Traveling Waves and Capillarity Driven Spreading of Shear-Thinning Fluids

Joseph A. Iaia*
P.O. Box 311430, Department of Mathematics, University of North Texas, Denton, TX 76203-1430, USA.

Received 16 February 2009; Accepted 13 May 2009

Abstract. We study capillary spreadings of thin films of liquids of power-law rheology. These satisfy

$$
u_{t}+\left(u^{\lambda+2}\left|u_{x x x}\right|^{\lambda-1} u_{x x x}\right)_{x}=0,
$$

where $u(x, t)$ represents the thickness of the one-dimensional liquid and $\lambda>1$. We look for traveling wave solutions so that $u(x, t)=g(x+c t)$ and thus g satisfies

$$
g^{\prime \prime \prime}=\frac{|g-\epsilon|^{\frac{1}{\lambda}}}{g^{1+\frac{2}{\lambda}}} \operatorname{sgn}(g-\epsilon) .
$$

We show that for each $\epsilon>0$ there is an infinitely oscillating solution, g_{ϵ}, such that

$$
\lim _{t \rightarrow \infty} g_{\epsilon}=\epsilon
$$

and that $g_{\epsilon} \rightarrow g_{0}$ as $\epsilon \rightarrow 0$, where $g_{0} \equiv 0$ for $t \geq 0$ and

$$
g_{0}=c_{\lambda}|t|^{\frac{3 \lambda}{2 \lambda+1}} \quad \text { for } t<0
$$

for some constant c_{λ}.
AMS Subject Classifications: 35J35
Chinese Library Classifications: O175.25, O175.4, O176
Key Words: Shear-thinning fluid; traveling waves.

1 Introduction

In this work, we study capillary spreadings of thin films of liquids of power-law rheology, also known as Ostwald-de Waele fluids. The following equation for one-dimensional

[^0]motion was derived in [1,2] and is
$$
u_{t}+\left(u^{\lambda+2}\left|u_{x x x}\right|^{\lambda-1} u_{x x x}\right)_{x}=0,
$$
where λ is a real constant and $u(x, t)$ represents the thickness of the one-dimensional liquid film at position x and time t. See also [3,4]. When $\lambda>1$, the fluid is called shear thinning and the viscosity tends to zero at high strain rates [5]. Typical values for λ are between 1.7 and 6.7 [6].

For gravity driven spreadings studied in [7], $u(x, t)$ satisfies

$$
u_{t}-\left(u^{\lambda+2}\left|u_{x}\right|^{\lambda-1} u_{x}\right)_{x}=0 .
$$

If we look for traveling wave solutions of the above equation so that $u(x, t)=g(x+c t)$ for some nonzero $c \in \mathbf{R}$, we obtain

$$
c g^{\prime}=\left(g^{\lambda+2}\left|g^{\prime}\right|^{\lambda-1} g^{\prime}\right)^{\prime}
$$

and thus

$$
c(g-K)=g^{\lambda+2}\left|g^{\prime}\right|^{\lambda-1} g^{\prime}
$$

for some constant K. In the case $K=0$ we obtain

$$
g(z)=d\left(z-z_{0}\right)^{\frac{\lambda}{2 \lambda+1}}
$$

for some constant d which represents a current advancing with constant speed, c, and front located at $x=-c t-z_{0}$. In particular, this differential equation has no oscillatory traveling wave solutions. Similarly, in the case $K \neq 0$ there are no oscillatory traveling wave solutions. If $g^{\prime}\left(m_{1}\right)=g^{\prime}\left(m_{2}\right)=0$ with $m_{1}<m_{2}$, then it follows from the differential equation that $g\left(m_{1}\right)=K=g\left(m_{2}\right)$. Now let M be the maximum (or minimum) of g on [m_{1}, m_{2}]. Then $g^{\prime}(M)=0$ and thus $g(M)=K$. Thus $g \equiv K$ on $\left[m_{1}, m_{2}\right]$.

In this paper, we will study traveling wave solutions for capillarity-driven spreadings in which case we obtain

$$
c g^{\prime}+\left(g^{\lambda+2}\left|g^{\prime \prime \prime}\right|^{\lambda-1} g^{\prime \prime \prime}\right)^{\prime}=0
$$

and so

$$
c g+g^{\lambda+2}\left|g^{\prime \prime \prime}\right|^{\lambda-1} g^{\prime \prime \prime}=K .
$$

If we expect that g will be essentially constant as $t \rightarrow \infty$, say $\epsilon>0$, then this gives the equation

$$
c(g-\epsilon)+g^{\lambda+2}\left|g^{\prime \prime \prime}\right|^{\lambda-1} g^{\prime \prime \prime}=0 .
$$

This reduces to

$$
g^{\prime \prime \prime}=d \frac{|g-\epsilon|^{\frac{1}{\lambda}}}{g^{1+\frac{2}{\lambda}}} \operatorname{sgn}(g-\epsilon), \quad \text { where } d=-\frac{c}{|c|^{1-\frac{1}{\lambda}}} .
$$

Letting $y(t)=g\left(\frac{t}{d^{1 / 3}}\right)$ gives

$$
y^{\prime \prime \prime}=\frac{|y-\epsilon|^{\frac{1}{\lambda}}}{y^{1+\frac{2}{\lambda}}} \operatorname{sgn}(y-\epsilon)
$$

We now consider

$$
\begin{align*}
& y^{\prime \prime \prime}(t)=f_{\epsilon}(y(t)) \tag{1.1}\\
& y\left(t_{0}\right)=y_{0}>0, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}, \quad y^{\prime \prime}\left(t_{0}\right)=y_{0}^{\prime \prime} \tag{1.2}
\end{align*}
$$

where

$$
\begin{equation*}
f_{\epsilon}(y) \equiv \frac{|y-\epsilon|^{\frac{1}{\lambda}}}{y^{1+\frac{2}{\lambda}}} \operatorname{sgn}(y-\epsilon), \quad y, \epsilon, \lambda \in \mathbf{R}, \quad y>0, \epsilon>0, \lambda>1 \tag{1.3}
\end{equation*}
$$

We note that f_{ϵ} is increasing for $0<y<\left(1+\frac{1}{\lambda+1}\right) \epsilon$, decreasing for $\left(1+\frac{1}{\lambda+1}\right) \epsilon<y<\infty$, and has an absolute maximum at $y=\left(1+\frac{1}{\lambda+1}\right) \epsilon$. We also see that $f_{\epsilon}(y)$ is not integrable at $y=0$ and is integrable at $y=\infty$. Next we define

$$
F_{\epsilon}(y)=\int_{\epsilon}^{y} f_{\epsilon}(t) \mathrm{d} t \text { for } y>0
$$

We see that $F_{\epsilon}(y) \geq 0, F_{\epsilon}$ is decreasing on $(0, \epsilon)$, increasing on (ϵ, ∞),

$$
\begin{equation*}
\lim _{y \rightarrow 0^{+}} F_{\epsilon}(y)=+\infty \tag{1.4a}
\end{equation*}
$$

and there exists $0<F_{\epsilon, \infty}<\infty$ such that

$$
\begin{equation*}
\lim _{y \rightarrow \infty} F_{\epsilon}(y)=F_{\epsilon, \infty} \tag{1.4b}
\end{equation*}
$$

Also we see that there exists $0<L_{\epsilon}<\epsilon$ such that

$$
\begin{equation*}
F_{\epsilon}\left(L_{\epsilon}\right)=F_{\epsilon, \infty} \tag{1.5}
\end{equation*}
$$

We now define the following "energy" type functions which will be useful in analyzing solutions of Eq. (1.1). Let

$$
\begin{align*}
& E_{1, y}=\frac{1}{2}\left(y^{\prime}\right)^{2}-(y-\epsilon) y^{\prime \prime} \tag{1.6a}\\
& E_{2, y}=F_{\epsilon}(y)-y^{\prime} y^{\prime \prime} \tag{1.6b}\\
& E_{3, y}=\frac{1}{2}\left(y^{\prime \prime}\right)^{2}-f_{\epsilon}(y) y^{\prime} \tag{1.6c}
\end{align*}
$$

Note that

$$
\begin{align*}
& E_{1, y}^{\prime}=-(y-\epsilon) y^{\prime \prime \prime}=-(y-\epsilon) f_{\epsilon}(y)=-\frac{|y-\epsilon|^{1+\frac{1}{\lambda}}}{y^{1+\frac{2}{\lambda}} \leq 0} \tag{1.7a}\\
& E_{2, y}^{\prime}=-\left(y^{\prime \prime}\right)^{2} \leq 0 \tag{1.7b}\\
& E_{3, y}^{\prime}=-f_{\epsilon}^{\prime}(y)\left(y^{\prime}\right)^{2} \tag{1.7c}
\end{align*}
$$

It can be verified that

$$
E_{3, y}^{\prime} \leq 0 \quad \text { for } 0<y \leq\left(1+\frac{1}{\lambda+1}\right) \epsilon
$$

and

$$
E_{3, y}^{\prime} \geq 0 \quad \text { for } y \geq\left(1+\frac{1}{\lambda+1}\right) \epsilon
$$

In this paper we prove the following:
Main Theorem. Let $\epsilon>0$ and $\lambda>1$. There exists a solution of (1.1) with $y(0)=L_{\epsilon}, y^{\prime}(0)=0$, and $y^{\prime \prime}(0)=b_{\epsilon}>0$ and $y_{b_{\epsilon}}$ is decreasing on $(-\infty, 0)$, oscillates infinitely often on $[0, \infty)$ and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} y_{b_{\epsilon}}(t)=\epsilon \tag{1.8}
\end{equation*}
$$

In addition,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} y_{b_{\epsilon}}(t)=y_{0}(t) \tag{1.9}
\end{equation*}
$$

where

$$
y_{0}= \begin{cases}0, & \text { for } t \geq 0 \tag{1.10a}\\ c_{\lambda}|t|^{\frac{3 \lambda}{2 \lambda+1}}, & \text { for } t<0\end{cases}
$$

where

$$
\begin{equation*}
c_{\lambda}=\left[\frac{(2 \lambda+1)^{3}}{3 \lambda(\lambda-1)(\lambda+2)}\right]^{\frac{\lambda}{2 \lambda+1}} \tag{1.10b}
\end{equation*}
$$

Note that y_{0} satisfies the limiting differential equation

$$
y^{\prime \prime \prime}=\frac{1}{y^{1+\frac{1}{\lambda}}} \quad \text { for } t<0
$$

Also, since $\lambda>1$ then $3 \lambda /(2 \lambda+1)>1$ so that y_{0} has zero contact angle at $t=0$. According to [3], there are other solutions to

$$
y^{\prime \prime \prime}=\frac{1}{y^{1+\frac{1}{\lambda}}}
$$

with nonzero contact angle at $t=0$ which grow like $|t|^{3 \lambda /(2 \lambda+1)}$ at $-\infty$. However, zero contact angle is more physically reasonable.

2 Preliminaries

In this section, we fix $\epsilon>0$ and write f, F, E_{1}, E_{2}, and E_{3} instead of $f_{\epsilon}, F_{\epsilon}, E_{1, y}, E_{2, y}$, and $E_{3, y}$.
Lemma 2.1. Let $t_{0} \in \mathbf{R}$. There is a solution of (1.1)-(1.2) on $\left(t_{0}-\delta, t_{0}+\delta\right)$ for some $\delta>0$. Also, for

$$
y_{0}>0, \quad\left|y_{0}-\epsilon\right|+\left|y_{0}^{\prime}\right|+\left|y_{0}^{\prime \prime}\right|>0,
$$

the solution is unique and the solution varies continuously with respect to the parameters $\left(y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right)$.

Proof. The standard existence-uniqueness-continuous-dependence theorem applies for all $y_{0}>0$ with $y_{0} \neq \epsilon$.

If $y_{0}=\epsilon$ then we still have existence by the Peano existence theorem. Now suppose $y_{0}=\epsilon$ but that $y_{0}^{\prime} \neq 0$. Then near t_{0} we have that

$$
\left|(y-\epsilon)-y_{0}^{\prime}\left(t-t_{0}\right)\right| \leq C\left|t-t_{0}\right|^{2}
$$

which implies

$$
\frac{1}{2}\left|y_{0}^{\prime}\right|\left|t-t_{0}\right| \leq|y-\epsilon| \leq 2\left|y_{0}^{\prime}\right|\left|t-t_{0}\right| \quad \text { near } t_{0} .
$$

Assuming without loss of generality that $y_{0}^{\prime}>0$ then we see that this means

$$
\begin{equation*}
\frac{1}{2} y_{0}^{\prime}\left|t-t_{0}\right| \leq(y-\epsilon) \leq 2 y_{0}^{\prime}\left|t-t_{0}\right| \text { for } t \text { near } t_{0} \text { and } t>t_{0} \tag{2.1}
\end{equation*}
$$

Similarly, if z is another solution (1.1)-(1.2) with $z_{0}=\epsilon_{0}, z_{0}^{\prime}=y_{0}^{\prime}$, and $z_{0}^{\prime \prime}=y_{0}^{\prime \prime}$, then

$$
\begin{equation*}
\frac{1}{2} y_{0}^{\prime}\left|t-t_{0}\right| \leq(z-\epsilon) \leq 2 y_{0}^{\prime}\left|t-t_{0}\right| \text { for } t \text { near } t_{0} \text { and } t>t_{0} . \tag{2.2}
\end{equation*}
$$

Now

$$
[y-z]=\int_{t_{0}}^{t} \int_{t_{0}}^{s} \int_{t_{0}}^{w}[f(y(x))-f(z(x))] \mathrm{d} x \mathrm{~d} w \mathrm{~d} s,
$$

so for any fixed x we have by the Mean-Value Theorem that

$$
f(y(x))-f(z(x))=f^{\prime}(\mu y(x)+(1-\mu) z(x))[y(x)-z(x)]
$$

for some $0<\mu<1$. Using (2.1) and that $\lambda>1$ gives for some constant $C>0$

$$
\begin{aligned}
& \left|f^{\prime}(\mu y(x)+(1-\mu) z(x))\right| \\
\leq & C|\mu y+(1-\mu) z-\epsilon|^{\frac{1}{\lambda}-1} \\
= & C|\mu(y-\epsilon)+(1-\mu)(z-\epsilon)|^{\frac{1}{\lambda}-1} \\
\leq & C\left(\frac{1}{2} y_{0}^{\prime}\right)^{\frac{1}{\lambda}-1}\left|x-t_{0}\right|^{\frac{1}{\lambda}-1} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
|y-z| & \leq \int_{t_{0}}^{t} \int_{t_{0}}^{s} \int_{t_{0}}^{w}|f(y)-f(z)| \mathrm{d} x \mathrm{~d} w \mathrm{~d} s \\
& \leq C\left(\frac{1}{2} y_{0}^{\prime}\right)^{\frac{1}{\lambda}-1} \int_{t_{0}}^{t} \int_{t_{0}}^{s} \int_{t_{0}}^{w}\left|x-t_{0}\right|^{\frac{1}{\lambda}-1}|y-z| \mathrm{d} x \mathrm{~d} w \mathrm{~d} s \\
& \leq\left(\frac{1}{2} y_{0}^{\prime}\right)^{\frac{1}{\lambda}-1}\left(t-t_{0}\right)^{2} \int_{t_{0}}^{t}\left|s-t_{0}\right|^{\frac{1}{\lambda}-1}|y-z| \mathrm{d} s .
\end{aligned}
$$

It follows from (2.1) and (2.2) that the last integral on the right-hand side is defined. Thus for some constant $C>0$

$$
\begin{equation*}
|y-z| \leq C\left(t-t_{0}\right)^{2} \int_{t_{0}}^{t}\left|s-t_{0}\right|^{\frac{1}{\lambda}-1}|y-z| \mathrm{d} s . \tag{2.3}
\end{equation*}
$$

Letting

$$
w=\int_{t_{0}}^{t}\left|s-t_{0}\right|^{\frac{1}{\lambda}-1}|y-z| \mathrm{d} s \geq 0 .
$$

Then

$$
w^{\prime}=\left|t-t_{0}\right|^{\frac{1}{\lambda}-1}|y-z| .
$$

Consequently, (2.3) becomes

$$
w^{\prime}\left|t-t_{0}\right|^{1-\frac{1}{\lambda}} \leq C\left(t-t_{0}\right)^{2} w
$$

so that

$$
w^{\prime} \leq C\left|t-t_{0}\right|^{1+\frac{1}{\lambda}} w \leq C w \text { for } t \text { near } t_{0}
$$

Therefore,

$$
\int_{t_{0}}^{t}\left(w e^{-C t}\right)^{\prime} \leq 0
$$

which implies $w \equiv 0$ on $\left(t_{0}, t\right)$. Hence $y \equiv z$ on $\left(t_{0}, t\right)$. A similar argument shows $y \equiv z$ on $\left(t, t_{0}\right)$.

