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1 Introduction

We consider the two-layer quasigeostrophic flow model ([1], p. 423; [2], p. 87):

∂q1

∂t
+ J(ψ1,q1+βy)=ν∆2ψ1+ f (x,y)+Ẇ1(t,x,y), (1.1a)

∂q2

∂t
+ J(ψ2,q2+βy)=ν∆2ψ2−r∆ψ2+Ẇ2(t,x,y), (1.1b)

where potential vorticities q1(x,y,t), q2(x,y,t) for the top layer and the bottom layer are
defined via stream functions ψ1(x,y,t), ψ2(x,y,t), respectively,

q1=∆ψ1−F ·(ψ1−ψ2),

q2=∆ψ2−F ·(ψ2−ψ1). (1.2)

∗Corresponding author. Email address: han yongqian@iapcm.ac.cn (Y. Han)

http://www.global-sci.org/jpde/ 15



16 Y. Han / J. Partial Diff. Eq., 24 (2011), pp. 15-36

Here (x,y)∈O :=(0,L)×(0,L)∈R
2, L is the characteristic scale for horizontal length of

the flows; F is positive defined by (see also [2], p.87)

F=
f 2
0

gh

ρ0

ρ2−ρ1
, (1.3)

g is the gravitational acceleration, h is the depth of layers with the assumption that the
depth of top and bottom layers is equal, ρ1 and ρ2 are the densities (ρ2 > ρ1) of top and
bottom layers, respectively; ρ0 is the characteristic scale for density of the flows, f0+βy
(with f0,β constants) is the Coriolis parameter and β is the meridional gradient of the
Coriolis parameter; ν> 0 is the viscosity. Note that r= f0δE/(4h) is the Ekman constant
( [3], p.29). Here δE=

√
2ν/ f0 is the Ekman layer thickness ([1], p.188). Moreover, J(h,g)=

hxgy−hygx is the Jacobi operator and ∆= ∂xx+∂yy is the Laplace operator in R
2. Finally,

f (x,y) is the mean (deterministic) wind forcing, two-sided Wiener processes W1(t) and
W2(t), which describe the fluctuating part of the external wind forcing in the fluid, either
are mutual independent or W1(t)=W2(t). In this paper, we consider the case when the
covariance operators Q1 and Q2 of the Wiener processes W1(t) and W2(t) have a finite
trace, respectively.

The two-layer quasigeostrophic flow model has been used as a theoretical and nu-
merical model to understand basic mechanisms in large scale geophysical flows, such
as baroclinic effects [1], wind-driven circulation [4, 5], the Gulf Stream [6], fluid stabil-
ity [7] and subtropical gyres [3, 8]. Recently Salmon [9] introduced a generalized two-
layer ocean flow model.

We assume Dirichlet boundary conditions for ψ=(ψ1, ψ2):

ψ|∂O =∆ψ|∂O =0. (1.4)

We also assume an appropriate initial condition ψ(x,y,0)=ψ0(x,y).

The stochastically forced quasigeostrophic model has been used to investigate various
phenomena in geophysical flows [10–15]. This stochastic model has also be investigated
in the context of stochastic dynamical systems [16–20].

For this stochastic two-layer model, following [16], we can establish the well-posedness
and the existence of pullback attractors. The purpose of this paper is to establish the syn-
chronization for the stochastic two-layer model.

In this paper, we first recall some basic facts about random dynamical systems in
Section 2. In Section 3, we establish the well-posedness of the stochastic two-layer quasi-
geostrophic model by transforming it into a coupled system of random partial differential
equations. In Section 4, we show the existence of pullback attractors for the random two-
layer model. In Section 5, we establish the synchronization for the random two-layer
model. In Section 6, the main results concerning stochastic two-layer quasigeostrophic
model are established.
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2 Random dynamical systems

In order to investigate the long time dynamics of the two-layer fluid system (1.1), we
need some appropriate concepts and tools from the theory of random dynamical systems.
For detailed presentation of random dynamical systems we refer to the monograph by
Arnold [21] and references [16, 24].

