥
∫ t3,ǫ

t

−w′
ǫ

(

w
1− 1

λ
ǫ −21− 1

λ

)
1
3

ds≥
∫ t3,ǫ

t

(

3λ2

2
1
λ (λ−1)

)
1
3

ds.

Therefore, we have

w
2λ+1

3λ
ǫ ≥

(

w
2λ+1

3λ
ǫ −3

2λ+1
3λ

)

≥C1(t3,ǫ−t),

where

C1 =
(

1−(
2

3
)1− 1

λ

)
1
3

(

3λ2

2
1
λ (λ−1)

)
1
3 (2λ+1

3λ

)

.

Thus for t<2t3,ǫ,

wǫ

|t| 3λ
2λ+1

≥C
3λ

2λ+1

1

(

1−
∣

∣

∣

t3,ǫ

t

∣

∣

∣

)
3λ

2λ+1

≥
(C1

2

)
3λ

2λ+1 ≡ c1. (4.30)

Letting c1,ǫ =ǫ
2λ+1

3λ (2|t3,ǫ|) and using the rescaling mentioned in (4.7)-(4.8) we see that

ybǫ
(s)

|s| 3λ
2λ+1

≥ c1 on (−∞,−c1,ǫ). (4.31)

Also, since wǫ → w0 uniformly on compact sets and w0 → ∞ as t →−∞ then t3,ǫ → t3,0

where t3,0 is finite and t3,0 < 0. Thus, limǫ→0c1,ǫ = 0. Substituting (4.30) into (4.29) gives
for t<2t3,ǫ

−(w′
ǫ)

3≥ 3λ2

2
1
λ (λ−1)

(

w
1− 1

λ
ǫ −21− 1

λ

)

≥ 3λ2

2
1
λ (λ−1)

(

[c1|t|
3λ

2λ+1 ]
λ−1

λ −21− 1
λ

)

.
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Thus, for t<2t3,ǫ

− w′
ǫ

|t| λ−1
2λ+1

≥
( 3λ2

2
1
λ (λ−1)

)
1
3

(

c
1− 1

λ

1 − 21− 1
λ

|t| 3(λ−1)
2λ+1

)
1
3

.

The right-hand side of the above is larger than

1

2

( 3λ2

2
1
λ (λ−1)

)
1
3
c

1
3 (1− 1

λ )
1 ≡ c2

when

|t|≥ t∗≡2
(2λ−1)(2λ+1)

3λ(λ−1)
/

c
2+ 1

λ

1 .

So letting c2,ǫ=ǫ
2λ+1

3λ ·t∗, we see that c2,ǫ→0 as ǫ→0 and using the rescaling from (4.7)-(4.8)
we see that

−y′bǫ
(s)

|s| λ−1
2λ+1

≥ c2 on (−∞,−c2,ǫ).

This completes the proof of the lemma.

Lemma 4.9. There are constants c3 > 0, c4 > 0, and c5 > 0 with c3,c4,c5 independent of ǫ and
c3,ǫ >0, c4ǫ >0, c5,ǫ >0 with

lim
ǫ→0

c3,ǫ = lim
ǫ→0

c4,ǫ = lim
ǫ→0

c5,ǫ =0

such that
ybǫ

(s)

|s| 3λ
2λ+1

≤ c3 on (−∞,−c3,ǫ),
−y′bǫ

(s)

|s| λ−1
2λ+1

≤ c4 on (−∞,−c4,ǫ),

and
0≤|s| λ+2

2λ+1 y′′bǫ
(s)≤ c5 on (−∞,−c5,ǫ).

Proof. From Lemma 4.7 we know that limt→−∞ w′′
ǫ =0 and from Lemma 2.3 we know that

w′′
ǫ ≥0 when t<0. Thus, when t< t2,ǫ (defined in Lemma 4.8) we have

0≤w′′
ǫ (t)=

∫ t

−∞
w′′′

ǫ and ds=
∫ t

−∞

|wǫ−1| 1
λ

w
1+ 2

λ
ǫ

sgn(wǫ−1)ds≤
∫ t

−∞

1

w
1+ 1

λ
ǫ

ds.