Now suppose $y_{0}=\epsilon$ and $y_{0}^{\prime}=0$ but $y_{0}^{\prime \prime} \neq 0$. Then a similar argument as above shows that

$$
\frac{1}{4}\left|y_{0}^{\prime \prime}\right|\left(t-t_{0}\right)^{2} \leq|y-\epsilon| \leq\left|y_{0}^{\prime \prime}\right|\left(t-t_{0}\right)^{2} \text { for } t \text { near } t_{0}
$$

Assuming without loss of generality that $y_{0}^{\prime \prime}>0$, we see that this means

$$
\begin{equation*}
\frac{1}{4} y_{0}^{\prime \prime}\left(t-t_{0}\right)^{2} \leq y-\epsilon \leq y_{0}^{\prime \prime}\left(t-t_{0}\right)^{2} \text { for } t \text { near } t_{0} \text { and } t>t_{0} \tag{2.4}
\end{equation*}
$$

Similarly if z is another solution then

$$
\begin{equation*}
\frac{1}{4} y_{0}^{\prime \prime}\left(t-t_{0}\right)^{2} \leq z-\epsilon \leq y_{0}^{\prime \prime}\left(t-t_{0}\right)^{2} \text { for } t \text { near } t_{0} \text { and } t>t_{0} . \tag{2.5}
\end{equation*}
$$

Again by the Mean-Value Theorem we have for each fixed x

$$
\begin{aligned}
|f(y)-f(z)| & =\left|f^{\prime}(\mu y(x)+(1-\mu) z(x))\right||y(x)-z(x)| \\
& \leq C|\mu y+(1-\mu) z-\epsilon|^{\frac{1}{\lambda}-1} \\
& =C|\mu(y-\epsilon)+(1-\mu)(z-\epsilon)|^{\frac{1}{\lambda}-1} \\
& \leq C\left(\frac{1}{4} y_{0}^{\prime \prime}\right)^{\frac{1}{\lambda}-1}\left|x-t_{0}\right|^{\frac{2}{\lambda}-2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
|y-z| & \leq \int_{t_{0}}^{t} \int_{t_{0}}^{s} \int_{t_{0}}^{w}|f(y)-f(z)| \mathrm{d} x \mathrm{~d} w \mathrm{~d} s \\
& \leq C\left(\frac{1}{4} y_{0}^{\prime \prime}\right)^{\frac{1}{\lambda}-1} \int_{t_{0}}^{t} \int_{t_{0}}^{s} \int_{t_{0}}^{w}\left|x-t_{0}\right|^{\frac{2}{\lambda}-2}|y-z| \mathrm{d} x \mathrm{~d} w \mathrm{~d} s \\
& \leq C\left(\frac{1}{2} y_{0}^{\prime}\right)^{\frac{1}{\lambda}-1}\left(t-t_{0}\right)^{2} \int_{t_{0}}^{t}\left|s-t_{0}\right|^{\frac{2}{\lambda}-2}|y-z| \mathrm{d} s .
\end{aligned}
$$

It follows from (2.4) and (2.5) that the last integral is defined. Therefore we have for some constant C

$$
\begin{equation*}
|y-z| \leq C\left(t-t_{0}\right)^{2} \int_{t_{0}}^{t}\left|s-t_{0}\right|^{\frac{2}{\lambda}-2}|y-z| \mathrm{d} s \tag{2.6}
\end{equation*}
$$

Letting

$$
w=\int_{t_{0}}^{t}\left|s-t_{0}\right|^{\frac{2}{\lambda}-2}|y-z| \mathrm{d} s \geq 0 .
$$

Then

$$
w^{\prime}=\left|t-t_{0}\right|^{\frac{2}{\lambda}-2}|y-z|
$$

and thus (2.6) becomes

$$
w^{\prime}\left|t-t_{0}\right|^{2-\frac{2}{\lambda}} \leq C\left(t-t_{0}\right)^{2} w .
$$

Consequently,

$$
w^{\prime} \leq C\left|t-t_{0}\right|^{\frac{2}{\lambda}} w \leq C w \text { for } t \text { near } t_{0} .
$$

Therefore,

$$
\int_{t_{0}}^{t}\left(w e^{-C t}\right)^{\prime} \leq 0
$$

which implies that $w \equiv 0$ on $\left(t_{0}, t\right)$. Hence $y \equiv z$ on $\left(t_{0}, t\right)$. A similar argument shows $y \equiv z$ on $\left(t, t_{0}\right)$.

Thus we have shown that the solution is unique if $y_{0}=\epsilon$ and either $y_{0}^{\prime}=0$ or $y_{0}^{\prime \prime}=0$ but not both.

Remark: If $y_{0}=\epsilon$ and $y_{0}^{\prime}=y_{0}^{\prime \prime}=0$, then there are nonlinearities f for which there is more than one solution of (1.1)-(1.3). For example, if

$$
f(y)=|y-\epsilon|^{\frac{1}{\lambda}} \operatorname{sgn}(y-\epsilon)
$$

then $y=\epsilon$ is a solution and

$$
y=\epsilon+a_{\lambda} t^{\frac{3 \lambda}{\lambda-1}},
$$

where

$$
a_{\lambda}=\left[\frac{3 \lambda(2 \lambda+1)(\lambda+2)}{(\lambda-1)^{3}}\right]^{\frac{\lambda}{\lambda-1}},
$$

is also a solution.
Suppose now that there is a triple $\left(y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right)$ with

$$
\begin{equation*}
y_{0}>0, \quad\left|y_{0}-\epsilon\right|+\left|y_{0}^{\prime}\right|+\left|y_{0}^{\prime \prime}\right|>0 \tag{2.7}
\end{equation*}
$$

and suppose $y_{0}(t)$ is the solution of (1.1) with

$$
\begin{equation*}
y_{0}\left(t_{0}\right)=y_{0}, \quad y_{0}^{\prime}\left(t_{0}\right)=y_{0}^{\prime}, \quad y_{0}^{\prime \prime}\left(t_{0}\right)=y_{0}^{\prime \prime} . \tag{2.8}
\end{equation*}
$$

Let $\left(y_{0, n}, y_{0, n}^{\prime}, y_{0, n}^{\prime \prime}\right)$ be a sequence that converges to $\left(y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}\right)$ and let y_{n} be the solution of (1.1) with

$$
y_{n}\left(t_{0}\right)=y_{0, n}, \quad y_{n}^{\prime}\left(t_{0}\right)=y_{0, n}^{\prime}, \quad y_{n}^{\prime \prime}\left(t_{0}\right)=y_{0, n}^{\prime \prime} .
$$

By the existence proof all of the y_{n} 's are defined on $\left(t_{0}-\delta, t_{0}+\delta\right)$ for some $\delta>0$ which is independent of n. On this set we have that $\left|f\left(y_{n}(t)\right)\right|$ is bounded by a constant M so that $\left|y_{n}^{\prime \prime \prime}\right| \leq M$ and so $y_{n},\left|y_{n}^{\prime}\right|,\left|y_{n}^{\prime \prime}\right|,\left|y_{n}^{\prime \prime \prime}\right|$ are all bounded by a constant on $\left[t_{0}-\delta / 2, t_{0}+\delta / 2\right]$. By the Arzela-Ascoli theorem a subsequence (denoted by $y_{n_{k}}$) along with its first and second derivatives converges uniformly to a function y with initial condition (2.8). From Eq. (1.1) we see that $y_{n_{k}}^{\prime \prime \prime}$ converges uniformly to $y^{\prime \prime \prime}$ and y solves (1.1). With (2.7), by the uniqueness part of the proof established earlier we must have $y(t) \equiv y_{0}(t)$ and hence $y_{n_{k}}$ converges uniformly to y_{0}. It then follows from this that y_{n} converges uniformly to y_{0} for if not then there would be an $\eta>0$ and a sequence $t_{n_{k}} \in\left[t_{0}-\delta / 2, t_{0}+\delta / 2\right]$ with $t_{n_{k}} \rightarrow t^{*}$ such that

$$
\left|y_{n_{k}}\left(t_{n_{k}}\right)-y_{0}\left(t^{*}\right)\right| \geq \eta>0 .
$$

However, we could proceed through the same argument as above and find a subsequence $y_{n_{k_{l}}}$ of $y_{n_{k}}$ such that $y_{n_{k_{l}}}$ converges uniformly to y_{0} on $\left[t_{0}-\delta / 2, t_{0}+\delta / 2\right]$ contradicting the above inequality. This completes the proof of the lemma.

Lemma 2.2. Let $y(t)$ be any solution of (1.1)-(1.2). Then there is a maximal open interval $\left(T_{1}, T_{2}\right)$ with $T_{1}<t_{0}<T_{2}$ where $y(t)$ is defined. In addition, if $T_{1}>-\infty$ then y is increasing near T_{1} and

$$
\begin{equation*}
\lim _{t \rightarrow T_{1}^{+}} y(t)=0, \tag{2.9}
\end{equation*}
$$

and if $T_{2}<\infty$ then y is decreasing near T_{2} and

$$
\begin{equation*}
\lim _{t \rightarrow T_{2}^{-}} y(t)=0 \tag{2.10}
\end{equation*}
$$

Proof. Let (T_{1}, T_{2}) with $T_{1}<t_{0}<T_{2}$ be the maximal open interval where $y(t)$ is defined (and $y(t)>0$). We now let

$$
c_{1} \equiv \inf _{\left(T_{1}, t_{0}\right]} y(t) \quad \text { and } \quad c_{2} \equiv \inf _{\left[t_{0}, T_{2}\right)} y(t) .
$$

Clearly, $c_{1} \geq 0, c_{2} \geq 0$. If $c_{2}>0$ then from the definition of f we see that $y^{\prime \prime \prime}(t)$ is uniformly bounded on $\left[t_{0}, T_{2}\right)$. Thus if $T_{2}<\infty$ then y, y^{\prime}, and $y^{\prime \prime}$ are also uniformly bounded on
$\left[t_{0}, T_{2}\right)$ and so the solution y could be extended to $\left(T_{1}, T_{2}+\delta\right)$ for some $\delta>0$ contradicting the definition of T_{2}. Thus $T_{2}=\infty$ if $c_{2}>0$. A similar argument shows that $T_{1}=-\infty$ if $c_{1}>0$.

So now suppose that $c_{2}=0$. Then either there is a $T<T_{2}$ such that $y(t)$ is decreasing on $\left(T, T_{2}\right)$ or there is an increasing sequence of local minimums, m_{k}, of y converging to T_{2} such that $y\left(m_{k+1}\right)<y\left(m_{k}\right)$ and $\lim _{k \rightarrow \infty} y\left(m_{k}\right)=0$. However, if the latter is true then by (1.7b) we would have

$$
F\left(y\left(m_{k+1}\right)\right)=E_{2}\left(m_{k+1}\right) \leq E_{2}\left(m_{k}\right)=F\left(y\left(m_{k}\right)\right)
$$

But also for large $k, y\left(m_{k}\right)<\epsilon$ and since F is decreasing for $0<y<\epsilon$ we would have

$$
F\left(y\left(m_{k+1}\right)\right) \geq F\left(y\left(m_{k}\right)\right)
$$

a contradiction. Thus there is a $T<T_{2}$ such that $y(t)$ is decreasing on $\left(T, T_{2}\right)$. Thus (2.10) holds. Similarly, if $c_{1}=0$ then there is $T>T_{1}$ such that $y(t)$ is increasing on $\left(T_{1}, T\right)$ and (2.9) holds. This completes the proof of the lemma.

Lemma 2.3. If there is an m such that $0<y(m) \leq L_{\epsilon}, y^{\prime}(m)=0$, and $y^{\prime \prime}(m) \geq 0$, then $T_{1}=-\infty$, $y^{\prime}<0$ and $y^{\prime \prime}>0$ for $t<m$, and

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} y(t)=\infty \tag{2.11}
\end{equation*}
$$

Proof. If $y^{\prime \prime}(m)>0$, then there exists $\delta>0$ such that $y^{\prime}<0$ on $(m-\delta, m)$. If $y^{\prime \prime}(m)=0$, then since $y^{\prime \prime \prime}(m)=f(y(m))<0$, it follows that there exists $\delta>0$ such that $y^{\prime \prime}>0$ on $(m-\delta, m)$. Since $y^{\prime}(m)=0$ it then follows that $y^{\prime}<0$ on $(m-\delta, m)$. Thus we see that if $y^{\prime \prime}(m) \geq 0$ then there exists a $\delta>0$ such that $y^{\prime}<0$ on $(m-\delta, m)$.

Now suppose there exists an $m^{*}<m$ such that $y^{\prime}\left(m^{*}\right)=0$ and $y^{\prime}<0$ on $\left(m^{*}, m\right)$. Then $y\left(m^{*}\right)>y(m)$ and since E_{2} is decreasing we see that

$$
\begin{equation*}
F\left(y\left(m^{*}\right)\right)=E_{2}\left(m^{*}\right) \geq E_{2}(m)=F(y(m)) \geq F_{\infty} \tag{2.12}
\end{equation*}
$$

Now if $y\left(m^{*}\right) \leq L_{\epsilon}$, then since F is strictly decreasing on $\left(0, L_{\epsilon}\right]$ we see that $F\left(y\left(m^{*}\right)\right)<$ $F(y(m))$ which contradicts (2.12). On the other hand, if $y\left(m^{*}\right)>L_{\epsilon}$, then we see that $F\left(y\left(m^{*}\right)\right)<F_{\infty}$ which again contradicts (2.12). Thus, no such m^{*} can exist and therefore y is decreasing for $t<m$. Then from Lemma 2.2 it follows that $T_{1}=-\infty$.

Next, we show that y has no inflection points for $t<m$. First we show that if y has an inflection point, p, then $y(p)>\epsilon$. So suppose there is a $p<m$ with $y^{\prime \prime}(p)=0$ and $y^{\prime \prime}>0$ on (p, m) and $y(p) \leq \epsilon$. Then on $[p, m]$ we have by (1.7c)

$$
E_{3}^{\prime}=-f^{\prime}(y)\left(y^{\prime}\right)^{2} \leq 0 \quad \text { since } \quad y<\left(1+\frac{1}{\lambda+1}\right) \epsilon \quad \text { on }[p, m]
$$

Also

$$
E_{3}(m)=\frac{1}{2}\left(y^{\prime \prime}(m)\right)^{2} \geq 0
$$

so

$$
\frac{1}{2}\left(y^{\prime \prime}\right)^{2}-f(y) y^{\prime} \geq 0 \text { on }[p, m]
$$

Evaluating at p we obtain $f(y(p)) y^{\prime}(p) \leq 0$ and since $y^{\prime}(p)<0$ it follows then that $f(y(p)) \geq$ 0 . Consequently, $y(p) \geq \epsilon$. Since we assumed $y(p) \leq \epsilon$ we see that the only possibility is $y(p)=\epsilon$. However, if $y(p)=\epsilon$ then $y^{\prime \prime \prime}<0$ on (p, m) and since $y^{\prime \prime}(p)=0$ this implies $y^{\prime \prime}<0$ on (p, m), which is a contradiction. Thus, $y(p)>\epsilon$. Since $y^{\prime}<0$ for $t<m$ it follows that $y^{\prime \prime \prime}>0$ for $t<p$ so if $t<q<p$ then

$$
y^{\prime \prime}(t)<y^{\prime \prime}(q)<0 .
$$

Integrating on (t, q) gives

$$
y^{\prime}(q)-y^{\prime}(t)<y^{\prime \prime}(q)(q-t) .
$$

Thus,

$$
y^{\prime}(q)-y^{\prime \prime}(q)(q-t)<y^{\prime}(t)
$$

and the left-hand side goes to $+\infty$ as $t \rightarrow-\infty$ contradicting with $y^{\prime}<0$ for $t<m$. Thus $y^{\prime \prime}>0$ for $t<m$. Since we also have that $y^{\prime}<0$ for $t<m$ we then see that (2.11) holds. This completes the proof of the lemma.

3 Existence of a solution with $\lim _{t \rightarrow \infty} y(t)=\epsilon$

We now fix $\epsilon>0$ and $b \geq 0$. Let y_{b} be the solution of:

$$
\begin{align*}
& y^{\prime \prime \prime}(t)=f_{\varepsilon}(y(t)), \tag{3.1}\\
& y(0)=L_{\epsilon}, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=b, \tag{3.2}
\end{align*}
$$

where L_{ε} is defined in the statement after (1.4b).
We denote the maximal open interval of existence of (3.1)-(3.2) as ($T_{1, b}, T_{2, b}$). From Lemma 2.3 it follows that $T_{1, b}=-\infty$.

Lemma 3.1. If $b=0$, then $T_{2, b}<\infty$.
Proof. We see that $E_{1, y_{b}}(0)=0$ and since $E_{1, y_{b}}^{\prime}(t) \leq 0\left(\right.$ by (1.7a)) and $E_{1, y_{b}}^{\prime}(0)<0$ it follows that

$$
E_{1, y_{b}}(t)<0 \quad \text { on }\left(0, T_{2, b}\right) .
$$

Hence

$$
0 \leq \frac{1}{2}\left(y_{b}^{\prime}\right)^{2}<\left(y_{b}-\epsilon\right) y_{b}^{\prime \prime} \quad \text { on }\left(0, T_{2, b}\right)
$$

Then since $y_{b}(0)=L_{\epsilon}<\epsilon$, we see that $y_{b}<\epsilon$ and $y_{b}^{\prime \prime}<0$ for $t>0$. Since $y_{b}^{\prime}(0)=0$ it follows then that $y_{b}^{\prime}<0$ for $t>0$ and therefore y_{b} is decreasing and concave down on $\left(0, T_{2, b}\right)$. Hence y_{b} must become zero at some finite value of t. Thus, $T_{2, b}<\infty$. This completes the proof of the lemma.