A random dynamical system (RDS) consists of two components. The first compo-
nent is a metric dynamical system (Ω,F ,P,θ) as a model for a noise, where (Ω,F ,P) is a
probability space and θ is a (F⊗B(R),F)-measurable flow which satisfies

θ0= id, θt+τ = θt◦θτ =: θtθτ ,

for t,τ ∈ R. The measure P is supposed to be ergodic with respect to θ, i.e., θtP = P

for all t∈R. The second component of a random dynamical system is a (B(R+)⊗F⊗
B(H),B(H))-measurable mapping ϕ satisfying the cocycle property

ϕ(t+τ,ω,x)= ϕ(t,θτω,ϕ(τ,ω,x)), ϕ(0,ω,x)= x, ∀x∈H,

where the phase space H is a separable metric space. We will denote this random dy-
namical system by symbol ϕ.

We can associate a metric dynamical system θ with the Wiener process W as follows.
Let U be a separable Hilbert space. We consider the probability space

(
C0(R,U),B

(
C0(R,U)

)
,P

)
,

where C0(R,U) is the Fréchet space of continuous functions on R which are zero at zero
and B(C0(R,U)) is the corresponding Borel σ-algebra. The Wiener process W can be
interpreted in the canonical sense W(·,ω)=ω(·). The flow θt is given by

θtω=ω(·+t)−ω(t), for ω∈C0(R,U). (2.1)

The flow θt is called the Wiener shift. The measure P which is ergodic with respect to θt is
called the Wiener measure.

A closed set B(ω), depending on ω, in a separable Hilbert space H is called random
if the distance mapping ω → supx∈B(ω)‖x−y‖H is a random variable for any y ∈ H. In

addition, we will assume that B(ω) is forward invariant:

ϕ(t,ω,B(ω))⊂B(θtω), t>0.

In the following we also need the concept of tempered random variables. A random variable
x is called tempered if t→|x(θtω)| is subexponentially growing:

limsup
t→±∞

log+ |x(θtω)|

|t|
=0 a.s.
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(see Arnold [21]). A random set {B(ω)} is said to be tempered if there exists a v0∈H such
that B(ω)⊂{v∈H : dist(v,v0)≤ r(ω)} for all ω∈Ω, where the random variable r(ω)>0
is tempered. We denote by B the collection of all tempered random set {B(ω)}.

Below we need the concept of a random (global) pullback attractor for RDSs (see,
e.g., [21, 22]), which extends the corresponding definition of a global universal attractor
in autonomous systems [23].

Definition 2.1. Let (θ,ϕ) be a RDS with the phase space H. A random closed set {A(ω)} from
B is said to be a random pullback attractor for (θ,ϕ) in B if

(i) A(ω) is a forward invariant set,

(ii) {A(ω)} is pullback attracting in B, i.e.,

lim
t→+∞

distH

{
ϕ
(
t,θ−tω, B(θ−tω)

)
,A(ω)

}
=0, ω∈Ω,

for all {B(ω)}∈B, where distH(A, B)=sup
a∈A

distH(a, B).

The following result [22, 24] ensures the existence of a random attractor for a RDS.

Theorem 2.1. Let (θ,ϕ) be a RDS on Ω×H such that ϕ(t,ω,·) : H→H is a compact operator
for each fixed t> 0 and P-a.e. ω ∈Ω. If there exists a tempered random set {D(ω)} and T =
T
(
{B(ω)},ω

)
≥0 such that

ϕ
(
t,θ−tω, B(θ−tω)

)
⊂D(ω), ∀t≥T, P-a.e.ω∈Ω,

for every tempered random set {B(ω)}, then the RDS (θ,ϕ) has a random pullback attractor
{A(ω)} with the component subsets defined for P-a.e. ω∈Ω by

A(ω)=∩s>0∪t≥s ϕ
(
t,θ−tω, D(θ−tω)

)
.