Then using (4.30) gives

0≤w′′
ǫ (t)≤ 1

c
1+ 1

λ
1

∫ t

−∞
|s|−3λ−3

2λ+1 ds=
1

c
1+ 1

λ
1

|t|−λ−2
2λ+1 for t<2t3,ǫ.

Letting c5 =1/c1+1/λ
1 we have

0≤|t| λ+2
2λ+1 w′′

ǫ (t)≤ c5 for t<2t3,ǫ. (4.32)
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Letting c5,ǫ =ǫ
2λ+1

3λ (2|t3,ǫ|) and using the rescaling (4.7)-(4.8) gives

0≤|s| λ+2
2λ+1 y′′bǫ

(s)≤ c5 on (−∞,c5,ǫ).

Also, as mentioned after Eq. (4.31), t3,ǫ → t3,0 and t3,0 is finite so that c5,ǫ → 0 as ǫ → 0.

Dividing (4.32) by |t| λ+2
2λ+1 and integrating the resulting inequality on (t,2t3,ǫ) gives

w′
ǫ(2t3,ǫ)−w′

ǫ(t)≤ c5

(2λ+1

λ−1

)

|t| λ−1
2λ+1 .

Therefore

0≤− w′
ǫ(t)

|t| λ−1
2λ+1

≤−w′
ǫ(2t3,ǫ)

|t| λ−1
2λ+1

+c5

(2λ+1

λ−1

)

for t<2t3,ǫ.

Since w′
ǫ →w′

0 uniformly on compact sets and t3,ǫ → t3,0, where t3,0 is finite and t3,0 <0 as
mentioned after (4.31), we have w′

ǫ(t3,ǫ)→w′
0(t3,0) which is finite so we see for ǫ small

enough

0≤− w′
ǫ(t)

|t| λ−1
2λ+1

≤−2w′
0(2t3,0)

|t3,0|
λ−1

2λ+1

+c5

(2λ+1

λ−1

)

≡ c4 (4.33)

for t<3t3,ǫ0 . Then by the rescaling mentioned in (4.7) we see that

0≤
−y′bǫ

(s)

|s| λ−1
2λ+1

≤ c4 on (−∞,−c4,ǫ), (4.34)

where c4,ǫ=ǫ
2λ+1

3λ (3t3,ǫ0)→0 as ǫ→0. Multiplying (4.33) by |t| λ−1
2λ+1 and integrating on (s,0)

gives

wǫ(t)≤wǫ(3t3,0)+
(2λ+1

3λ

)

c4|t|
3λ

2λ+1 .

Consequently,

wǫ

|t| 3λ
2λ+1

≤ wǫ(3t3,0)

|t| 3λ
2λ+1

+
(2λ+1

3λ

)

c4≤
wǫ(3t3,0)

|3t3,0|
3λ

2λ+1

+
(2λ+1

3λ

)

c4≡ c3.

Then by the rescaling mentioned in (4.7) we see that

ybǫ

|s| 3λ
2λ+1

≤ c3 on (−∞,−c3,ǫ),

where c3,ǫ =ǫ
2λ+1

3λ (3t3,ǫ0)→0 as ǫ→0. This completes the proof of the lemma.

It follows from Lemmas 4.8 and 4.9 that |ybǫ
|,|y′bǫ

|,|y′′bǫ
| are uniformly bounded on

compact subsets of (−∞,0) and from (3.1) we see that |y′′′bǫ
| is also uniformly bounded

on compact subsets of (−∞,0). Consequently, ybǫ
,y′bǫ

, and y′′bǫ
converge uniformly on
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compact subsets of (−∞,0) to a function y0 and from (3.1) we see that y′′′bǫ
converges

uniformly on compact sets and that y0 satisfies:

y′′′0 =
1

y
1+ 1

λ
0

, (4.35)

lim
t→0−

y0(t)=0, lim
t→0−

y′0(t)=0, (4.36)

0≤|t| λ+2
2λ+1 y′′0 (t)≤ c5 for t<0. (4.37)

Finally, we have the following result.