Lemma 3.2. If $b>0$ is sufficiently large, then $T_{2, b}=\infty$ and $y_{b}^{\prime}(t)>0$ for all $t>0$ (and hence $y_{b}(t)>0$ for all $t \in \mathbf{R}$ by Lemma 2.3).
Proof. Since $y_{b}^{\prime}(0)=0$ and $y_{b}^{\prime \prime}(0)=b>0$, we see that $y_{b}^{\prime}>0$ on $(0, \delta)$ for some $\delta>0$. Suppose first that $T_{2, b}<\infty$. Then by Lemma 2.2, there is an $M>0$ such that $y_{b}^{\prime}(M)=0$ and $y_{b}^{\prime}>0$ on $(0, M)$. So we see that on $(0, M)$ we have

$$
y_{b}(t)>y_{b}(0)=L_{\epsilon}
$$

and therefore

$$
y_{b}^{\prime \prime \prime}=f_{\epsilon}\left(y_{b}\right)>f_{\epsilon}\left(L_{\epsilon}\right) .
$$

Integrating on $(0, t)$ gives

$$
y_{b}^{\prime \prime}>b+f_{\epsilon}\left(L_{\epsilon}\right) t \quad \text { on }(0, M) .
$$

Integrating again on $(0, t)$ gives

$$
y_{b}^{\prime}>b t+\frac{f_{\epsilon}\left(L_{\epsilon}\right)}{2} t^{2} \quad \text { on }(0, M) .
$$

Taking the limit as $t \rightarrow M^{-}$we get $M \geq 2 b /\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|$. Therefore we see that

$$
y_{b}^{\prime}>0 \quad \text { for } 0<t<\frac{b}{\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|} .
$$

After another integration we see that

$$
y_{b}>L_{\epsilon}+\frac{b}{2} t^{2}+\frac{f_{\epsilon}\left(L_{\epsilon}\right)}{6} t^{3} \quad \text { on }(0, M) .
$$

Evaluating this inequality and the $y_{b}^{\prime \prime}$ inequality at $t=b /\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|$ we see that

$$
y_{b}\left(\frac{b}{\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|}\right)>L_{\epsilon}+\frac{b^{3}}{3\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|^{2}}, \quad y_{b}^{\prime \prime}\left(\frac{b}{\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|}\right)>0 .
$$

Therefore, we see that

$$
y_{b}\left(\frac{b}{\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|}\right)>\epsilon \text { if } b \text { is chosen sufficiently large. }
$$

Now since we already know that $y_{b}^{\prime}>0$ on $(0, M)$ so in particular this inequality is true on the interval $\left(b /\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|, M\right)$, we see that

$$
y_{b}^{\prime \prime \prime}=f_{\epsilon}\left(y_{b}\right)>0 \quad \text { on }\left(\frac{b}{\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|}, M\right)
$$

so that $y_{b}^{\prime \prime}$ is increasing on this interval and since $y_{b}^{\prime \prime}\left(b /\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|\right)>0$, this implies $y_{b}^{\prime \prime}(M)>0$. On the other hand, $y_{b}^{\prime}(M)=0$ and $y_{b}^{\prime}>0$ on $(0, M)$ which implies $y_{b}^{\prime \prime}(M) \leq 0$ and so we obtain a contradiction. Thus we see that $T_{2, b}=\infty$.

So we now assume that $T_{2, b}=\infty$ but that y_{b} is not increasing for all $t>0$. So suppose there is an M so that $y_{b}^{\prime}>0$ on $(0, M)$ and $y_{b}^{\prime}(M)=0$. Then repeating the same argument as at the beginning of the proof of this lemma, we will obtain again a contradiction. Thus this completes the proof of the lemma.

Now we define

$$
\begin{equation*}
S=\left\{b \geq 0 \mid T_{2, b}<\infty\right\} . \tag{3.3}
\end{equation*}
$$

It follows that S is nonempty (since $0 \in S$ by Lemma 3.1) and bounded above (by Lemma 3.2). Thus we define

$$
\begin{equation*}
b_{\epsilon}=\sup S \tag{3.4}
\end{equation*}
$$

and note that $b_{\epsilon} \geq 0$.
Lemma 3.3. $y_{b_{\epsilon}}(t)>0$ for all t. (That is, $T_{2, b_{e}}=\infty$ and hence $b_{\epsilon}>0$ by Lemma 3.1).
Proof. Suppose not. Then $T_{2, b_{e}}<\infty$ and so by Lemma 2.2 it follows that $y_{b_{\varepsilon}}$ is decreasing on ($T_{2, b_{e}}-\delta, T_{2, b_{e}}$) for some $\delta>0$ and

$$
\begin{equation*}
\lim _{t \rightarrow T_{2, b_{e}}} y_{b_{e}}(t)=0 \tag{3.5}
\end{equation*}
$$

Since $E_{2, y_{b_{e}}}$ is decreasing (by (1.7b)) we have

$$
\begin{equation*}
F_{\epsilon}\left(y_{b_{\epsilon}}\right)-y_{b_{\epsilon}}^{\prime} y_{b_{\epsilon}}^{\prime \prime}=E_{2, y_{b_{e}}}(t) \leq E_{2, y_{b_{e}}}(0)=F_{\epsilon}\left(L_{\epsilon}\right) \quad \text { for } 0 \leq t \leq T_{2, b_{\epsilon}} . \tag{3.6}
\end{equation*}
$$

Now it follows from (1.4a) and Lemma 2.2 that

$$
\begin{equation*}
\lim _{t \rightarrow T_{2, b_{e}}} F_{\epsilon}\left(y_{b_{\epsilon}}(t)\right)=+\infty . \tag{3.7}
\end{equation*}
$$

Therefore since the right hand side of (3.6) is bounded (since ϵ is fixed), it follows that

$$
\lim _{t \rightarrow T_{2, b_{e}}^{-}} y_{b_{e}}^{\prime}(t) y_{b_{e}}^{\prime \prime}(t)=+\infty
$$

From this and Lemma 2.2 it follows that there exists a neighborhood of $T_{2, b_{e}}\left(T_{2, b_{e}}-\right.$ $\delta, T_{2, b_{c}}$) (where we decrease the size of the δ chosen at the beginning of the proof if necessary), such that

$$
0<y_{b_{e}}(t)<\epsilon, \quad y_{b_{e}}^{\prime}(t)<0, \quad y_{b_{e}}^{\prime \prime}(t)<0 \quad \text { for all } t \in\left(T_{2, b_{e}}-\delta, T_{2, b_{e}}\right) .
$$

Now by Lemma 2.1, it follows that

$$
0<y_{b}<\epsilon, \quad y_{b}^{\prime}<0, \quad y_{b}^{\prime \prime}<0 \quad \text { on } \quad\left(T_{2, b_{e}}-\frac{2}{3} \delta, T_{2, b_{e}}-\frac{1}{3} \delta\right)
$$

if b is sufficiently close to b_{ϵ}. If we also require $b>b_{\epsilon}$, then $T_{2, b}=\infty$ (by definition of b_{ϵ}) and so $y_{b}(t)>0$ for all t. Let us now denote $\left(T_{2, b_{e}}-\frac{2}{3} \delta, A_{b}\right)$ as the maximal interval for which

$$
\begin{equation*}
0<y_{b}<\epsilon, \quad y_{b}^{\prime}<0, \quad y_{b}^{\prime \prime}<0 . \tag{3.8}
\end{equation*}
$$

From (1.1) we see that $y_{b}^{\prime \prime \prime}<0$ on $\left(T_{2, b_{e}}-\frac{2}{3} \delta, A_{b}\right)$. Thus, $0<y_{b}<\epsilon, y_{b}$ is decreasing, concave down, and $y_{b}^{\prime \prime}$ is decreasing on $\left(T_{2, b_{e}}-\frac{2}{3} \delta, A_{b}\right)$. Now A_{b} must be finite for if A_{b} were infinite then y_{b} would be decreasing and concave down for t large forcing y_{b} to become zero in a finite value of t contradicting the fact that $y_{b}>0$ for all t (since $b>b_{\epsilon}$). Thus, A_{b} is finite. Thus, either

$$
\begin{equation*}
y_{b}\left(A_{b}\right)=0 \quad \text { or } \quad y_{b}^{\prime}\left(A_{b}\right)=0 \quad \text { or } \quad y_{b}^{\prime \prime}\left(A_{b}\right)=0 . \tag{3.9}
\end{equation*}
$$

However, since $b>b_{\epsilon}, y_{b}>0$ for all t, the first condition is impossible. Also

$$
y_{b}\left(T_{2, b_{e}}-\frac{2}{3} \delta\right)<\epsilon, \quad y_{b}^{\prime}\left(T_{2, b_{e}}-\frac{2}{3} \delta\right)<0, \quad y_{b}^{\prime \prime}\left(T_{2, b_{e}}-\frac{2}{3} \delta\right)<0,
$$

and so from (3.8) we see that y_{b} is decreasing, concave down, and $y_{b}^{\prime \prime}$ is decreasing on $\left(T_{2, b_{e}}-\frac{2}{3} \delta, A_{b}\right)$. Thus

$$
y_{b}^{\prime}\left(A_{b}\right)<y_{b}^{\prime}\left(T_{2, b_{e}}-\frac{2}{3} \delta\right)<0,
$$

and

$$
y_{b}^{\prime \prime}\left(A_{b}\right)<y_{b}^{\prime \prime}\left(T_{2, b_{e}}-\frac{2}{3} \delta\right)<0
$$

which contradict (3.9). Thus the assumption that $T_{2, b_{e}}<\infty$ must be false and so $T_{2, b_{e}}=\infty$. This completes the proof of the lemma.

Lemma 3.4. $y_{b_{\epsilon}}(t)$ has a first critical point, $m_{1, \epsilon}>0$, which is a local maximum, and $y_{b_{e}}^{\prime}>0$ on ($0, m_{1, \epsilon}$). Also,

$$
\begin{equation*}
y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)>\epsilon, \quad y_{b_{\varepsilon}}^{\prime \prime}\left(m_{1, \epsilon}\right)<0, \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{\epsilon}\left(y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)\right)<F_{\epsilon}\left(L_{\epsilon}\right) . \tag{3.11}
\end{equation*}
$$

Proof. If not then $y_{b_{e}}^{\prime}(t)>0$ for all $t>0$. We will now show that this implies $y_{b_{e}}$ increases without bound. If not then

$$
\lim _{t \rightarrow \infty} y_{b_{\epsilon}}(t)=B_{\epsilon}<\infty .
$$

In this case, we see that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} y_{b_{\epsilon}}^{\prime \prime \prime}(t)=\frac{\left|B_{\epsilon}-\epsilon\right|^{\frac{1}{\lambda}}}{B_{\epsilon}^{1+\frac{2}{\lambda}}} \operatorname{sgn}\left(B_{\epsilon}-\epsilon\right) \equiv C_{\epsilon} . \tag{3.12}
\end{equation*}
$$

If $B_{\epsilon}>\epsilon$ then $y_{b_{e}}^{\prime \prime \prime} \geq C_{\epsilon}>0$ for large t and integrating three times we see that this would imply that $y_{b_{e}}$ would be increasing without bound contradicting the fact that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} y_{b_{\epsilon}}(t)=B_{\epsilon} . \tag{3.13}
\end{equation*}
$$

On the other hand if $0 \leq B_{\epsilon}<\epsilon$ then $y_{b_{\epsilon}}^{\prime \prime \prime} \leq C_{\epsilon}<0$ for large t and integrating twice we see that this would imply that $y_{b_{c}}$ is decreasing for large t contradicting the fact that we are assuming that $y_{b_{\epsilon}}^{\prime}(t)>0$ for all $t>0$. Thus it must be $B_{\epsilon}=\epsilon$ so that $y_{b_{\epsilon}}^{\prime}>0$ and $y_{b_{\epsilon}}<\epsilon$ for all $t>0$.

Next since $y_{b_{\epsilon}}^{\prime \prime}(0)=b_{\epsilon}>0$, we see that $y_{b_{e}}$ must have a first inflection point $p_{\epsilon}>0$ and $y_{b_{e}}^{\prime \prime}>0$ on $\left(0, p_{\epsilon}\right)$. Then from (1.1) we see that $y_{b_{\varepsilon}}^{\prime \prime}$ is decreasing for $t>0$ so it follows that $y_{b_{\epsilon}}^{\prime \prime \prime}<0$ for $t>p_{\epsilon}$, and it also follows that there is a $q_{\epsilon}>p_{\epsilon}$ such that

$$
y_{b_{\epsilon}}^{\prime \prime}<y_{b_{\epsilon}}^{\prime \prime}\left(q_{\epsilon}\right)<0 \text { for } t>q_{\epsilon} .
$$

Integrating on $\left(q_{\varepsilon}, t\right)$ gives

$$
y_{b_{\varepsilon}}^{\prime}<y_{b_{\epsilon}}^{\prime}\left(q_{\epsilon}\right)+y_{b_{\epsilon}}^{\prime \prime}\left(q_{\epsilon}\right)\left(t-q_{\epsilon}\right)
$$

which implies that $y_{b_{e}}^{\prime}<0$ for large enough t which contradicts that $y_{b_{e}}^{\prime}>0$ for $t>0$. Thus, we see that if $y_{b_{e}}^{\prime}>0$ for all $t>0$ then it must be the case that $y_{b_{e}}$ does not stay bounded on $[0, \infty)$.

In particular, then there is a $z_{\epsilon}>0$ with $y_{b_{\epsilon}}\left(z_{\epsilon}\right)=\epsilon$ and $y_{b_{\epsilon}}$ is increasing for all $t>0$. Thus from (1.1), $y_{b_{\epsilon}}^{\prime \prime \prime}>0$ for $t>z_{\epsilon}$. So there is a $q_{\epsilon}>z_{\epsilon}$ and a $c_{\epsilon}>0$ such that $y_{b_{\epsilon}}^{\prime \prime \prime}>c_{\epsilon}$ for $t>q_{\epsilon}$ hence

$$
y_{b_{\epsilon}}^{\prime \prime}(t)>y_{b_{\epsilon}}^{\prime \prime}\left(q_{\epsilon}\right)+c_{\epsilon}\left(t-q_{\epsilon}\right) \text { for } t>q_{\epsilon}
$$

and so we see that there is an r_{ϵ} such that $y_{b_{\epsilon}}^{\prime \prime}(t)>0$ for $t>r_{\epsilon}$. Integrating again we see that $y_{b_{e}}^{\prime}(t)>0$ for $t>r_{\epsilon}$ and another integration gives that $y_{b_{e}}(t)>\epsilon$ for $t>r_{\epsilon}$.

Now if $b<b_{\epsilon}$ and b is sufficiently close to b_{ϵ} then by Lemma $2.1 y_{b}>\epsilon, y_{b}^{\prime}>0$ and $y_{b}^{\prime \prime}>0$ for $r_{\epsilon}<t<r_{\epsilon}+1$. Then from (1.1) $y_{b}^{\prime \prime \prime}>0$ for $r_{\epsilon}<t<r_{\epsilon}+1$. Therefore, y_{b}, y_{b}^{\prime}, and $y_{b}^{\prime \prime}$ are increasing and $y_{b}>\epsilon$ for $r_{\epsilon}<t<r_{\epsilon}+1$ and so we see that these conditions continue to hold for $r_{\epsilon}<t<\infty$, but this contradicts the fact that for $b<b_{\epsilon}, y_{b}$ must have a zero. Thus we finally see that $y_{b_{e}}$ cannot be increasing for all $t>0$ and so we see that there exists $m_{1, \epsilon}>0$ such that

$$
y_{b_{e}}^{\prime}>0 \quad \text { on }\left(0, m_{1, \varepsilon}\right) \quad \text { and } \quad y_{b_{e}}^{\prime}\left(m_{1, \epsilon}\right)=0 .
$$

From calculus, it also follows that $y_{b_{\epsilon}}^{\prime \prime}\left(m_{1, \epsilon}\right) \leq 0$.
We next claim that $y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)>\epsilon$. First we suppose that $y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)<\epsilon$. Then

$$
E_{1, y_{b_{e}}}\left(m_{1, \epsilon}\right) \leq 0 \quad \text { and } \quad E_{1, y_{b_{e}}}^{\prime}\left(m_{1, \epsilon}\right)<0
$$

so that since $E_{1, y_{b e}}$ is decreasing (by (1.7a)), we see that $E_{1, y_{b_{e}}}<0$ for $t>m_{1, \epsilon}$. Thus

$$
0 \leq \frac{1}{2}\left(y_{b_{e}}^{\prime}\right)^{2}<\left(y_{b_{e}}-\epsilon\right) y_{b_{e}}^{\prime \prime} \quad \text { for } t>m_{1, \epsilon}
$$

and since $y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)<\epsilon$ we see that

$$
y_{b_{\varepsilon}}(t)<\epsilon \quad \text { for } t>m_{1, \epsilon} \quad \text { and } \quad y_{b_{e}}^{\prime \prime}(t)<0 \quad \text { for } t>m_{1, \epsilon}
$$

Since $y_{b_{\epsilon}}^{\prime}\left(m_{1, \epsilon}\right)=0$, this implies $y_{b_{\epsilon}}(t)$ will become 0 at some finite value of t contradicting Lemma 3.3. Thus we see that $y_{b_{\epsilon}}\left(m_{1, \epsilon}\right) \geq \epsilon$.

Next we suppose that $y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)=\epsilon$. In this case either

$$
y_{b_{\epsilon}}^{\prime \prime}\left(m_{1, \epsilon}\right)=0 \quad \text { or } \quad y_{b_{\epsilon}}^{\prime \prime}\left(m_{1, \epsilon}\right)<0 .
$$

If $y_{b_{e}}^{\prime \prime}\left(m_{1, \epsilon}\right)<0$ then $y_{b_{\epsilon}}<\epsilon$ on $\left(m_{1, \epsilon}, m_{1, \epsilon}+\delta\right)$ for some $\delta>0$. Hence $E_{1, y_{b_{e}}}^{\prime}<0$ on $\left(m_{1, \epsilon}, m_{1, \epsilon}+\right.$ $\delta)$ and by (1.7a) since $E_{1, y_{b_{e}}}\left(m_{1, \epsilon}\right)=0$ we see that $E_{1, y_{b_{e}}}(t)<0$ for $t>m_{1, \epsilon}$. Then as in the previous paragraph this implies $y_{b_{e}}(t)$ will become 0 at some finite value of t again contradicting Lemma 3.3.