The family {D(ω)} ia called a pullback absorbing random set for the RDS.

3 Well-posedness of the random two-layer fluid system

Following [16], the well-posedness of the random two-layer fluid system can be estab-
lished. Here we introduce the outline.

Let (·,·)0 and ‖·‖0 denote the standard scalar product and norm in L2, respectively.
We also denote L2= L2×L2 and Hs =Hs×Hs. We work on the phase space H−1 with the
scalar product

(q,q)∗=(∇ψ1,∇ψ1)0+(∇ψ2,∇ψ2)0+F(ψ1−ψ2,ψ1−ψ2)0,
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where q=(q1,q2), q=(q1,q2) and ψ=(ψ1,ψ2)∈H1
0, ψ=(ψ1,ψ2). The relation between q

(resp. q) and ψ (resp. ψ) is defined by (1.2). The norm induced by this scalar product

‖q‖2
∗=(q,q)∗=‖∇ψ1‖

2
0+‖∇ψ2‖

2
0+F‖ψ1−ψ2‖

2
0 (3.1)

is equivalent to the usual norm on H−1.
To treat the nonlinearity in the two-layer fluid model we need the following lemma.

Lemma 3.1. ([16]) The Jacobian operator has the following properties:

J(u,v)=−J(v,u), (J(u,v),v)0 =0, (3.2)

(J(u,v),w)0 =(J(v,w),u)0, (3.3)

for u,v,w in H1
0 . Moreover, the following estimates hold:

|(J(u,v),∆u)0|≤ c0‖∆v‖0 ·‖∇u‖0 ·‖∆u‖0, u,v∈H2∩H1
0 ; (3.4a)

|(J(u,v),w)0|≤ c1‖∆u‖0 ·‖∆v‖0 ·‖w‖0, u,v∈H2∩H1
0 ,w∈L2; (3.4b)

|(J(u,v),w)0|≤ c1‖∇u‖0 ·‖∆v‖0 ·‖∇w‖0, u,w∈H1
0 ,v∈H2∩H1

0 , (3.5)

where c1= c0λ−1/2
1 , c0 is a constant.

We introduce two Ornstein-Uhlenbeck processes η1(x,y,t,ω) and η2(x,y,t,ω) in L2

which are defined by the solutions of the following linear stochastic partial differential
equations

∂η1

∂t
=ν(k+1)∆η1+Ẇ1, (3.6a)

∂η2

∂t
=ν(k+1)∆η2+Ẇ2, (3.6b)

with Dirichlet boundary condition η1|∂O =η2|∂O =0 and with some initial condition η10,
η20 ∈ H1, where k> 0 is a free control parameter and Wj (j= 1,2) are Wiener processes in
L2. We suppose that the covariance operators Qj (j=1,2) of these Wiener processes have
finite traces. These processes η1 and η2 can be written in the form

η1(t,ω) :=
(∫ t

−∞
S(t−s)dW1(s)

)
(ω), (3.7a)

η2(t,ω) :=
(∫ t

−∞
S(t−s)dW2(s)

)
(ω), (3.7b)

where S(r) = erν(k+1)∆. As mentioned in Section 2 such a Wiener process generates a
metric dynamical systems denoted by (Ω,F ,P,θ) where θ is the Wiener shift introduced
in (2.1). It is well known that these equations have two stationary solutions which are
generated by two Gaussian random variables η1 and η2 in H1

0 . In particular, the mapping

t→ηj(θtω)∈L2
loc(−∞,∞;H1

0), j=1,2
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solves Eq. (3.6). Moreover, we can assume that the random variables ηj and the processes
(t,ω)→ηj(θtω) (j=1,2) are defined for all ω∈Ω what follows by a perfection argument
for Ornstein–Uhlenbeck processes in Hilbert spaces, see Chueshov and Scheutzov [25]
Proposition 3.1. For moments of ηj (j=1,2) we obtain due to [26]:

E‖η1(t)‖
2
1 =

∫ t

−∞
tr0{(−∆)S(t−r)Q1S∗(t−r)}dr

=
∞

∑
j=1

∫ t

−∞
λje

−2ν(k+1)λj(t−r)dr
(

Q1ϕj,ϕj

)
=

tr0Q1

2ν(k+1)
, (3.8a)

E‖η1(t)‖
2n
1 ≤Cn

(
tr0Q1

ν(k+1)

)n

, (3.8b)

E‖η2(t)‖
2
1 =

tr0Q2

2ν(k+1)
, E‖η2(t)‖

2n
1 ≤Cn

(
tr0Q2

ν(k+1)

)n

, n∈N, Cn>0, ∀t∈R. (3.8c)

We introduce new variables [16]

q̃1 :=q1−η1, q̃2 :=q2−η2, ψ̃1 :=ψ1+ξ1, ψ̃2 :=ψ2+ξ2, (3.9)

where the stationary processes η1 and η2 solve the problem (3.6) and ξ1 and ξ2 are defined
such that the elliptic equations (1.2) keep the same form

q̃1=∆ψ̃1−F ·(ψ̃1−ψ̃2),

q̃2=∆ψ̃2−F ·(ψ̃2−ψ̃1).

The processes ξ1 and ξ2 are solutions of the linear elliptic equations

∆ξ1−F ·(ξ1−ξ2)=−η1, (3.10a)

∆ξ2−F ·(ξ2−ξ1)=−η2, (3.10b)

ξ1|∂O = ξ2|∂O =0. (3.10c)

By simple calculations we have the estimates

‖ξ1+ξ2‖s+2≤‖η1+η2‖s, 0≤ s≤1, (3.11a)

‖∇ξ1−∇ξ2‖
2
0+F‖ξ1−ξ2‖

2
0≤

1

4F
‖η1−η2‖

2
0, (3.11b)

‖∆ξ1−∆ξ2‖
2
0+F‖∇ξ1−∇ξ2‖

2
0≤

1

4F
‖∇(η1−η2)‖

2
0, (3.11c)

‖∆ξ1‖0+‖∆ξ2‖0 ≤2
(
‖η1‖0+‖η2‖0

)
, (3.11d)

‖∇∆ξ1‖0+‖∇∆ξ2‖0≤2
(
‖∇η1‖0+‖∇η2‖0

)
. (3.11e)

Using (3.10) we have

−ν∆2ξ1−ν(k+1)∆η1 =−νF(∆ξ1−∆ξ2)−νk∆η1,

−ν∆2ξ2−ν(k+1)∆η2 =−νF(∆ξ2−∆ξ1)−νk∆η2.
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Thus we finally get the coupled system of random partial differential equations (for con-
venience, we drop the tilde)

∂q1

∂t
+ J(ψ1−ξ1,q1+η1+βy)=ν∆2ψ1+ f −νF(∆ξ1−∆ξ2)−νk∆η1 , (3.12a)

∂q2

∂t
+ J(ψ2−ξ2,q2+η2+βy)=ν∆2ψ2−r∆ψ2+r∆ξ2−νF(∆ξ2−∆ξ1)−νk∆η2, (3.12b)

with the Dirichlet boundary condition (1.4) and the coupling condition

q1=∆ψ1−F ·(ψ1−ψ2), (3.13a)

q2=∆ψ2−F ·(ψ2−ψ1), (3.13b)

and with initial data

q(x,y,0)=
(

q01(x,y)−η1(x,y,0,ω),q02−η2(x,y,0,ω)
)
∈H−1, (3.14a)

ψ(x,y,0)=
(

ψ01(x,y)+ξ1(x,y,0,ω),ψ02+ξ2(x,y,0,ω)
)
∈H1, (3.14b)

where η1 and η2 are the stationary solutions to (3.6) and ξ1 and ξ2 solve (3.10) in H2∩H1
0 .