Lemma 4.10.

y0 = cλ|t|
3λ

2λ+1 , where cλ =
( (2λ+1)3

3λ(λ−1)(λ+2)

)
λ

2λ+1
.

Proof. It is straightforward to show that y given above is a solution of

y′′′ =
1

y1+ 1
λ

, (4.38)

lim
t→0−

y(t)=0, lim
t→0−

y′(t)=0, (4.39)

and

0≤|t| λ+2
2λ+1 y′′(t)≤C<∞ for t<0. (4.40)

Now we let v=y0−y. From the Mean-Value Theorem we see that for any fixed t<0 there
is an 0<µ<1 such that

v′′′ =y′′′0 −y′′′=
1

y
1+ 1

λ
0

− 1

y1+ 1
λ

=− (1+ 1
λ)

(

µy+(1−µ)y0

)2+ 1
λ

[y0−y]=−p(t)v,

where p(t)>0. Now we observe that

(1

2
(v′)2−vv′′

)′
=−vv′′′= p(t)v2 ≥0.

It follows from Lemmas 4.8 and 4.9, and (4.36)-(4.37) and (4.39)-(4.41) that

lim
t→0−

1

2
(v′)2−vv′′ =0,

so we see that
1

2
(v′)2−vv′′≤0 for t<0.
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Thus it follows that vv′′≥0 for t<0. Then (vv′)′=vv′′+(v′)2≥0. Integrating on (t,0) and
using Lemmas 4.8 and 4.9, (4.36) and (4.39) give vv′≤0 for t<0. Suppose now that there
is a t0 <0 for which v(t0)=0. Integrating on (t0,t) gives v2(t)≤0 and so we see that v≡0
on (t0,0). Therefore either v≥0 for t<0 or v≤0 for t<0.

Suppose first that v≥0 for t<0. Then we have

y0≥y≡ cλ|t|
3λ

2λ+1 for t<0. (4.41)

Then by (4.37) and (4.39)

y′′0 =
∫ t

−∞

1

y
1+ 1

λ
0

ds≤ 1

c
1+ 1

λ

λ

|s|−3λ−3
2λ+1 =

1

c
1+ 1

λ

λ

(2λ+1

λ+2

)

|t|−λ−2
2λ+1 .

Integrating on (t,0) gives

−y′0≤
∫ 0

t

1

c
1+ 1

λ

λ

(2λ+1

λ+2

)

|s|−λ−2
2λ+1 ds=

1

c
1+ 1

λ

λ

(2λ+1

λ+2

)(2λ+1

λ−1

)

|t| λ−1
2λ+1

and integrating again on (t,0) and using the definition of cλ given in Lemma 4.10 we see
that

y0≤
1

c
1+ 1

λ

λ

(2λ+1

λ+2

)(2λ+1

λ−1

)(2λ+1

3λ

)

|t| 3λ
2λ+1 = cλ|t|

3λ
2λ+1 . (4.42)

Thus combining (4.41)-(4.42) we see that

y0 ≡ cλ|t|
3λ

2λ+1 for t<0.

Similarly if v≤0 for t<0 then we have

y0 ≤ cλ|t|
3λ

2λ+1 for t<0.

Then as earlier we may go through a similar computation and show that

y0≥ cλ|t|
3λ

2λ+1 for t<0

and finally obtain

y0 ≡ cλ|t|
3λ

2λ+1 for t<0.

This completes the proof of the lemma and the proof of the Main Theorem.
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