Finally, we suppose that $y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)=\epsilon$ and $y_{b_{\varepsilon}}^{\prime \prime}\left(m_{1, \epsilon}\right)=0$. Since $y_{b_{\epsilon}}(t)<\epsilon$ for $0<t<$ $m_{1, \epsilon}$, we have $y_{b_{e}}^{\prime \prime \prime}(t)<0$ for $0<t<m_{1, \epsilon}$. Thus, $y_{b_{e}^{\prime \prime}}^{\prime \epsilon}(t)$ is decreasing for $0<t<m_{1, \epsilon}$. Since $y_{b_{e}}^{\prime \prime}\left(m_{1, \epsilon}\right)=0$ this implies $y_{b_{e}}^{\prime \prime}>0$ for $0<t<m_{1, \epsilon}$. However, the mean value theorem implies that there exists a c with $0<c<m_{1, \epsilon}$ such that

$$
0=y_{b_{\varepsilon}}^{\prime}\left(m_{1, \epsilon}\right)-y_{b_{e}}^{\prime}(0)=y_{b_{e}}^{\prime \prime}(c) m_{1, \epsilon}
$$

which contradicts with $y_{b_{e}}^{\prime \prime}>0$ for $0<t<m_{1, \epsilon}$.
Thus we demonstrate that $y_{b_{\varepsilon}}\left(m_{1, \epsilon}\right)>\epsilon$.
Next we show that $y_{b_{e}}^{\prime \prime}\left(m_{1, \epsilon}\right)<0$. From calculus it follows that $y_{b_{c}}^{\prime \prime}\left(m_{1, \epsilon}\right) \leq 0$. so we assume now by way of contradiction that $y_{b_{\epsilon}}^{\prime \prime}\left(m_{1, \epsilon}\right)=0$. This implies that $E_{1, y_{b_{e}}}\left(m_{1, \epsilon}\right)=0$. Also, since $y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)>\epsilon$ we see that $E_{1, y_{b_{e}}}^{\prime}\left(m_{1, \epsilon}\right)<0$ and since $E_{1, y_{b_{e}}}$ is decreasing (by (1.7a)) we see that

$$
\frac{1}{2}\left(y_{b_{e}}^{\prime}\right)^{2}-\left(y_{b_{e}}-\epsilon\right) y_{b_{e}}^{\prime \prime}=E_{1, y_{b_{e}}}<0 \quad \text { for } t>m_{1, \epsilon} .
$$

Thus there is a $\delta>0$ such that $E_{1, y_{b e}}<0$ for $t \geq m_{1, \epsilon}+\delta$. Thus for $b<b_{\epsilon}$ and b sufficiently close to b_{ϵ} we also have $E_{1, y_{b}}<0$ for $t \geq m_{1, \epsilon}+\delta$.

Also, perhaps by choosing a smaller δ if necessary, we see that

$$
y_{b_{\epsilon}}^{\prime}>0 \quad \text { on }\left(0, m_{1, \epsilon}-\delta\right] \quad \text { and } \quad y_{b_{\epsilon}}>\epsilon \quad \text { on }\left[m_{1, \epsilon}-\delta, m_{1, \epsilon}+\delta\right] .
$$

So by Lemma 2.1 and since $b_{\epsilon}>0$, if b is sufficiently close to b_{ϵ} then $y_{b}^{\prime}>0$ on $\left(0, m_{1, \epsilon}-\delta\right]$ and $y_{b}>\epsilon$ on $\left[m_{1, \epsilon}-\delta, m_{1, \epsilon}+\delta\right]$. Now if we choose $b>b_{\epsilon}$, then by definition of b_{ϵ} we see there exists an $r_{b}>m_{1, \epsilon}+\delta$ such that $y_{b}\left(r_{b}\right)=0$. Therefore by the intermediate value theorem there is a z_{b} with $m_{1, \epsilon}+\delta<z_{b}<r_{b}$ such that $y_{b}\left(z_{b}\right)=\epsilon$. Hence

$$
E_{1, y_{b}}\left(z_{b}\right)=\frac{1}{2}\left[y_{b}^{\prime}\left(z_{b}\right)\right]^{2} \geq 0 .
$$

On the other hand, we know from earlier that since $z_{b}>m_{1, \epsilon}+\delta$ then $E_{1, y_{b}}\left(z_{b}\right)<0$. Thus we obtain a contradiction. Therefore it must be that $y_{b_{c}}^{\prime \prime}\left(m_{1, \epsilon}\right)<0$.

Finally, since $E_{2, y_{b e}}$ is decreasing (by (1.7b)) and $E_{2, y_{b_{c}}}^{\prime}(0)<0$ we have

$$
E_{2, y_{b_{c}}}\left(m_{1, \epsilon}\right)<E_{2, y_{b_{e}}}(0)
$$

and hence (3.11) holds. This completes the proof of the lemma.

Lemma 3.5. $y_{b_{\epsilon}}(t)$ has a second critical point at $m_{2, \epsilon}>0$ which is a local minimum, and $y_{b_{e}}^{\prime}<0$ on ($m_{1, \epsilon}, m_{2, \epsilon}$). Also,

$$
\begin{equation*}
y_{b_{\epsilon}}\left(m_{2, \epsilon}\right)<\epsilon \quad \text { and } \quad y_{b_{\epsilon}}^{\prime \prime}\left(m_{2, \epsilon}\right)>0 \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{\epsilon}\left(y_{b_{\varepsilon}}\left(m_{2, \epsilon}\right)\right)<F_{\epsilon}\left(y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)\right) . \tag{3.15}
\end{equation*}
$$

Proof. The proof of this lemma is nearly identical to the proof of Lemma 3.4 and we omit it here.

In order to simplify notation a bit we now write $E_{1, \epsilon}, E_{2, \epsilon}$, and $E_{3, \epsilon}$ instead of $E_{1, y_{b c}}$, $E_{2, y_{b_{c}}}$, and $E_{3, y_{b_{e}}}$, respectively.

Continuing in this way we see that there is a sequence of extrema with

$$
m_{1, \epsilon}<m_{2, \epsilon}<m_{3, \epsilon}<m_{4, \epsilon}<\cdots
$$

such that the $m_{2 k, \epsilon}$ are local minima, the $m_{2 k-1, \epsilon}$ are local maxima, y is monotone of ($m_{n, \epsilon}, m_{n+1, \epsilon}$), and since $E_{2, \epsilon}$ is decreasing, we have

$$
F_{\epsilon}\left(y_{b_{\epsilon}}\left(m_{k+1, \epsilon}\right)\right)<F_{\epsilon}\left(y_{b_{\epsilon}}\left(m_{k, \epsilon}\right)\right) .
$$

Note that this implies

$$
\begin{equation*}
y_{b_{\epsilon}}\left(m_{2 k, \epsilon}\right)<y_{b_{\epsilon}}\left(m_{2 k+2, \epsilon}\right)<\epsilon \quad \text { and } \quad \epsilon<y_{b_{\epsilon}}\left(m_{2 k+1, \epsilon}\right)<y_{b_{\epsilon}}\left(m_{2 k-1, \epsilon}\right) . \tag{3.16}
\end{equation*}
$$

We now let

$$
\begin{equation*}
M_{\epsilon}=\lim _{n \rightarrow \infty} m_{n, \epsilon} \tag{3.17}
\end{equation*}
$$

and note that $M_{\epsilon} \leq \infty$.
Lemma 3.6. $y_{b_{\varepsilon}}(t)$ oscillates infinitely often, and

$$
\lim _{t \rightarrow M_{e}^{-}} y_{b_{e}}(t)=\epsilon, \quad \lim _{t \rightarrow M_{\varepsilon}^{-}} y_{b_{e}}^{\prime}(t)=0, \quad \lim _{t \rightarrow M_{\epsilon}^{-}} y_{b_{\varepsilon}}^{\prime \prime}(t)=0 .
$$

Proof. We have $0 \equiv m_{0, \epsilon}<m_{1, \epsilon}<m_{2, \epsilon}<m_{3, \epsilon}<\cdots$ and

$$
F_{\epsilon}\left(L_{\epsilon}\right)>F_{\epsilon}\left(y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)\right)>F_{\epsilon}\left(y_{b_{\epsilon}}\left(m_{2, \epsilon}\right)\right)>F_{\epsilon}\left(y_{b_{\epsilon}}\left(m_{3}, \epsilon\right)\right)>\cdots .
$$

Also, there exists $z_{k, \varepsilon}$ such that

$$
0<z_{1, \epsilon}<m_{1, \epsilon}<z_{2, \epsilon}<m_{2, \epsilon}<z_{3, \epsilon}<\cdots, \quad y_{b_{\epsilon}}\left(z_{n, \epsilon}\right)=\epsilon, \quad \lim _{n \rightarrow \infty} z_{n, \epsilon}=M_{\epsilon} .
$$

Next we observe that since $y_{b_{\epsilon}}^{\prime}\left(m_{k}\right)=y_{b_{\epsilon}}^{\prime}\left(m_{k+1}\right)=0$ the extrema of $y_{b_{\epsilon}}^{\prime}$ on $\left(m_{k, \epsilon}, m_{k+1, \epsilon}\right)$ must occur at points p where $y_{b_{e}}^{\prime \prime}(p)=0$ so

$$
\frac{1}{2}\left[y_{b_{\epsilon}}^{\prime}(p)\right]^{2}=E_{1, \epsilon}(p) \leq E_{1, \epsilon}(0)=\left(\epsilon-L_{\epsilon}\right) b_{\epsilon} .
$$

Thus for every $k \geq 0$

$$
\left|y_{b_{\epsilon}}^{\prime}(t)\right| \leq \sqrt{2\left(\epsilon-L_{\epsilon}\right) b_{\epsilon}} \equiv K_{\epsilon} \quad \text { on }\left[m_{k, \epsilon}, m_{k+1, \epsilon}\right] .
$$

Then since $m_{k, \epsilon} \rightarrow M_{\epsilon}$ as $k \rightarrow \infty$ we obtain

$$
\begin{equation*}
\left|y_{b_{\epsilon}}^{\prime}(t)\right| \leq \sqrt{2\left(\epsilon-L_{\epsilon}\right) b_{\epsilon}} \equiv K_{\epsilon} \quad \text { on }\left[0, M_{\epsilon}\right] . \tag{3.18}
\end{equation*}
$$

Next, since $E_{1, \epsilon}$ is decreasing, $E_{1, \epsilon}\left(z_{k, \epsilon}\right)=\frac{1}{2}\left[y_{b_{\epsilon}}^{\prime}\left(z_{k, \epsilon}\right)\right]^{2} \geq 0$, and $z_{k, \epsilon} \rightarrow M_{\epsilon}$ we see that

$$
\begin{equation*}
\lim _{t \rightarrow M_{e}^{-}} E_{1, \epsilon}(t)=e_{1, \epsilon} \geq 0 \tag{3.19}
\end{equation*}
$$

Integrating (1.7a) on ($0, t$) we obtain

$$
E_{1, \epsilon}(t)=\left(\epsilon-L_{\epsilon}\right) b_{\epsilon}-\int_{0}^{t}\left(y_{b_{\epsilon}}-\epsilon\right) f_{\epsilon}\left(y_{b_{\epsilon}}\right) .
$$

Using (3.19) and taking limits as $t \rightarrow M_{\epsilon}^{-}$give

$$
\left(\epsilon-L_{\epsilon}\right) b_{\epsilon}=e_{1, \epsilon}+\int_{0}^{M_{\epsilon}}\left(y_{b_{\epsilon}}-\epsilon\right) f_{\epsilon}\left(y_{b_{\epsilon}}\right) .
$$

Thus we see that

$$
\begin{equation*}
\int_{0}^{M_{\epsilon}}\left(y_{b_{\varepsilon}}-\epsilon\right) f_{\epsilon}\left(y_{b_{\epsilon}}\right) \text { is finite. } \tag{3.20}
\end{equation*}
$$

We have $y_{b_{c}}^{\prime \prime \prime}>0$ on $\left(z_{1, \epsilon}, m_{1, \epsilon}\right)$ so that $y_{b_{c}}^{\prime \prime}$ is increasing on ($z_{1, \epsilon}, m_{1, \epsilon}$). Also from Lemma 3.4 we know that $y_{b_{e}}^{\prime \prime}\left(m_{1, \epsilon}\right)<0$ therefore it follows that $y_{b_{\epsilon}}^{\prime \prime}<0$ on $\left(z_{1, \epsilon}, m_{1, \epsilon}\right)$. Therefore, $y_{b_{e}}$ is concave down on ($z_{1, \epsilon}, m_{1, \epsilon}$) and so it follows that

$$
\begin{equation*}
y_{b_{\varepsilon}}-\epsilon \geq \frac{y_{b_{e}}\left(m_{1, \epsilon}\right)-\epsilon}{m_{1, \epsilon}-z_{1, \epsilon}}\left(t-z_{1, \epsilon}\right) \quad \text { on } \quad\left(z_{1, \epsilon}, m_{1, \epsilon}\right) . \tag{3.21}
\end{equation*}
$$

Similarly, since $y_{b_{\epsilon}}^{\prime \prime}>0$ on $\left(z_{2, \epsilon}, m_{2, \epsilon}\right)$ we see that

$$
\begin{equation*}
y_{b_{\epsilon}}-\epsilon \leq \frac{y_{b_{\epsilon}}\left(m_{2, \epsilon}\right)-\epsilon}{m_{2, \epsilon}-z_{2, \epsilon}}\left(t-z_{2, \epsilon}\right) \quad \text { on }\left(z_{2, \epsilon}, m_{2, \epsilon}\right) . \tag{3.22}
\end{equation*}
$$

Thus, it follows from (3.21) that

$$
\begin{aligned}
& \int_{z_{1, \epsilon}}^{m_{1, \epsilon}}\left(y_{b_{\epsilon}}-\epsilon\right) f\left(y_{b_{\epsilon}}\right) \mathrm{d} t=\int_{z_{1, \epsilon}}^{m_{1, \epsilon}} \frac{\left|y_{b_{\epsilon}}-\epsilon\right|^{1+\frac{1}{\lambda}}}{y_{b_{e}}^{1+\frac{2}{\lambda}}} \mathrm{~d} t \\
\geq & \frac{1}{y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)^{1+\frac{2}{\lambda}}}\left|\frac{y_{b_{e}}\left(m_{1, \epsilon}\right)-\epsilon}{m_{1, \epsilon}-z_{1, \epsilon}}\right|^{1+\frac{1}{\lambda}} \int_{z_{1, \epsilon}}^{m_{1, \epsilon}}\left(t-z_{1, \epsilon}\right)^{1+\frac{1}{\lambda}} \mathrm{~d} t \\
= & \frac{\lambda}{2 \lambda+1} \frac{\mid y_{b_{\epsilon}}}{y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)-\left.\epsilon\right|^{1+\frac{2}{\lambda}}}\left(m_{1, \epsilon}-z_{1, \epsilon}\right) .
\end{aligned}
$$

Also, by the mean value theorem and (3.18) we have

$$
\begin{aligned}
\left|y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)-\epsilon\right| & =\left|y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)-y_{b_{\epsilon}}\left(z_{1, \epsilon}\right)\right| \\
& =\left|y_{b_{e}}^{\prime}\left(c_{1, \epsilon}\right)\right|\left|\left(m_{1, \epsilon}-z_{1, \epsilon}\right)\right| \leq K_{\epsilon}\left|m_{1, \epsilon}-z_{1, \epsilon}\right| .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\int_{z_{1, \epsilon}}^{m_{1, \epsilon}}\left(y_{b_{\epsilon}}-\epsilon\right) f_{\epsilon}\left(y_{b_{\epsilon}}\right) \geq \frac{\lambda\left|y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)-\epsilon\right|^{2+\frac{1}{\lambda}}}{(2 \lambda+1) K_{\epsilon} y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)^{1+\frac{2}{\lambda}}} . \tag{3.23}
\end{equation*}
$$

A similar inequality holds over $\left(z_{2, \epsilon}, m_{2, \epsilon}\right)$ and thus

$$
\int_{z_{2, \epsilon}}^{m_{2, \epsilon}}\left(y_{b_{\epsilon}}-\epsilon\right) f_{\epsilon}\left(y_{b_{\epsilon}}\right) \geq \frac{\lambda\left|y_{b_{\epsilon}}\left(m_{2, \epsilon}\right)-\epsilon\right|^{2+\frac{1}{\lambda}}}{(2 \lambda+1) K_{\epsilon} y_{b_{\epsilon}}\left(m_{2, \epsilon}\right)^{1+\frac{2}{\lambda}}} .
$$

Now using (3.16) we see that

$$
\int_{z_{2, \epsilon}}^{m_{2, \epsilon}}\left(y_{b_{\epsilon}}-\epsilon\right) f_{\epsilon}\left(y_{b_{\epsilon}}\right) \geq \frac{\lambda\left|y_{b_{\epsilon}}\left(m_{2, \epsilon}\right)-\epsilon\right|^{2+\frac{1}{\lambda}}}{(2 \lambda+1) K_{\epsilon} y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)^{1+\frac{2}{\lambda}}} .
$$

Similarly we can show

$$
\begin{equation*}
\int_{z_{k, \epsilon}}^{m_{k, \epsilon}}\left(y_{b_{\epsilon}}-\epsilon\right) f_{\epsilon}\left(y_{b_{\epsilon}}\right) \geq \frac{\lambda\left|y_{b_{\epsilon}}\left(m_{k, \epsilon}\right)-\epsilon\right|^{2+\frac{1}{\lambda}}}{(2 \lambda+1) K_{\epsilon} y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)^{1+\frac{2}{\lambda}}} . \tag{3.24}
\end{equation*}
$$

Next using (3.20) and the fact that $\left(y_{b_{\epsilon}}-\epsilon\right) f_{\epsilon}\left(y_{b_{\epsilon}}\right) \geq 0$ for all t we obtain

$$
\begin{aligned}
\infty & >\int_{0}^{M, \epsilon}\left(y_{b_{\varepsilon}}-\epsilon\right) f_{\epsilon}\left(y_{b_{\epsilon}}\right) \mathrm{d} t \\
& \geq \sum_{k=1}^{\infty} \int_{z_{k, \epsilon}}^{m_{k, \epsilon}}\left(y_{b_{\epsilon}}-\epsilon\right) f_{\epsilon}\left(y_{b_{\epsilon}}\right) \mathrm{d} t \\
& \geq \frac{\lambda}{(2 \lambda+1) K_{\epsilon} y_{b_{\epsilon}}\left(m_{1, \epsilon}\right)^{1+\frac{2}{\lambda}}} \sum_{k=1}^{\infty}\left|y_{b_{\epsilon}}\left(m_{k, \epsilon}\right)-\epsilon\right|^{2+\frac{1}{\lambda}} .
\end{aligned}
$$