For the rest of this paper, we work on this coupled system (3.12). As in [16, 28], using
the Galerkin method and the compactness argument we can prove the following asser-
tion on the well-posedness of problems (3.12) and (3.13).

Theorem 3.1. (Well-posedness) Let q0 ∈H−1 and f ∈ L2. Then for P-a.e. ω∈Ω and for all
τ>0, the systems (3.12) and (3.13) have an unique solution {q(t),ψ(t)} such that

q∈C([0,∞);H−1)∩L2
loc(0,∞;L2)∩L2

loc(τ,∞;H1
0).

The function ψ associated to q by (3.13) satisfies

ψ∈C
(
[0,∞);H1

0

)
∩L2

loc

(
0,∞;H2∩H1

0

)
∩L2

loc

(
τ,∞;H3∩

{
ψ
∣∣
∂O

=∆ψ
∣∣

∂O
=0

})
.

The solution depends continuously on the initial condition q0∈H−1.

By the uniqueness assertion of the last theorem the solution of (3.12) t→q(t) generates
a random dynamical system (θ,ϕ) on Ω×H−1, where Ω = C0(R,H−1). Moreover, the
mapping ϕ : H−1→H−1 which maps q0 to ϕ(t,ω,q0)=q(t) is continuous.

Let ψ01=ψ02, ψ0=(ψ01,ψ02), and ψ(t)=(ψ1(t),ψ2(t)) be the solution of system (3.12)
with initial data ψ0 =ψ0. By the Theorem 3.1 (3.12) also generates two RDSs (θ,ϕ1F) and
(θ,ϕ2F) on Ω×H1

0 as follows: mapping ϕ1F : H1
0 →H1

0 which maps ψ01 to

ϕ1F(t,ω,ψ01)=ψ1(t),

and mapping ϕ2F : H1
0 →H1

0 which maps ψ02 to

ϕ2F(t,ω,ψ02)=ψ2(t).
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Here the mappings ϕ1F and ϕ2F are continuous, Ω=C0(R,H1
0). We investigate the asymp-

totic behavior of the above RDSs (θ,ϕ1F) and (θ,ϕ2F) as F →∞ at the level of pullback
attractors.

Now using inverse transformation we define the cocycles ϕ, ϕ1F and ϕ2F for problem
(1.1) by the formulas

ϕ(t,ω,·)=R−1
m (θtω)◦ϕ

(
t,ω,Rm(ω)·

)
,

ϕ1F(t,ω,·)=R−1
m1(θtω)◦ϕ1F

(
t,ω,Rm1(ω)·

)
,

ϕ2F(t,ω,·)=R−1
m2(θtω)◦ϕ2F

(
t,ω,Rm2(ω)·

)
,

where Rm(ω) : H−1→H−1, Rm1(ω) : H1
0→H1

0 and Rm2(ω) : H1
0→H1

0 are random mappings
of the form

Rm(ω)U=U−(η1,η2), U=(U1,U2)∈H−1,

Rm1(ω)V=V+ξ1, V∈H1
0 ,

Rm2(ω)V=V+ξ2, V∈H1
0 .

It is clear that Rm(ω) maps tempered random sets in H−1 into tempered sets in H−1,
and Rm1(ω) and Rm2(ω) map tempered random sets in H1

0 into tempered sets in H1
0 .

Therefore all statements concerning the RDSs (θ,ϕ), (θ,ϕ1F) and (θ,ϕ2F) can be easily re-
formulated as statements concerning the RDSs (θ,ϕ), (θ,ϕ1F) and (θ,ϕ2F). In our further
considerations we deal with the RDSs (θ,ϕ), (θ,ϕ1F) and (θ,ϕ2F).

4 Pullback attractors of the random two-layer fluid system

In this section we prove the existence of random pullback attractors for the RDSs (θ,ϕ),
(θ,ϕ1F) and (θ,ϕ2F) by continuing the line of research introduced in [16].