Thus

$$
\sum_{k=1}^{\infty}\left|y_{b_{\epsilon}}\left(m_{k, \epsilon}\right)-\epsilon\right|^{2+\frac{1}{\lambda}}<\infty .
$$

Consequently,

$$
\lim _{k \rightarrow \infty}\left|y_{b_{\epsilon}}\left(m_{k, \epsilon}\right)-\epsilon\right|=0
$$

and since $m_{k, \epsilon} \rightarrow M_{\epsilon}^{-}$and the $m_{k, \epsilon}$ are extrema of $y_{b_{\epsilon}}$ we see that

$$
\begin{equation*}
\lim _{t \rightarrow M_{\epsilon}^{-}}\left|y_{b_{\epsilon}}(t)-\epsilon\right|=0 . \tag{3.25}
\end{equation*}
$$

Then by (1.1) we obtain

$$
\begin{equation*}
\lim _{t \rightarrow M_{\varepsilon}^{-}} y_{b_{e}}^{\prime \prime \prime}(t)=0 \tag{3.26}
\end{equation*}
$$

We also know that $E_{2, \epsilon}^{\prime} \leq 0$ (by (1.7b)) and by (1.7c) and (3.25) we know that $E_{3, \epsilon}^{\prime} \leq 0$ for t close to M_{ϵ} so that

$$
\begin{equation*}
\lim _{t \rightarrow M_{\varepsilon}^{-}} E_{2, \epsilon}(t)=e_{2, \epsilon}, \quad \lim _{t \rightarrow M_{\epsilon}^{-}} E_{3, \epsilon}(t)=e_{3, \epsilon} . \tag{3.27}
\end{equation*}
$$

Also since $E_{2, \epsilon}\left(m_{k, \epsilon}\right) \geq 0$ and $E_{3, \epsilon}\left(m_{k, \epsilon}\right) \geq 0$ and since $m_{k, \epsilon} \rightarrow M_{\epsilon}$ we see that

$$
\begin{equation*}
e_{2, \epsilon} \geq 0 \quad \text { and } \quad e_{3, \epsilon} \geq 0 . \tag{3.28}
\end{equation*}
$$

From (3.18) and (3.25) it follows that

$$
f_{\epsilon}\left(y_{b_{\epsilon}}\right) y_{b_{\epsilon}} \rightarrow 0 \quad \text { as } t \rightarrow M_{\epsilon}^{-} .
$$

Combining this with (3.27) we see that

$$
\lim _{t \rightarrow M_{e}^{-}} \frac{1}{2}\left(y_{b_{e}}^{\prime \prime}\right)^{2}=e_{3, \epsilon}
$$

Since $y_{b_{e}}^{\prime}$ is bounded (by (3.18)) we see that the only possibility is that $e_{3, \epsilon}=0$ thus

$$
\begin{equation*}
\lim _{t \rightarrow M_{\varepsilon}^{-}} y_{b_{e}}^{\prime \prime}=0 . \tag{3.29}
\end{equation*}
$$

Now using (3.19), (3.25), and (3.29) we see that

$$
\begin{equation*}
\lim _{t \rightarrow M_{\epsilon}^{-}} \frac{1}{2}\left(y_{b_{e}}^{\prime}\right)^{2}=\lim _{t \rightarrow M_{\bar{\varepsilon}}^{-}} E_{1, \epsilon}=e_{1, \epsilon} . \tag{3.30}
\end{equation*}
$$

Since $y_{b_{c}}$ is bounded (by (3.25)) we see that the only possibility is that $e_{1, \varepsilon}=0$ and so

$$
\begin{equation*}
\lim _{t \rightarrow M_{e}^{-}} y_{b_{e}}^{\prime}(t)=0 \tag{3.31}
\end{equation*}
$$

Using (3.25), (3.29), and (3.31) completes the proof of the lemma.
One final note, if $M_{\epsilon}<\infty$ then since

$$
\lim _{t \rightarrow M_{\epsilon}^{-}} y_{b_{e}}(t)=\epsilon, \quad \lim _{t \rightarrow M_{\varepsilon}^{-}} y_{b_{e}}^{\prime}(t)=0, \quad \lim _{t \rightarrow M_{\epsilon}^{-}} y_{b_{e}}^{\prime \prime}(t)=0,
$$

we see that we may extend $y_{b_{\epsilon}}(t)$ for $t \geq M_{\epsilon}$ by simply defining

$$
y_{b_{\epsilon}}(t) \equiv \epsilon \quad \text { for } t \geq M_{\epsilon} .
$$

Then whether $M_{\epsilon}<\infty$ or $M_{\epsilon}=\infty$ we see that

$$
\lim _{t \rightarrow \infty} y_{b_{e}}(t)=\epsilon .
$$

4 Determination of $\lim _{\epsilon \rightarrow 0} y_{b_{\epsilon}}(t)$

Lemma 4.1. Let L_{ϵ} be defined by (1.5). Then

$$
\begin{equation*}
L_{\epsilon}=L_{1} \epsilon \quad \text { where } 0<L_{1}<1 \tag{4.1}
\end{equation*}
$$

Proof. First we denote

$$
\begin{equation*}
I=\int_{1}^{\infty} \frac{(t-1)^{\frac{1}{\lambda}}}{t^{1+\frac{2}{\lambda}}} \mathrm{~d} t \tag{4.2}
\end{equation*}
$$

Next, by definition we have

$$
F_{\epsilon}(y)=\int_{\epsilon}^{y} \frac{|s-\epsilon|^{\frac{1}{\lambda}} \operatorname{sgn}(s-\epsilon)}{s^{1+\frac{2}{\lambda}}} \mathrm{~d} s .
$$

Making the change of variables $s=\epsilon t$ we obtain

$$
\begin{equation*}
F_{\epsilon}(y)=\epsilon^{-\frac{1}{\lambda}} F_{1}(y / \epsilon) \tag{4.3}
\end{equation*}
$$

Hence, by (1.4b), (4.2), and (4.3) we see that

$$
F_{\epsilon, \infty}=\lim _{y \rightarrow \infty} F_{\epsilon}(y)=\epsilon^{-\frac{1}{\lambda}} \int_{1}^{\infty} \frac{(t-1)^{\frac{1}{\lambda}}}{t^{1+\frac{2}{\lambda}}} \mathrm{~d} t=\epsilon^{-\frac{1}{\lambda}} I
$$

Also, by the statement after (1.4b) and (4.3) we see that

$$
\epsilon^{-\frac{1}{\lambda}} \int_{\frac{L_{\epsilon}}{\epsilon}}^{1} \frac{(1-t)^{\frac{1}{\lambda}}}{t^{1+\frac{2}{\lambda}}} \mathrm{~d} t=F_{\epsilon}\left(L_{\epsilon}\right)=F_{\epsilon, \infty}=\epsilon^{-\frac{1}{\lambda}} I
$$

So we see from (4.2) and the above line that

$$
\int_{1}^{\infty} \frac{(t-1)^{\frac{1}{\lambda}}}{t^{1+\frac{2}{\lambda}}} \mathrm{~d} t=I=\int_{\frac{L_{e}}{\epsilon}}^{1} \frac{(1-t)^{\frac{1}{\lambda}}}{t^{1+\frac{2}{\lambda}}} \mathrm{~d} t
$$

which implies that L_{ϵ} / ϵ is independent of ϵ since I does not depend on ϵ (by (4.2)). Thus $L_{\epsilon} / \epsilon=L_{1}$. Also, from the statement after (1.4b) we see that $0<L_{\epsilon}<\epsilon$ and thus $0<L_{1}<1$. This completes the proof of the lemma.

Lemma 4.2. If

$$
\begin{equation*}
b>\left[3 f_{\epsilon}^{2}\left(L_{\epsilon}\right)\left(\epsilon-L_{\epsilon}\right)\right]^{\frac{1}{3}} \tag{4.4}
\end{equation*}
$$

then $y_{b}(t)>0$ for all $t \geq 0$ (and thus $b \notin S$ (see (3.3))). Hence,

$$
\begin{equation*}
b_{\epsilon} \leq\left[3 f_{\epsilon}^{2}\left(L_{\epsilon}\right)\left(\epsilon-L_{\epsilon}\right)\right]^{\frac{1}{3}} \tag{4.5}
\end{equation*}
$$

Proof. Since

$$
y_{b}(0)=L_{\epsilon}, \quad y_{b}^{\prime}(0)=0, \quad y_{b}^{\prime \prime}(0)=b>0,
$$

it follows that $y_{b}(t)$ is initially increasing and so $y_{b}(t)>L_{\epsilon}$ on $(0, \delta)$ for some $\delta>0$. So on this interval we have

$$
y_{b}^{\prime \prime \prime}>f_{\epsilon}\left(L_{\epsilon}\right) .
$$

Successively integrating on $(0, t]$ we get

$$
y_{b}^{\prime \prime}>b+t f_{\epsilon}\left(L_{\epsilon}\right), \quad y_{b}^{\prime}>b t+\frac{t^{2} f_{\epsilon}\left(L_{\epsilon}\right)}{2}, \quad y_{b}>L_{\epsilon}+\frac{b t^{2}}{2}+\frac{t^{3} f_{\epsilon}\left(L_{\epsilon}\right)}{6} .
$$

Next, we observe that

$$
y_{b}^{\prime}>0, \quad y_{b}^{\prime \prime}>0 \quad \text { for } 0<t \leq \frac{b}{\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|} .
$$

From the inequality for y_{b} and (4.4) we see that

$$
y_{b}\left(\frac{b}{\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|}\right)>L_{\epsilon}+\frac{b^{3}}{3\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|^{2}}>L_{\epsilon}+\epsilon-L_{\epsilon}=\epsilon .
$$

Then since

$$
y_{b}^{\prime}\left(\frac{b}{\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|}\right)>0, \quad y_{b}^{\prime \prime}\left(\frac{b}{\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|}\right)>0,
$$

it follows from (1.1) that

$$
y_{b}^{\prime \prime \prime}\left(\frac{b}{\left|f_{\varepsilon}\left(L_{\epsilon}\right)\right|}\right)>0 .
$$

This in fact implies hence $y_{b}^{\prime}>0$ and $y_{b}^{\prime \prime}>0$ for all $t>b /\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|$ so that in fact $y_{b}(t)>0$ for all $t \geq 0$. This completes the proof of the lemma.

Lemma 4.3.

$$
b_{\epsilon} \leq \frac{Q}{\epsilon^{\frac{1}{3}+\frac{2}{3 \lambda}}} \quad \text { where } Q=\left(\frac{3\left(1-L_{1}\right)^{1+\frac{2}{\lambda}}}{L_{1}^{2+\frac{4}{\lambda}}}\right)^{\frac{1}{3}} .
$$

Proof. We know that $L_{\epsilon}=L_{1} \epsilon$ by Lemma 4.1 so that

$$
\left|f_{\epsilon}\left(L_{\epsilon}\right)\right|=\left|f_{\epsilon}\left(L_{1} \epsilon\right)\right|=\frac{\left(1-L_{1}\right)^{\frac{1}{\lambda}}}{L_{1}^{1+\frac{2}{\lambda}}} \frac{1}{\epsilon^{1+\frac{1}{\lambda}}} .
$$

Substituting this equation and that $L_{\epsilon}=L_{1} \epsilon$ into the consequence of Lemma 4.2 we see that

$$
b_{\epsilon}^{3} \leq 3 f_{\epsilon}^{2}\left(L_{\epsilon}\right)\left(\epsilon-L_{\epsilon}\right)=\frac{3\left(1-L_{1}\right)^{\frac{2}{\lambda}}}{L_{1}^{2+\frac{4}{\lambda}}} \frac{1}{\epsilon^{2+\frac{2}{\lambda}}}\left(1-L_{1}\right) \epsilon=\frac{Q^{3}}{\epsilon^{1+\frac{2}{\lambda}}} .
$$

Taking cube roots we see that this completes the proof of the lemma.

Lemma 4.4. $y_{b_{e}} \rightarrow 0$ and $y_{b_{e}}^{\prime} \rightarrow 0$ uniformly on compact subsets of $[0, \infty)$.
Proof. Since $E_{1, \epsilon}$ is decreasing by (1.7a), for $t \geq 0$ we have by Lemma 4.3 that

$$
\begin{align*}
& \frac{1}{2}\left(y_{b_{\epsilon}}^{\prime}\right)^{2}-\left(y_{b_{e}}-\epsilon\right) y_{b_{\epsilon}}^{\prime \prime} \\
= & E_{1, \epsilon} \leq E_{1, \epsilon}(0)=\left(\epsilon-L_{\epsilon}\right) b_{\epsilon} \leq \epsilon b_{\epsilon} \leq Q \epsilon^{\frac{2}{3}\left(1-\frac{1}{\lambda}\right) .} . \tag{4.6}
\end{align*}
$$

Also, since

$$
y_{b_{e}}^{\prime}(0)=0 \quad \text { and } \quad \lim _{t \rightarrow M_{\varepsilon}^{-}} y_{b_{e}}^{\prime}(t)=0 \quad \text { (by Lemma 3.6) }
$$

we see that the maximum of $\left|y_{b_{e}}^{\prime}\right|$ occurs at some point p where $y_{b_{e}}^{\prime \prime}(p)=0$. Evaluating (4.6) at p gives

$$
\frac{1}{2}\left(y_{b_{e}}^{\prime}(p)\right)^{2} \leq Q \epsilon^{\frac{2}{3}\left(1-\frac{1}{\lambda}\right)}
$$

Thus

$$
\left|y_{b_{e}}^{\prime}(t)\right| \leq \sqrt{2 Q} \epsilon^{\frac{1}{3}\left(1-\frac{1}{\lambda}\right)} \quad \text { for all } t \geq 0 .
$$

Consequently,

$$
\left|y_{b_{e}}^{\prime}(t)\right| \rightarrow 0 \text { uniformly on }[0, \infty) .
$$

Now letting $P>0$ and integrating on $[0, P]$ we see that

$$
\left|y_{b_{e}}(t)-L_{\epsilon}\right| \leq P \sqrt{2 Q} \epsilon^{\frac{1}{3}\left(1-\frac{1}{\lambda}\right)}
$$

and since $L_{\epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0$ (by Lemma 4.1) we see that $y_{b_{e}}(t) \rightarrow 0$ uniformly on compact subsets of $[0, \infty)$. This completes the proof of the lemma.

We now investigate the behavior of $y_{b_{e}}(t)$ as $t \rightarrow-\infty$. From Lemma 2.3 we know that

$$
y_{b_{e}}^{\prime}(t)<0, \quad y_{b_{e}}^{\prime \prime}(t)>0 \quad \text { for } t<0 \quad \text { and } \quad \lim _{t \rightarrow-\infty} y_{b_{e}}(t)=\infty .
$$

Thus, for t sufficiently negative we have that

$$
y_{b_{e}}(t)>\left(1+\frac{1}{\lambda+1}\right) \epsilon
$$

and thus by (1.7c) $E_{3, \epsilon}^{\prime} \geq 0$ if t is sufficiently negative. Thus, there exists $t_{0, \epsilon}<0$ such that $E_{3, \epsilon}(t) \leq E_{3, \epsilon}\left(t_{0, \epsilon}\right)$ for $t<t_{0, \epsilon}$. Thus,

$$
\frac{1}{2}\left(y_{b_{\epsilon}}^{\prime \prime}\right)^{2}-f_{\epsilon}\left(y_{b_{\epsilon}}\right) y_{b_{\epsilon}}^{\prime} \leq E_{3, \epsilon}\left(t_{0, \epsilon}\right) \quad \text { for } t<t_{0, \epsilon} .
$$

Since $y_{b_{\epsilon}}^{\prime}<0$ for $t<0$ and $y_{b_{\epsilon}}>\left(1+\frac{1}{\lambda+1}\right) \epsilon>\epsilon$ for $t<t_{0, \epsilon}$ we see that

$$
0 \leq \frac{1}{2}\left(y_{b_{\epsilon}}^{\prime \prime}\right)^{2} \leq E_{3, \epsilon}\left(t_{0, \epsilon}\right), \quad 0 \leq-f_{\epsilon}\left(y_{b_{\epsilon}}\right) y_{b_{\epsilon}}^{\prime} \leq E_{3, \epsilon}\left(t_{0, \epsilon}\right) \quad \text { for } t<t_{0, \epsilon} \text {. }
$$

Thus $E_{3, \epsilon}(t) \geq 0$ for $t<t_{0, \epsilon}$ and since $E_{3, \epsilon}(t)$ is increasing for $t<t_{0, \epsilon}$ it follows that

$$
\lim _{t \rightarrow-\infty} E_{3, \epsilon}(t)=e_{3, \epsilon} \geq 0
$$

Since $y_{b_{\epsilon}}^{\prime \prime \prime}=f_{\epsilon}\left(y_{b_{\epsilon}}\right)>0$ for $t<t_{0, \epsilon}$, we see that $y_{b_{\epsilon}}^{\prime \prime}$ is increasing for $t<t_{0, \epsilon}$ and since we also have $y_{b_{e}}^{\prime \prime}>0$ for $t<0$, it follows that

$$
\lim _{t \rightarrow-\infty} y_{b_{\epsilon}}^{\prime \prime}(t)=A_{\epsilon} \geq 0
$$

Combining this with the fact that $E_{3, \epsilon}$ has a limit as $t \rightarrow-\infty$ it follows that

$$
\lim _{t \rightarrow-\infty}-f_{\epsilon}\left(y_{b_{\epsilon}}\right) y_{b_{\epsilon}}^{\prime}=G_{\epsilon} \geq 0
$$

Lemma 4.5.

$$
\lim _{t \rightarrow-\infty} f_{\epsilon}\left(y_{b_{\epsilon}}\right) y_{b_{\epsilon}}^{\prime}=0
$$

Proof. Suppose that $G_{\epsilon}>0$. Then there exists a sufficiently negative $t_{1, \epsilon}$ such that

$$
-f_{\epsilon}\left(y_{b_{\epsilon}}\right) y_{b_{\epsilon}}^{\prime} \geq \frac{G_{\epsilon}}{2} \quad \text { for } t<t_{1, \epsilon}
$$

Therefore

$$
\int_{t}^{t_{1, \epsilon}}-f_{\epsilon}\left(y_{b_{\epsilon}}\right) y_{b_{\epsilon}}^{\prime} \mathrm{d} s \geq \int_{t}^{t_{1, \epsilon}} \frac{G_{\epsilon}}{2} \mathrm{~d} s
$$

so that

$$
\infty>F_{\epsilon, \infty} \geq F_{\epsilon}\left(y_{b_{\epsilon}}(t)\right) \geq-F_{\epsilon}\left(y_{b_{\epsilon}}\left(t_{1, \epsilon}\right)\right)+F_{\epsilon}\left(y_{b_{\epsilon}}(t)\right) \geq \frac{G_{\epsilon}}{2}\left(t_{1, \epsilon}-t\right) \quad \text { for } t<t_{1, \epsilon}
$$

However, as $t \rightarrow-\infty$ the right hand side goes to ∞ as $t \rightarrow-\infty$ which is a contradiction to the above inequality. Hence it must be that $G_{\epsilon}=0$. This completes the proof of the lemma.

Lemma 4.6.

$$
\lim _{t \rightarrow-\infty} \frac{-y_{b_{\epsilon}}^{\prime}}{\sqrt{y_{b_{\epsilon}}-\epsilon}}=\sqrt{2 A_{\epsilon}}
$$

Proof. Since $E_{1, \epsilon}^{\prime} \leq 0$ and $E_{1, \epsilon}(0)=\left(\epsilon-L_{\epsilon}\right) b_{\epsilon} \geq 0$, it follows that $E_{1, \epsilon} \geq 0$ for $t \leq 0$. Since $y_{b_{\epsilon}}^{\prime}(t)<0$ for $t<0$ and $y_{b_{\epsilon}}(t)>\epsilon$ for t sufficiently negative we see that

$$
\left(\frac{-y_{b_{\epsilon}}^{\prime}}{\sqrt{y_{b_{\epsilon}}-\epsilon}}\right)^{\prime}=\frac{E_{1, \epsilon}}{\left(y_{b_{\epsilon}}-\epsilon\right)^{\frac{3}{2}}}>0
$$

for t sufficiently negative. Thus the function within the bracket above is positive and increasing for t sufficiently negative. Consequently,

$$
\lim _{t \rightarrow-\infty} \frac{-y_{b_{\epsilon}}^{\prime}}{\sqrt{y_{b_{\epsilon}}-\epsilon}}=V_{\epsilon} \geq 0
$$

Also, since

$$
0 \leq E_{1, \epsilon}=\frac{1}{2}\left(y_{b_{\epsilon}}^{\prime}\right)^{2}-\left(y_{b_{\varepsilon}}-\epsilon\right) y_{b_{\epsilon}}^{\prime \prime} \quad \text { for } t<0
$$

and $y_{b_{\epsilon}}(t)>\epsilon$, for t sufficiently negative we have

$$
\frac{\left(y_{b_{e}^{\prime}}^{\prime}\right)^{2}}{y_{b_{e}}-\epsilon} \geq 2 y_{b_{e}}^{\prime \prime} .
$$

Taking limits as $t \rightarrow-\infty$ we obtain $V_{\epsilon}^{2} \geq 2 A_{\epsilon}$. Thus, if $V_{\epsilon}=0$ then $A_{\epsilon}=0$. If $V_{\epsilon}>0$, then since $y_{b_{\epsilon}}(t) \rightarrow \infty$ as $t \rightarrow-\infty$ then also $-y_{b_{e}}^{\prime} \rightarrow \infty$ as $t \rightarrow-\infty$. Thus we may apply L'Hopital's rule and obtain

$$
V_{\epsilon}^{2}=\lim _{t \rightarrow-\infty} \frac{\left(y_{b_{\epsilon}}^{\prime}\right)^{2}}{y_{b_{\epsilon}}-\epsilon}=\lim _{t \rightarrow-\infty} \frac{2 y_{b_{\epsilon}}^{\prime} y_{b_{\epsilon}}^{\prime \prime}}{y_{b_{\epsilon}}^{\prime}}=2 A_{\epsilon} .
$$

Thus in all cases we obtain $V_{\epsilon}=\sqrt{2 A_{\epsilon}}$. This completes the proof of the lemma.
We now define

$$
\begin{equation*}
w_{\epsilon}(t)=\frac{1}{\epsilon} y_{b_{\epsilon}}\left(\epsilon^{\frac{2 \lambda+1}{3 \lambda} t}\right) \tag{4.7}
\end{equation*}
$$

and observe that w_{ϵ} satisfies

$$
\begin{equation*}
\frac{w_{\epsilon}(t)}{|t|^{\frac{3 \lambda}{2 \lambda+1}}}=\frac{y_{b_{e}}(s)}{|s|^{\frac{3 \lambda}{2 \lambda+1}}}, \quad \frac{w_{\epsilon}^{\prime}(t)}{|t|^{\frac{\lambda-1}{2 \lambda+1}}}=\frac{y_{b_{e}}^{\prime}(s)}{|s|^{\frac{\lambda-1}{2 \lambda+1}}}, \quad|t|^{\frac{\lambda+2}{2 \lambda+1}} w_{\epsilon}^{\prime \prime}(t)=|s|^{\frac{\lambda+2}{2 \lambda+1}} y_{b_{e}}^{\prime \prime}(s), \tag{4.8}
\end{equation*}
$$

where $s=\epsilon^{\frac{2 \lambda+1}{3 \lambda}} t$. Also, we see that w_{ϵ} satisfies

$$
\begin{align*}
& w_{\epsilon}^{\prime \prime \prime}=\frac{\left|w_{\epsilon}-1\right|^{\frac{1}{\lambda}}}{w_{\epsilon}^{1+\frac{2}{\lambda}}} \operatorname{sgn}\left(w_{\epsilon}-1\right)=f_{1}\left(w_{\epsilon}\right), \tag{4.9}\\
& w_{\epsilon}(0)=\frac{L_{\epsilon}}{\epsilon}=L_{1} \text { by Lemma 4.1, } \\
& w_{\epsilon}^{\prime}(0)=0, \quad w_{\epsilon}^{\prime \prime}(0)=e^{\frac{1}{3}+\frac{2}{3 \lambda}} b_{\epsilon} .
\end{align*}
$$

We also define

$$
\begin{align*}
& \tilde{E}_{1, \epsilon}=\frac{1}{2}\left(w_{\epsilon}^{\prime}\right)^{2}-\left(w_{\epsilon}-1\right) w_{\epsilon}^{\prime \prime}, \quad \tilde{E}_{2, \epsilon}=F_{1}\left(w_{\epsilon}\right)-w_{\epsilon}^{\prime} w_{\epsilon}^{\prime \prime} \tag{4.10}\\
& \tilde{E}_{3, \epsilon}=\frac{1}{2}\left(w_{\epsilon}^{\prime \prime}\right)^{2}-f_{1}\left(w_{\epsilon}\right) w_{\epsilon}^{\prime} . \tag{4.11}
\end{align*}
$$

Note that

$$
\begin{align*}
& \tilde{E}_{1, \epsilon}^{\prime}=-\left(w_{\epsilon}-1\right) w_{\epsilon}^{\prime \prime \prime}=-\left(w_{\epsilon}-1\right) f_{1}\left(w_{\epsilon}\right)=-\frac{\left|w_{\epsilon}-1\right|^{1+\frac{1}{\lambda}}}{w_{\epsilon}^{1+\frac{2}{\lambda}}} \leq 0, \tag{4.12}\\
& \tilde{E}_{2, \epsilon}^{\prime}=-\left(w_{\epsilon}^{\prime \prime}\right)^{2} \leq 0 \tag{4.13}\\
& \tilde{E}_{3, \epsilon}^{\prime}=-f_{1}^{\prime}\left(w_{\epsilon}\right)\left(w_{\epsilon}^{\prime}\right)^{2} \tag{4.14}
\end{align*}
$$

so that

$$
\tilde{E}_{3, \epsilon}^{\prime} \leq 0 \quad \text { for } 0<w_{\epsilon} \leq 1+\frac{1}{\lambda+1} \quad \text { and } \quad \tilde{E}_{3, \epsilon}^{\prime} \geq 0 \quad \text { for } w_{\epsilon} \geq 1+\frac{1}{\lambda+1}
$$

In Lemma 4.3 we showed that $\epsilon^{\frac{1}{3}+\frac{2}{3 \lambda}} b_{\epsilon} \leq Q$, where Q is independent of ϵ. Thus there is a subsequence of the ϵ (still denoted ϵ) such that

$$
\lim _{\epsilon \rightarrow 0} \epsilon^{\frac{1}{3}+\frac{2}{3 x}} b_{\epsilon}=c_{0} \geq 0
$$

and for which w_{ϵ} converges uniformly on compact sets to w_{0} and w_{0} satisfies

$$
\begin{align*}
& w_{0}^{\prime \prime \prime}=\frac{\left|w_{0}-1\right|^{\frac{1}{\lambda}}}{w_{0}^{1+\frac{2}{\lambda}}} \operatorname{sgn}\left(w_{0}-1\right)=f_{1}\left(w_{0}\right), \tag{4.15a}\\
& w_{0}(0)=L_{1}, \quad w_{0}^{\prime}(0)=0, \quad w_{0}^{\prime \prime}(0)=c_{0} \geq 0 . \tag{4.15b}
\end{align*}
$$

We note in fact that $c_{0}>0$ for if $c_{0}=0$ then since $w_{0}^{\prime \prime \prime}(0)<0$ we see that $w_{0}^{\prime \prime}$ is decreasing near $t=0$ so that $w_{0}^{\prime \prime}<0$ for $t>0$ and t small. From (4.10) it follows that w_{0} continues to be concave down and decreasing so that w_{0} becomes 0 at some finite value of t, say t_{0}. Since $w_{\epsilon} \rightarrow w_{0}$ uniformly on compact sets and since $w_{\epsilon}>0$ (since $y_{b_{\epsilon}}>0$ by Lemma 3.3) then w_{ϵ} must have a local minimum, t_{ϵ}, near t_{0} and $w_{\epsilon}\left(t_{\epsilon}\right)<L_{1}$. However, this implies from (4.13)

$$
F_{1}\left(w_{\epsilon}\left(t_{\epsilon}\right)\right)=\tilde{E}_{2, \epsilon}\left(t_{\epsilon}\right) \leq \tilde{E}_{2}(0)=F_{1}\left(L_{1}\right) .
$$

On the other hand, since $0<w_{\epsilon}\left(t_{\epsilon}\right)<L_{1}$ and F_{1} is decreasing on $\left(0, L_{1}\right)$ we have $F_{1}\left(w_{\epsilon}\left(t_{\epsilon}\right)\right)>$ $F_{1}\left(L_{1}\right)$ which is a contradiction. Thus $c_{0}>0$.

Lemma 4.7.

$$
\lim _{t \rightarrow-\infty} w_{\epsilon}^{\prime \prime}(t)=0 \quad \text { for } \epsilon>0
$$

Proof. From Lemma 2.3 it follows that $y_{b_{c}}^{\prime}<0$ and $y_{b_{c}}^{\prime \prime}>0$ for $t<0$ and also that $y_{b_{e}} \rightarrow \infty$ as $t \rightarrow-\infty$. Hence from (4.7) we see that $w_{\epsilon}^{\prime}<0$ and $w_{\epsilon}^{\prime \prime}>0$ for $t<0$ and also that $w_{\epsilon} \rightarrow \infty$ as $t \rightarrow-\infty$. Thus, $w_{0}^{\prime} \leq 0, w_{0}^{\prime \prime} \geq 0$, and $w_{0} \rightarrow \infty$ as $t \rightarrow-\infty$.

Thus from (4.14) we see that $\tilde{E}_{3, \epsilon}^{\prime} \geq 0$ for t sufficiently negative. Thus $\tilde{E}_{3, \epsilon}$ defined by (4.11) is increasing for t sufficiently negative and since $-f_{1}\left(w_{\epsilon}\right) w_{\epsilon}^{\prime} \geq 0$ for t sufficiently negative we see that $0 \leq \frac{1}{2}\left(w_{\epsilon}^{\prime \prime}\right)^{2}$ and $0 \leq-f_{1}\left(w_{\epsilon}\right) w_{\epsilon}^{\prime}$ are both bounded above for t sufficiently negative. Also, $w_{\epsilon}^{\prime \prime \prime}>0$ for t sufficiently negative and since $w_{\epsilon}^{\prime \prime}>0$ for t sufficiently negative, it follows that

$$
\lim _{t \rightarrow-\infty} w_{\epsilon}^{\prime \prime}(t)=H_{\epsilon} \quad \text { for some } H_{\epsilon} \geq 0
$$

Assume now by the way of contradiction that $H_{\epsilon}>0$. Then it follows that

$$
\lim _{t \rightarrow-\infty} w_{\epsilon}^{\prime}=-\infty
$$

and it follows then from L'Hopital's rule that

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} \frac{w_{\epsilon}^{\prime}(t)}{t}=H_{\epsilon}, \quad \lim _{t \rightarrow-\infty} \frac{w_{\epsilon}(t)}{t^{2}}=\frac{H_{\epsilon}}{2}, \quad \lim _{t \rightarrow-\infty} \frac{\left(w_{\epsilon}^{\prime}\right)^{2}}{w_{\epsilon}-1}=2 H_{\epsilon} . \tag{4.16}
\end{equation*}
$$

Integrating (4.9) for t sufficiently negative when $w_{\epsilon} \geq 1$ we obtain

$$
w_{\epsilon}^{\prime \prime}-H_{\epsilon}=\int_{-\infty}^{t} \frac{\left[w_{\epsilon}-1\right]^{\frac{1}{\lambda}}}{w_{\epsilon}^{1+\frac{2}{\lambda}}} \mathrm{~d} t=\int_{-\infty}^{t} \frac{1}{w_{\epsilon}^{1+\frac{1}{\lambda}}}\left(1-\frac{1}{w_{\epsilon}}\right)^{\frac{1}{\lambda}} \mathrm{~d} t .
$$

Using L'Hopital's rule and (4.16) it follows that

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}|t|^{1+\frac{2}{\lambda}}\left[w_{\epsilon}^{\prime \prime}-H_{\epsilon}\right]=\frac{\lambda}{\lambda+2}\left(\frac{2}{H_{\epsilon}}\right)^{1+\frac{1}{\lambda}} \tag{4.17}
\end{equation*}
$$

Also, we know from (4.12) that $\tilde{E}_{1, \epsilon}$ defined by (4.10) satisfies

$$
\tilde{E}_{1, \epsilon}^{\prime}=-\frac{\left|w_{\epsilon}-1\right|^{1+\frac{1}{\lambda}}}{w_{\epsilon}^{1+\frac{2}{\lambda}}}=-\frac{1}{w_{\epsilon}^{\frac{1}{\lambda}}}\left|1-\frac{1}{w_{\epsilon}}\right|^{1+\frac{1}{\lambda}}
$$

and so integrating on $(t, 0)$ gives:

$$
\tilde{E}_{1, \epsilon}=\frac{1}{2}\left(w_{\epsilon}^{\prime}\right)^{2}-\left(w_{\epsilon}-1\right) w_{\epsilon}^{\prime \prime}=\tilde{E}_{1, \epsilon}(0)+\int_{t}^{0} \frac{1}{w_{\epsilon}^{\frac{1}{\lambda}}}\left|1-\frac{1}{w_{\epsilon}}\right|^{\frac{1}{\lambda}+1} \mathrm{~d} t .
$$

We now first consider the case where $1<\lambda<2$. The integral on the right converges as $t \rightarrow-\infty$ since $\lim _{t \rightarrow-\infty} w_{\epsilon} / t^{2}=H_{\epsilon} / 2$ and $\lambda<2$ (by (1.3)). Thus, $\tilde{E}_{1, \epsilon}(t) \rightarrow J_{\epsilon}$ for some J_{ϵ} as $t \rightarrow-\infty$ and thus for t sufficiently negative

$$
\frac{1}{2}\left(w_{\epsilon}^{\prime}\right)^{2}-\left(w_{\epsilon}-1\right) w_{\epsilon}^{\prime \prime}-J_{\epsilon}=-\int_{-\infty}^{t} \frac{1}{w_{\epsilon}^{\frac{1}{\lambda}}}\left(1-\frac{1}{w_{\epsilon}}\right)^{\frac{1}{\lambda}+1} \mathrm{~d} t .
$$

Also, since $w_{\epsilon}(0)=L_{1}<1$ and $w_{\epsilon} \rightarrow \infty$ as $t \rightarrow-\infty$ it follows then that there exists a $t_{1, \epsilon}<0$ such that $w_{\epsilon}\left(t_{1, \epsilon}\right)=1$. Then we see since $\tilde{E}_{1, \epsilon}^{\prime} \leq 0$ (by (4.12)) that

$$
J_{\epsilon} \geq \tilde{E}_{1, \epsilon}\left(t_{1, \epsilon}\right)=\frac{1}{2}\left(w_{\epsilon}^{\prime}\left(t_{1, \epsilon}\right)\right)^{2} \geq 0 .
$$