We first construct an absorbing forward invariant set for the random dynamical sys-
tem generated by (3.12).

Theorem 4.1. For P-a.e. ω∈Ω, there exist a compact random set {B(ω)} in the space H−1, and
compact random sets {B1F(ω)} and {B2F(ω)} in H1

0 such that

ϕ(t,ω,B(ω))⊂B(θtω), for t≥0, (4.1a)

ϕ(t,ω,q(ω))∈B(θtω), for t≥ t0(ω,q), (4.1b)

ϕ1F(t,ω,B1F(ω))⊂B1F(θtω), for t≥0, (4.2a)

ϕ1F(t,ω,ψ1(ω))∈B1F(θtω), for t≥ t1(ω,ψ1), (4.2b)

ϕ2F(t,ω,B2F(ω))⊂B2F(θtω), for t≥0, (4.3a)

ϕ2F(t,ω,ψ2(ω))∈B2F(θtω), for t≥ t2(ω,q2), (4.3b)

where the RDSs (θ,ϕ), (θ,ϕ1F) and (θ,ϕ1F) are generated by (3.12), q is a random variable with
values in H−1, ψ1 and ψ2 are random variables with values in H1

0 .
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By using Theorem 2.1 and 4.1, we obtain the following theorem which is the main
result of this section.

Theorem 4.2. (I) In the space H−1 the RDS (θ,ϕ) generated by (3.12) has a compact pullback
attractor {A(ω)} for P-a.e. ω ∈Ω. Moreover, there exists a tempered random variable R(ω),
which doesn’t depend on F, such that

A(ω)⊂
{

q∈H−1 : ‖q‖2
∗≤R(ω)

}
. (4.4)

(II) In the space H1
0 the RDSs (θ,ϕ1F) and (θ,ϕ1F) generated by (3.12) possess compact

pullback attractors {A1F(ω)} and {A2F(ω)} for P-a.e. ω∈Ω, respectively. Moreover,

A1F(ω)⊂{ψ1∈H1
0 : ‖∇ψ1‖

2
0≤R(ω)}, (4.5)

A2F(ω)⊂{ψ2∈H1
0 : ‖∇ψ2‖

2
0≤R(ω)}. (4.6)

We now divide the proof of Theorem 4.1 into some lemmas. We start with the follow-
ing lemma.

Lemma 4.1. Let q(t) be the solution of (3.12). Then q(t) satisfies the following inequality

d

dt
‖q(t)‖2

∗+ν
(
‖∆ψ1(t)‖

2
0+‖∆ψ2(t)‖

2
0

)

≤d0

(
‖η1(θtω)‖2

1+‖η2(θtω)‖2
1

)
·
(
‖∇ψ1‖

2
0+‖∇ψ2‖

2
0

)
+m(θtω),

where
m(ω)=d1(‖η1(ω)‖4

1+‖η2(ω)‖4
1)+d2(‖η1(ω)‖2

0+‖η2(ω)‖2
0)+d3

and constants d0, d1, d2 and d3 are independent of F.

Proof. Taking the scalar product (3.12) with (ψ1,ψ2) and integration by parts, we have

1

2

d

dt

{
‖∇ψ1(t)‖

2
0+‖∇ψ2(t)‖

2
0+F‖ψ1(t)−ψ2(t)‖

2
0

}

+ν
{
‖∆ψ1(t)‖

2
0)+‖∆ψ2(t)‖

2
0

}
+r‖∇ψ2(t)‖

2
0

=−
∫

O

{
J(ξ1,q1+η1+βy)ψ1+ J(ξ2,q2+η2+βy)ψ2

}
dxdy−r(∆ξ2,ψ2)0−( f ,ψ1)0.