Thus

$$
\begin{equation*}
J_{\epsilon} \geq 0 \tag{4.18}
\end{equation*}
$$

Moreover, by L'Hopital's rule it follows that

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}|t|^{\frac{2}{\lambda}-1}\left(\frac{1}{2}\left(w_{\epsilon}^{\prime}\right)^{2}-\left(w_{\epsilon}-1\right) w_{\epsilon}^{\prime \prime}-J_{\epsilon}\right)=-\frac{\lambda}{2-\lambda}\left(\frac{2}{H_{\epsilon}}\right)^{\frac{1}{\lambda}} \tag{4.19}
\end{equation*}
$$

Combining (4.17) and (4.19) we obtain

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}|t|^{\frac{2}{\lambda}-1}\left(\frac{1}{2}\left(w_{\epsilon}^{\prime}\right)^{2}-H_{\epsilon} w_{\epsilon}-\left(J_{\epsilon}-H_{\epsilon}\right)\right)=-\frac{2 \lambda^{2}}{4-\lambda^{2}}\left(\frac{2}{H_{\epsilon}}\right)^{\frac{1}{\lambda}} . \tag{4.20}
\end{equation*}
$$

It follows from (4.20) that

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}\left(\frac{1}{2}\left(w_{\epsilon}^{\prime}\right)^{2}-H_{\epsilon} w_{\epsilon}-\left(J_{\epsilon}-H_{\epsilon}\right)\right)=0 \tag{4.21}
\end{equation*}
$$

We also know that when $w_{\epsilon}>1$

$$
\left(-\frac{w_{\epsilon}^{\prime}}{\sqrt{w_{\epsilon}-1}}\right)^{\prime}=\frac{\tilde{E}_{1, \epsilon}}{\left(w_{\epsilon}-1\right)^{\frac{3}{2}}}
$$

and since $\tilde{E}_{1, \epsilon} \rightarrow J_{\epsilon}$ as $t \rightarrow-\infty$ we see that

$$
\lim _{t \rightarrow-\infty}\left[\left(w_{\epsilon}-1\right)^{\frac{3}{2}}\left(-\frac{w_{\epsilon}^{\prime}}{\sqrt{w_{\epsilon}-1}}\right)^{\prime}\right]=J_{\epsilon}
$$

and from the second result of (4.16) it follows that

$$
\lim _{t \rightarrow-\infty}\left[t^{3}\left(-\frac{w_{\epsilon}^{\prime}}{\sqrt{w_{\epsilon}-1}}\right)^{\prime}\right]=\frac{2 \sqrt{2} J_{\epsilon}}{H_{\epsilon}^{\frac{3}{2}}} .
$$

Using (4.16) again and applying L'Hopital's rule we see that

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}\left[t^{2}\left(\frac{w_{\epsilon}^{\prime}}{\sqrt{w_{\epsilon}-1}}+\sqrt{2 H_{\epsilon}}\right)\right]=\frac{\sqrt{2} J_{\epsilon}}{H_{\epsilon}^{\frac{3}{2}}} . \tag{4.22}
\end{equation*}
$$

Now let $\delta>0$. Then for t sufficiently negative we have by (4.22)

$$
0 \leq-w_{\epsilon}^{\prime} \leq\left[\sqrt{2 H_{\epsilon}}+\left(\frac{-\sqrt{2} J_{\epsilon}}{H_{\epsilon}^{\frac{3}{2}}}+\delta\right) \frac{1}{t^{2}}\right] \sqrt{w_{\epsilon}-1} .
$$

Squaring both sides and simplifying we obtain

$$
\frac{1}{2}\left(w_{\epsilon}^{\prime}\right)^{2} \leq H_{\epsilon}\left(w_{\epsilon}-1\right)+\frac{\sqrt{2 H_{\epsilon}}\left(w_{\epsilon}-1\right)}{t^{2}}\left(\frac{-\sqrt{2} J_{\epsilon}}{H_{\epsilon}^{\frac{3}{2}}}+\delta\right)+\frac{1}{2}\left(\frac{-\sqrt{2} J_{\epsilon}}{H_{\epsilon}^{\frac{3}{2}}}+\delta\right)^{2} \frac{\left(w_{\epsilon}-1\right)}{t^{4}}
$$

and then

$$
\begin{align*}
& \frac{1}{2}\left(w_{\epsilon}^{\prime}\right)^{2}-H_{\epsilon} w_{\epsilon}-\left(J_{\epsilon}-H_{\epsilon}\right) \\
\leq & \frac{\sqrt{2 H_{\epsilon}}\left(w_{\epsilon}-1\right)}{t^{2}}\left(\frac{-\sqrt{2} J_{\epsilon}}{H_{\epsilon}^{\frac{3}{2}}}+\delta\right)+\frac{1}{2}\left(\frac{-\sqrt{2} J_{\epsilon}}{H_{\epsilon}^{\frac{3}{2}}}+\delta\right)^{2} \frac{w_{\epsilon}-1}{t^{4}}-J_{\epsilon} . \tag{4.23}
\end{align*}
$$

Taking limits in (4.23) using (4.16) and (4.22) yields

$$
0 \leq-2 J_{\epsilon}+\frac{H_{\epsilon}^{\frac{3}{2}}}{\sqrt{2}} \delta .
$$

This along with (4.18) gives

$$
0 \leq J_{\epsilon} \leq \frac{H_{\epsilon}^{\frac{3}{2}}}{2 \sqrt{2}} \delta .
$$

Finally, since $\delta>0$ is arbitrary we see therefore that $J_{\epsilon}=0$.
Therefore $\lim _{t \rightarrow-\infty} \tilde{E}_{1, \epsilon}=0$ but since $\tilde{E}_{1, \epsilon}^{\prime} \leq 0$ and $\tilde{E}_{1, \epsilon}\left(t_{1, \epsilon}\right) \geq 0$ it follows that $\tilde{E}_{1, \epsilon} \equiv 0$ on $\left(-\infty, t_{1, \epsilon}\right)$. Thus

$$
-\frac{\left|w_{\epsilon}-1\right|^{1+\frac{1}{\lambda}}}{w_{\epsilon}^{1+\frac{2}{\lambda}}}=\tilde{E}_{1, \epsilon}^{\prime} \equiv 0 \quad \text { on }\left(-\infty, t_{1, \epsilon}\right)
$$

and thus $w_{\epsilon} \equiv 1$ on $\left(-\infty, t_{1, \epsilon}\right)$ contradicting that

$$
\lim _{t \rightarrow-\infty} \frac{w_{\epsilon}}{t^{2}}=\frac{H_{\epsilon}}{2}>0
$$

Hence it must be the case that $H_{\epsilon}=0$ completing the proof of the lemma in the case where $1<\lambda<2$.

We now consider the case where $\lambda \geq 2$. We see from (4.16) and the equation after (4.17) that if $\lambda \geq 2$ then

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} \tilde{E}_{1, \epsilon}=\infty \tag{4.24}
\end{equation*}
$$

Next, we see that

$$
\frac{1}{2}\left(w_{\epsilon}^{\prime}\right)^{2}-H_{\epsilon}\left(w_{\epsilon}-1\right)=\tilde{E}_{1, \epsilon}+\left(w_{\epsilon}-1\right)\left(w_{\epsilon}^{\prime \prime}-H_{\epsilon}\right)
$$

Using (4.17) $w_{\epsilon}^{\prime \prime}-H_{\epsilon} \geq 0$ for sufficiently negative t and (4.24), we obtain

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} \frac{1}{2}\left(w_{\epsilon}^{\prime}\right)^{2}-H_{\epsilon}\left(w_{\epsilon}-1\right)=\infty . \tag{4.25}
\end{equation*}
$$

Also from the equation after (4.21) we see that

$$
\left(-\frac{w_{\epsilon}^{\prime}}{\sqrt{w_{\epsilon}-1}}\right)^{\prime}=\frac{\tilde{E}_{1, \epsilon}}{\left(w_{\epsilon}-1\right)^{\frac{3}{2}}},
$$

which gives

$$
\lim _{t \rightarrow-\infty}\left[\left(w_{\epsilon}-1\right)^{\frac{3}{2}}\left(-\frac{w_{\epsilon}^{\prime}}{\sqrt{w_{\epsilon}-1}}\right)^{\prime}\right]=\infty .
$$

Also it follows from the second result of (4.16) that

$$
\lim _{t \rightarrow-\infty}\left[t^{3}\left(-\frac{w_{\epsilon}^{\prime}}{\sqrt{w_{\epsilon}-1}}\right)^{\prime}\right]=\infty .
$$

Then by L'Hopital's rule we see that

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}\left[t^{2}\left(\frac{w_{\epsilon}^{\prime}}{\sqrt{w_{\epsilon}-1}}+\sqrt{2 H_{\epsilon}}\right)\right]=\infty . \tag{4.26}
\end{equation*}
$$

For $M>0$ large and t sufficiently negative we see from (4.26) that

$$
0 \leq-w_{\epsilon}^{\prime} \leq\left(\sqrt{2 H_{\epsilon}}-\frac{M}{t^{2}}\right) \sqrt{w_{\epsilon}-1} .
$$

Squaring both sides and rewriting gives

$$
\frac{1}{2}\left(w_{\epsilon}^{\prime}\right)^{2}-H_{\epsilon}\left(w_{\epsilon}-1\right) \leq-M \sqrt{2 H_{\epsilon}}\left(\frac{w_{\epsilon}-1}{t^{2}}\right)+\frac{M^{2}}{2 t^{2}}\left(\frac{w_{\epsilon}-1}{t^{2}}\right)
$$

However, as $t \rightarrow-\infty$ the left hand side goes to ∞ by (4.25) and by (4.16) the right hand side goes to $-M H_{\epsilon}^{3 / 2} / \sqrt{2} \leq 0$. This is a contradiction. As a result, if $\lambda \geq 2$, then it also must have $H_{\epsilon}=0$. This completes the proof of the lemma.

Lemma 4.8. There are constants $c_{1}>0$ and $c_{2}>0$ with c_{1}, c_{2} independent of ϵ and $c_{1, \epsilon}>0, c_{2, \epsilon}>0$ with

$$
\lim _{\epsilon \rightarrow 0} c_{1, \epsilon}=\lim _{\epsilon \rightarrow 0} c_{2, \epsilon}=0
$$

such that

$$
\frac{y_{b_{e}}(s)}{|s|^{\frac{3 \lambda}{2 \lambda+1}} \geq c_{1} \quad \text { on }\left(-\infty,-c_{1, \epsilon}\right) ; \quad \frac{-y_{b_{\epsilon}}^{\prime}(s)}{|s|^{\frac{\lambda}{2 \lambda+1}}} \geq c_{2} \quad \text { on }\left(-\infty,-c_{2, \epsilon}\right) . . ~ . ~ . ~}
$$

Proof. Recall that

$$
\tilde{E}_{2, \epsilon}^{\prime}=\left(F_{1}\left(w_{\epsilon}\right)-w_{\epsilon}^{\prime} w_{\epsilon}^{\prime \prime}\right)^{\prime}=-\left(w_{\epsilon}^{\prime \prime}\right)^{2} \leq 0 .
$$

Integrating on $(t, 0)$ and using (4.3) gives for $t<0$

$$
\int_{1}^{\infty} f_{1}(s) \mathrm{d} s=F_{1, \infty}=F_{1}\left(L_{1}\right) \leq F_{1}\left(w_{\epsilon}\right)-w_{\epsilon}^{\prime} w_{\epsilon}^{\prime \prime}=\int_{1}^{w_{\epsilon}} f_{1}(s) \mathrm{d} s-w_{\epsilon}^{\prime} w_{\epsilon}^{\prime \prime} .
$$

Thus

$$
\begin{equation*}
\int_{w_{e}}^{\infty} f_{1}(s) \mathrm{d} s \leq-w_{\epsilon}^{\prime} w_{\epsilon}^{\prime \prime} . \tag{4.27}
\end{equation*}
$$

Recall from the remark at the beginning of Lemma 4.7 that $\lim _{t \rightarrow-\infty} w_{\epsilon}=\infty$ and along with the fact that $w_{\epsilon}(0)=L_{1}<1$ we see that there exists $t_{2, \epsilon}<0$ such that $w_{\epsilon}\left(t_{2, \epsilon}\right)=2$. Thus for $t<t_{2, \epsilon}$ we have

$$
\begin{equation*}
\int_{w_{\epsilon}}^{\infty} f_{1}(s) \mathrm{d} s=\int_{w_{e}}^{\infty} \frac{|s-1|^{\frac{1}{\lambda}}}{s^{1+\frac{2}{\lambda}}} \mathrm{~d} s \geq \frac{1}{2^{\frac{1}{\lambda}}} \int_{w_{\varepsilon}}^{\infty} \frac{1}{s^{1+\frac{1}{\lambda}}} \mathrm{~d} s=\frac{\lambda}{2^{\frac{1}{\lambda}}} w_{\epsilon}^{-\frac{1}{\lambda}} . \tag{4.28}
\end{equation*}
$$

Thus from (4.27)-(4.28) we see that

$$
-w_{\epsilon}^{\prime} w_{\epsilon}^{\prime \prime} \geq \frac{\lambda}{2^{\frac{1}{\lambda}}} w_{\epsilon}^{-\frac{1}{\lambda}} \quad \text { when } t<t_{2, \epsilon}
$$

Multiplying this by $-w_{\epsilon}^{\prime}>0$ gives

$$
\left(w_{\epsilon}^{\prime}\right)^{2} w_{\epsilon}^{\prime \prime} \geq \frac{\lambda}{2^{\frac{1}{\lambda}}} w_{\epsilon}^{-\frac{1}{\lambda}}\left(-w_{\epsilon}^{\prime}\right)
$$

and integrating on $\left(t, t_{2, \epsilon}\right)$ and using that $w_{\epsilon}^{\prime}<0$ gives

$$
\begin{equation*}
-\left(w_{\epsilon}^{\prime}\right)^{3} \geq \frac{3 \lambda^{2}}{2^{\frac{1}{\lambda}}(\lambda-1)}\left(w_{\epsilon}^{1-\frac{1}{\lambda}}-2^{1-\frac{1}{\lambda}}\right) . \tag{4.29}
\end{equation*}
$$

Now let $t_{3, \epsilon}<0$ be such that $w_{\epsilon}\left(t_{3, \epsilon}\right)=3$. Then for $t<t_{3, \epsilon}$ we have

$$
w_{\epsilon}^{1-\frac{1}{\lambda}}-2^{1-\frac{1}{\lambda}} \geq\left(1-\left(\frac{2}{3}\right)^{1-\frac{1}{\lambda}}\right) w_{\epsilon}^{1-\frac{1}{\lambda}} .
$$

Thus, using this in (4.29) we obtain

$$
\frac{1}{\left(1-\left(\frac{2}{3}\right)^{1-\frac{1}{\lambda}}\right)^{\frac{1}{3}}} \int_{t}^{t_{3, \epsilon}} \frac{-w_{\epsilon}^{\prime}}{w_{\epsilon}^{\frac{1}{3}\left(1-\frac{1}{\lambda}\right)}} \mathrm{d} s \geq \int_{t}^{t_{3, \epsilon}} \frac{-w_{\epsilon}^{\prime}}{\left(w_{\epsilon}^{1-\frac{1}{\lambda}}-2^{1-\frac{1}{\lambda}}\right)^{\frac{1}{3}}} \mathrm{~d} s \geq \int_{t}^{t_{3, \epsilon}}\left(\frac{3 \lambda^{2}}{2^{\frac{1}{\lambda}}(\lambda-1)}\right)^{\frac{1}{3}} \mathrm{~d} s .
$$

Therefore, we have

$$
w_{e}^{\frac{2 \lambda+1}{3 \lambda}} \geq\left(w_{\epsilon}^{\frac{2 \lambda+1}{3 \lambda}}-3^{\frac{2 \lambda+1}{3 \lambda}}\right) \geq C_{1}\left(t_{3, \epsilon}-t\right)
$$

where

$$
C_{1}=\left(1-\left(\frac{2}{3}\right)^{1-\frac{1}{\lambda}}\right)^{\frac{1}{3}}\left(\frac{3 \lambda^{2}}{2^{\frac{1}{\lambda}}(\lambda-1)}\right)^{\frac{1}{3}}\left(\frac{2 \lambda+1}{3 \lambda}\right) .
$$

Thus for $t<2 t_{3, \varepsilon}$,

$$
\begin{equation*}
\frac{w_{\epsilon}}{|t| \frac{3 \lambda}{2 \lambda+1}} \geq C_{1}^{\frac{3 \lambda}{2 \lambda+1}}\left(1-\left|\frac{t_{3, \epsilon}}{t}\right|\right)^{\frac{3 \lambda}{2 \lambda+1}} \geq\left(\frac{C_{1}}{2}\right)^{\frac{3 \lambda}{2 \lambda+1}} \equiv c_{1} . \tag{4.30}
\end{equation*}
$$

Letting $c_{1, \epsilon}=\epsilon^{\frac{2 \lambda+1}{3 \lambda}}\left(2\left|t_{3, \epsilon}\right|\right)$ and using the rescaling mentioned in (4.7)-(4.8) we see that

$$
\begin{equation*}
\frac{y_{b_{\epsilon}}(s)}{|s| 2 \lambda+1} \geq c_{1} \quad \text { on }\left(-\infty,-c_{1, \epsilon}\right) . \tag{4.31}
\end{equation*}
$$

Also, since $w_{\epsilon} \rightarrow w_{0}$ uniformly on compact sets and $w_{0} \rightarrow \infty$ as $t \rightarrow-\infty$ then $t_{3, \epsilon} \rightarrow t_{3,0}$ where $t_{3,0}$ is finite and $t_{3,0}<0$. Thus, $\lim _{\epsilon \rightarrow 0} c_{1, \varepsilon}=0$. Substituting (4.30) into (4.29) gives for $t<2 t_{3, \epsilon}$