+νF(∆ξ1−∆ξ2,ψ1−ψ2)0+νk(∆η1 ,ψ1)0+νk(∆η2,ψ2)0. (4.7)

We know that

νF(∆ξ1−∆ξ2,ψ1−ψ2)0+νk(∆η1 ,ψ1)0+νk(∆η2 ,ψ2)0−r(∆ξ2,ψ2)0

=νF(ξ1−ξ2,∆ψ1−∆ψ2)0+νk(η1,∆ψ1)0+νk(η2,∆ψ2)0−r(ξ2,∆ψ2)0

≤
ν

8

{
‖∆ψ1‖

2
0+‖∆ψ2‖

2
0

}
+12

{
νF2‖ξ1−ξ2‖

2
0+νk2‖η1‖

2
0+νk2‖η2‖

2
0+

r2

ν
‖ξ2‖

2
0

}
, (4.8)
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∫

O

{
J(ξ1,η1+βy)ψ1+ J(ξ2,η2+βy)ψ2

}
dxdy−( f ,ψ1)0

≤
νλ2

1

8

{
‖ψ1‖

2
0+‖ψ2‖

2
0

}
+

12

νλ2
1

{
β2‖ξ1‖

2
1+β2‖ξ2‖

2
1+‖ξ1‖

2
3‖η1‖

2
1+‖ξ2‖

2
3‖η2‖

2
1+‖ f‖2

0

}

≤
ν

8

{
‖∆ψ1‖

2
0+‖∆ψ2‖

2
0

}
+

12

νλ2
1

{
β2‖ξ1‖

2
1+β2‖ξ2‖

2
1+‖ξ1‖

2
3‖η1‖

2
1+‖ξ2‖

2
3‖η2‖

2
1+‖ f‖2

0

}
, (4.9)

∫

O
{J(ξ1,∆ψ1)ψ1+ J(ξ2,∆ψ2)ψ2}dxdy

=
∫

O

{
J(ψ1,ξ1)∆ψ1+ J(ψ2,ξ2)∆ψ2

}
dxdy

≤
ν

8

{
‖∆ψ1‖

2
0+‖∆ψ2‖

2
0

}
+

C

ν

{
‖ξ1‖

2
3‖∇ψ1‖

2
0+‖ξ2‖

2
3‖∇ψ2‖

2
0

}
, (4.10)

F
∫

O

{
J(ξ1,ψ2−ψ1)ψ1+ J(ξ2,ψ1−ψ2)ψ2

}
dxdy

=F
∫

O
J(ξ1−ξ2,ψ2)(ψ1−ψ2)dxdy≤F‖ξ1−ξ2‖1‖∇ψ2‖‖ψ1−ψ2‖L∞

≤
ν

8

{
‖∆ψ1‖

2
0+‖∆ψ2‖

2
0

}
+

C

ν
F2‖ξ1−ξ2‖

2
1‖∇ψ2‖

2
0. (4.11)

Putting (4.7)–(4.11) and (3.11) together, we complete the proof of the lemma.

If k is chosen large enough then particular moments of η1 and η2 are small. Especially
we can formulate:

Lemma 4.2. Let W1 and W2 be Wiener processes in L2 with finite trace of the covariances Q1 and
Q2, respectively. Then under assumptions

2d0a0(tr0Q1+tr0Q2)

λ1ν2(k+1)
<1,

8d0(tr0Q1+tr0Q2)

λ1ν2(k+1)2
≤1, (4.12)

the random variable

R0(ω) :=
∫ 0

−∞
exp

{
νλ1

a0
τ+d0

∫ 0

τ
(‖η1(θτ′ω)‖2

1+‖η2(θτ′ω)‖2
1)dτ′

}
m(θτω)dτ

is finite and tempered, where a0=1+2F/λ1. Moreover

(
ER2

0

) 1
2 ≤ e d4

(
a0

νλ1

) 1
2
(

λ1ν

a0
−

2d0(tr0Q1+tr0Q2)

ν(k+1)

)− 1
2

,

where

d4=C
1
2
8

d1(tr0Q1+tr0Q2)2

ν2(k+1)2
+C

1
2
4

d2(tr0Q1+tr0Q2)

ν(k+1)
+d3

is an estimate for (Em2)1/2 (the constants C8,C4 are defined in (3.8)).
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The proof of this lemma can be found in Chueshov et. al [16] for an Ornstein-Uhlenbeck
process in another Hilbert space. However the argument given there is of a general na-
ture.