Thus, for $t<2 t_{3, \epsilon}$

$$
-\frac{w_{\epsilon}^{\prime}}{|t|^{\frac{\lambda-1}{2 \lambda+1}}} \geq\left(\frac{3 \lambda^{2}}{2^{\frac{1}{\lambda}}(\lambda-1)}\right)^{\frac{1}{3}}\left(c_{1}^{1-\frac{1}{\lambda}}-\frac{2^{1-\frac{1}{\lambda}}}{|t|^{\frac{3 \lambda-1)}{2 \lambda+1}}}\right)^{\frac{1}{3}} .
$$

The right-hand side of the above is larger than

$$
\frac{1}{2}\left(\frac{3 \lambda^{2}}{2^{\frac{1}{\lambda}}(\lambda-1)}\right)^{\frac{1}{3}} c_{1}^{\frac{1}{3}\left(1-\frac{1}{\lambda}\right)} \equiv c_{2}
$$

when

$$
|t| \geq t^{*} \equiv 2^{\frac{(2 \lambda-1)(2 \lambda+1)}{3 \lambda(\lambda-1)}} / c_{1}^{2+\frac{1}{\lambda}} .
$$

So letting $c_{2, \epsilon}=\epsilon^{\frac{2 \lambda+1}{3 \lambda} \cdot t^{*}}$, we see that $c_{2, \epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0$ and using the rescaling from (4.7)-(4.8) we see that

$$
\frac{-y_{b_{e}}^{\prime}(s)}{|s|^{\frac{\lambda-1}{2 \lambda+1}}} \geq c_{2} \quad \text { on }\left(-\infty,-c_{2, \epsilon}\right)
$$

This completes the proof of the lemma.
Lemma 4.9. There are constants $c_{3}>0, c_{4}>0$, and $c_{5}>0$ with c_{3}, c_{4}, c_{5} independent of ϵ and $c_{3, \epsilon}>0, c_{4 \varepsilon}>0, c_{5, \epsilon}>0$ with

$$
\lim _{\epsilon \rightarrow 0} c_{3, \epsilon}=\lim _{\epsilon \rightarrow 0} c_{4, \epsilon}=\lim _{\epsilon \rightarrow 0} c_{5, \epsilon}=0
$$

such that

$$
\frac{y_{b_{\epsilon}}(s)}{|s| \frac{3 \lambda}{2 \lambda+1}} \leq c_{3} \quad \text { on }\left(-\infty,-c_{3, \epsilon}\right), \quad \frac{-y_{b_{\epsilon}}^{\prime}(s)}{|s|^{\frac{\lambda-1}{2 \lambda+1}}} \leq c_{4} \quad \text { on }\left(-\infty,-c_{4, \epsilon}\right),
$$

and

$$
0 \leq|s|^{\frac{\lambda+2}{\lambda+1}} y_{b_{e}}^{\prime \prime}(s) \leq c_{5} \quad \text { on }\left(-\infty,-c_{5, \epsilon}\right)
$$

Proof. From Lemma 4.7 we know that $\lim _{t \rightarrow-\infty} w_{\epsilon}^{\prime \prime}=0$ and from Lemma 2.3 we know that $w_{\epsilon}^{\prime \prime} \geq 0$ when $t<0$. Thus, when $t<t_{2, \epsilon}$ (defined in Lemma 4.8) we have

$$
0 \leq w_{\epsilon}^{\prime \prime}(t)=\int_{-\infty}^{t} w_{\epsilon}^{\prime \prime \prime} \text { and } \mathrm{d} s=\int_{-\infty}^{t} \frac{\left|w_{\epsilon}-1\right|^{\frac{1}{\lambda}}}{w_{\epsilon}^{1+\frac{2}{\lambda}}} \operatorname{sgn}\left(w_{\epsilon}-1\right) \mathrm{d} s \leq \int_{-\infty}^{t} \frac{1}{w_{\epsilon}^{1+\frac{1}{\lambda}}} \mathrm{~d} s
$$

Then using (4.30) gives

$$
0 \leq w_{\epsilon}^{\prime \prime}(t) \leq \frac{1}{c_{1}^{1+\frac{1}{\lambda}}} \int_{-\infty}^{t}|s|^{\frac{-3 \lambda-3}{2 \lambda+1}} \mathrm{~d} s=\frac{1}{c_{1}^{1+\frac{1}{\lambda}}}|t|^{\frac{-\lambda-2}{2 \lambda+1}} \quad \text { for } t<2 t_{3, \epsilon}
$$

Letting $c_{5}=1 / c_{1}^{1+1 / \lambda}$ we have

$$
\begin{equation*}
0 \leq|t|^{\frac{\lambda+2}{2 \lambda+1}} w_{\epsilon}^{\prime \prime}(t) \leq c_{5} \quad \text { for } t<2 t_{3, \epsilon} . \tag{4.32}
\end{equation*}
$$

Letting $c_{5, \epsilon}=\epsilon^{\frac{2 \lambda+1}{3 \lambda}}\left(2\left|t_{3, \epsilon}\right|\right)$ and using the rescaling (4.7)-(4.8) gives

$$
0 \leq|s|^{\frac{\lambda+2}{2 \lambda+1}} y_{b_{\epsilon}}^{\prime \prime}(s) \leq c_{5} \quad \text { on }\left(-\infty, c_{5, \epsilon}\right)
$$

Also, as mentioned after Eq. (4.31), $t_{3, \epsilon} \rightarrow t_{3,0}$ and $t_{3,0}$ is finite so that $c_{5, \epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0$. Dividing (4.32) by $|t|^{\frac{\lambda+2}{2 \lambda+1}}$ and integrating the resulting inequality on $\left(t, 2 t_{3, \epsilon}\right)$ gives

$$
w_{\epsilon}^{\prime}\left(2 t_{3, \epsilon}\right)-w_{\epsilon}^{\prime}(t) \leq c_{5}\left(\frac{2 \lambda+1}{\lambda-1}\right)|t|^{\frac{\lambda-1}{2 \lambda+1}} .
$$

Therefore

$$
0 \leq-\frac{w_{\epsilon}^{\prime}(t)}{|t|^{\frac{\lambda-1}{2 \lambda+1}}} \leq-\frac{w_{\epsilon}^{\prime}\left(2 t_{3, \epsilon}\right)}{|t|^{\frac{\lambda}{2 \lambda+1}}}+c_{5}\left(\frac{2 \lambda+1}{\lambda-1}\right) \quad \text { for } t<2 t_{3, \epsilon}
$$

Since $w_{\epsilon}^{\prime} \rightarrow w_{0}^{\prime}$ uniformly on compact sets and $t_{3, \epsilon} \rightarrow t_{3,0}$, where $t_{3,0}$ is finite and $t_{3,0}<0$ as mentioned after (4.31), we have $w_{\epsilon}^{\prime}\left(t_{3, \epsilon}\right) \rightarrow w_{0}^{\prime}\left(t_{3,0}\right)$ which is finite so we see for ϵ small enough

$$
\begin{equation*}
0 \leq-\frac{w_{\epsilon}^{\prime}(t)}{|t|^{\frac{\lambda-1}{2 \lambda+1}}} \leq-\frac{2 w_{0}^{\prime}\left(2 t_{3,0}\right)}{\left|t_{3,0}\right|^{\frac{\lambda-1}{2 \lambda+1}}}+c_{5}\left(\frac{2 \lambda+1}{\lambda-1}\right) \equiv c_{4} \tag{4.33}
\end{equation*}
$$

for $t<3 t_{3, \epsilon_{0}}$. Then by the rescaling mentioned in (4.7) we see that

$$
\begin{equation*}
0 \leq \frac{-y_{b_{e}}^{\prime}(s)}{|s|^{\frac{\lambda-1}{2 \lambda+1}}} \leq c_{4} \quad \text { on }\left(-\infty,-c_{4, \epsilon}\right), \tag{4.34}
\end{equation*}
$$

where $c_{4, \epsilon}=\epsilon^{\frac{2 \lambda+1}{3 \lambda}}\left(3 t_{3, \epsilon_{0}}\right) \rightarrow 0$ as $\epsilon \rightarrow 0$. Multiplying (4.33) by $|t|^{\frac{\lambda-1}{2 \lambda+1}}$ and integrating on $(s, 0)$ gives

$$
w_{\epsilon}(t) \leq w_{\epsilon}\left(3 t_{3,0}\right)+\left(\frac{2 \lambda+1}{3 \lambda}\right) c_{4}|t|^{\frac{3 \lambda}{2 \lambda+1}} .
$$

Consequently,

Then by the rescaling mentioned in (4.7) we see that

$$
\frac{y_{b_{e}}}{|s|^{\frac{3 \lambda}{2 \lambda+1}}} \leq c_{3} \quad \text { on } \quad\left(-\infty,-c_{3, \epsilon}\right)
$$

where $c_{3, \epsilon}=\epsilon^{\frac{2 \lambda+1}{3 \lambda}}\left(3 t_{3, \epsilon_{0}}\right) \rightarrow 0$ as $\epsilon \rightarrow 0$. This completes the proof of the lemma.
It follows from Lemmas 4.8 and 4.9 that $\left|y_{b_{\epsilon}}\right|,\left|y_{b_{e}}^{\prime}\right|,\left|y_{b_{c}}^{\prime \prime}\right|$ are uniformly bounded on compact subsets of $(-\infty, 0)$ and from (3.1) we see that $\left|y_{b_{e}}^{s^{\prime \prime} \mid}\right|$ is also uniformly bounded on compact subsets of $(-\infty, 0)$. Consequently, $y_{b_{e}}, y_{b_{\epsilon}}^{\prime}$, and $y_{b_{e}}^{\prime \prime}$ converge uniformly on
compact subsets of $(-\infty, 0)$ to a function y_{0} and from (3.1) we see that $y_{b_{e}}^{\prime \prime \prime}$ converges uniformly on compact sets and that y_{0} satisfies:

$$
\begin{align*}
& y_{0}^{\prime \prime \prime}=\frac{1}{y_{0}^{1+\frac{1}{\lambda}}} \tag{4.35}\\
& \lim _{t \rightarrow 0^{-}} y_{0}(t)=0, \quad \lim _{t \rightarrow 0^{-}} y_{0}^{\prime}(t)=0, \tag{4.36}\\
& 0 \leq|t|^{\frac{\lambda+2}{2 \lambda+1}} y_{0}^{\prime \prime}(t) \leq c_{5} \quad \text { for } t<0 . \tag{4.37}
\end{align*}
$$

Finally, we have the following result.

Lemma 4.10.

$$
y_{0}=c_{\lambda}|t| \frac{3 \lambda}{2 \lambda+1}, \quad \text { where } c_{\lambda}=\left(\frac{(2 \lambda+1)^{3}}{3 \lambda(\lambda-1)(\lambda+2)}\right)^{\frac{\lambda}{2 \lambda+1}}
$$

Proof. It is straightforward to show that y given above is a solution of

$$
\begin{align*}
& y^{\prime \prime \prime}=\frac{1}{y^{1+\frac{1}{\lambda}}} \tag{4.38}\\
& \lim _{t \rightarrow 0^{-}} y(t)=0, \quad \lim _{t \rightarrow 0^{-}} y^{\prime}(t)=0, \tag{4.39}
\end{align*}
$$

and

$$
\begin{equation*}
0 \leq|t|^{\frac{\lambda+2}{\lambda+1}} y^{\prime \prime}(t) \leq C<\infty \quad \text { for } t<0 \tag{4.40}
\end{equation*}
$$

Now we let $v=y_{0}-y$. From the Mean-Value Theorem we see that for any fixed $t<0$ there is an $0<\mu<1$ such that

$$
\begin{aligned}
v^{\prime \prime \prime} & =y_{0}^{\prime \prime \prime}-y^{\prime \prime \prime}=\frac{1}{y_{0}^{1+\frac{1}{\lambda}}}-\frac{1}{y^{1+\frac{1}{\lambda}}} \\
& =-\frac{\left(1+\frac{1}{\lambda}\right)}{\left(\mu y+(1-\mu) y_{0}\right)^{2+\frac{1}{\lambda}}}\left[y_{0}-y\right]=-p(t) v,
\end{aligned}
$$

where $p(t)>0$. Now we observe that

$$
\left(\frac{1}{2}\left(v^{\prime}\right)^{2}-v v^{\prime \prime}\right)^{\prime}=-v v^{\prime \prime \prime}=p(t) v^{2} \geq 0
$$

It follows from Lemmas 4.8 and 4.9, and (4.36)-(4.37) and (4.39)-(4.41) that

$$
\lim _{t \rightarrow 0^{-}} \frac{1}{2}\left(v^{\prime}\right)^{2}-v v^{\prime \prime}=0
$$

so we see that

$$
\frac{1}{2}\left(v^{\prime}\right)^{2}-v v^{\prime \prime} \leq 0 \quad \text { for } t<0
$$

Thus it follows that $v v^{\prime \prime} \geq 0$ for $t<0$. Then $\left(v v^{\prime}\right)^{\prime}=v v^{\prime \prime}+\left(v^{\prime}\right)^{2} \geq 0$. Integrating on $(t, 0)$ and using Lemmas 4.8 and 4.9 , (4.36) and (4.39) give $v v^{\prime} \leq 0$ for $t<0$. Suppose now that there is a $t_{0}<0$ for which $v\left(t_{0}\right)=0$. Integrating on $\left(t_{0}, t\right)$ gives $v^{2}(t) \leq 0$ and so we see that $v \equiv 0$ on ($t_{0}, 0$). Therefore either $v \geq 0$ for $t<0$ or $v \leq 0$ for $t<0$.

Suppose first that $v \geq 0$ for $t<0$. Then we have

$$
\begin{equation*}
y_{0} \geq y \equiv c_{\lambda}|t|^{\frac{3 \lambda}{2 \lambda+1}} \quad \text { for } t<0 \tag{4.41}
\end{equation*}
$$

Then by (4.37) and (4.39)

$$
y_{0}^{\prime \prime}=\int_{-\infty}^{t} \frac{1}{y_{0}^{1+\frac{1}{\lambda}}} \mathrm{~d} s \leq \frac{1}{c_{\lambda}^{1+\frac{1}{\lambda}}}|s|^{\frac{-3 \lambda-3}{2 \lambda+1}}=\frac{1}{c_{\lambda}^{1+\frac{1}{\lambda}}}\left(\frac{2 \lambda+1}{\lambda+2}\right)|t|^{\frac{-\lambda-2}{2 \lambda+1}} .
$$

Integrating on $(t, 0)$ gives

$$
-y_{0}^{\prime} \leq \int_{t}^{0} \frac{1}{c_{\lambda}^{1+\frac{1}{\lambda}}}\left(\frac{2 \lambda+1}{\lambda+2}\right)|s|^{\frac{-\lambda-2}{2 \lambda+1}} \mathrm{~d} s=\frac{1}{c_{\lambda}^{1+\frac{1}{\lambda}}}\left(\frac{2 \lambda+1}{\lambda+2}\right)\left(\frac{2 \lambda+1}{\lambda-1}\right)|t|^{\frac{\lambda-1}{2 \lambda+1}}
$$

and integrating again on $(t, 0)$ and using the definition of c_{λ} given in Lemma 4.10 we see that

$$
\begin{equation*}
y_{0} \leq \frac{1}{c_{\lambda}^{1+\frac{1}{\lambda}}}\left(\frac{2 \lambda+1}{\lambda+2}\right)\left(\frac{2 \lambda+1}{\lambda-1}\right)\left(\frac{2 \lambda+1}{3 \lambda}\right)|t|^{\frac{3 \lambda}{2 \lambda+1}}=c_{\lambda}|t|^{\frac{3 \lambda}{2 \lambda+1}} . \tag{4.42}
\end{equation*}
$$

Thus combining (4.41)-(4.42) we see that

$$
y_{0} \equiv c_{\lambda}|t|^{\frac{3 \lambda}{2 \lambda+1}} \quad \text { for } t<0
$$

Similarly if $v \leq 0$ for $t<0$ then we have

$$
y_{0} \leq c_{\lambda}|t| \frac{3 \lambda}{2 \lambda+1} \quad \text { for } t<0
$$

Then as earlier we may go through a similar computation and show that

$$
y_{0} \geq\left. c_{\lambda}|t|\right|^{\frac{3 \lambda}{2 \lambda+1}} \quad \text { for } t<0
$$

and finally obtain

$$
y_{0} \equiv c_{\lambda}|t|^{\frac{3 \lambda}{2 \lambda+1}} \quad \text { for } t<0
$$

This completes the proof of the lemma and the proof of the Main Theorem.

References

[1] Betelu S I, Fontelos M A. Capillarity driven spreading of power law fluids. Appl Math Lett, 2003, 16(8): 1315-1320.
[2] King J R. Two generalizations of the thin film equation. Mathematical and Computer Modeling, 2001, 34: 737-756.
[3] Aronson D G, Betelu S I, Fontelos M A, Sanchez A. Analysis of the self-similar spreading of power law fluids. Mathematical Physics, Analysis of PDE's, 2003, 76A(20): 1-18.
[4] Gratton R, Diez A J, Thomas L P, Marino B, Betelu S. Quasi-self-similarity for wetting drops. Physical Review, E, 1996, 53: 3563.
[5] Bird R B, Armstrong R C, Hassager O. Dynamics of Polymeric Liquids. Wiley and Sons, 1977.
[6] Betelu S I, Fontelos M A. Capillarity driven spreading of circular drops of Shear-Thinning fluid. Mathematical and Computer Modeling, 2004, 40: 729-734.
[7] Gratton J, Minotti F, Mahajan S M. Theory of creeping gravity currents of a non-Newtonian liquid. Physical Review, E, 1999, 160(6): 6960-6967.

[^0]: *Corresponding author. Email address: iaia@unt.edu (J. A. Iaia)