We now construct some sets satisfying (4.1a), (4.2a) and (4.3a), respectively.

Lemma 4.3. Let R(ω) := aR0(ω) for some a > 1 and R0 as in Lemma 4.2. Provided condi-
tions (4.12) hold, then the closed H−1–ball B(0,R(ω)1/2) fulfills (4.1a), and the closed H1

0–balls
B(0,R(ω)1/2) fulfill (4.2a) and (4.3a).

Proof. Using Lemma 4.1 we have

d

dt
‖q(t)‖2

∗≤

(
−

νλ1

a0
+d0 ·(‖η1(θtω)‖2

1+‖η2(θtω)‖2
1)

)
·‖q(t)‖2

∗+m(θtω).

Let q0=q(0) and ρ(t,ω,‖q0‖2
∗) be the solution of the one dimensional random affine equa-

tion

dρ(t)

dt
+

νλ1

a0
ρ=d0

(
‖η1(θtω)‖2

1+‖η2(θtω)‖2
1

)
ρ+m(θtω), (4.13a)

ρ(0,ω,‖q0‖
2
∗)=‖q0‖

2
∗. (4.13b)

A comparison argument gives that

‖ϕ(t,ω,q0)‖
2
∗≡‖q(t)‖2

∗≤ρ(t,ω,‖q0‖
2
∗).

Here ϕ is the dynamical system introduced in Section 3: ϕ(t,ω,q0)= q(t), where q(t) is
the solution to (3.12) with the initial data q0. Eq. (4.13) has the stationary solution given
by ρ(t,ω,R0(ω))=R0(θtω). This can be checked by the variation of constants formula. It
follows from (3.8) that for a sufficient small ε>0,

E

∫ t

0
d0(‖η1(θτω)‖2

1+‖η2(θτω)‖2
1)dτ<

νλ1−ε

a0
t,

νλ1−ε

a0
>0,

for large t>0. Thus this solution is exponentially attracting:

|R0(θtω)−ρ(t,ω,‖q0‖
2
∗)|= |ρ(t,ω,R0(ω))−ρ(t,ω,‖q0‖

2
∗)|

≤exp

{∫ t

0

(
d0(‖η1(θτω)‖2

1+‖η2(θτω)‖2
1)−

νλ1

a0

)
dτ

}(
R(ω)+‖q0‖

2
∗

)
→0.

This completes the proof of lemma. �

It remains to prove the existence of compact sets B(ω) satisfying (4.1a), B1F(ω) satis-
fying (4.2a) and B2F(ω) satisfying (4.3a).
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Lemma 4.4. Let the random variable R(ω) be defined in Lemma 4.3.

(I) The set

B(ω) := ϕ(1,θ−1ω,B(0,R(θ−1ω)
1
2 ))

is a compact absorbing forward invariant random set in H−1 for P-a.e. ω∈Ω. Moreover,

ω 7→sup
{
‖∆ψ1‖

2
0+‖∆ψ2‖

2
0 : (q1,q2)∈B(ω)

}
, (4.14)

is a tempered random variable (ψ1 and ψ2 are defined by (3.13)).

(II) The sets

B1F(ω) := ϕ1F(1,θ−1ω,B(0,R(θ−1ω)
1
2 )),

and

B2F(ω) := ϕ2F(1,θ−1ω,B(0,R(θ−1ω)
1
2 ))

are compact absorbing forward invariant random sets in H1
0 for P-a.e. ω∈Ω.

Proof. The regularity assertion of Theorem 3.1 and some standard techniques (see Bernier
[28]) imply that the sets B(ω)⊂H−1 are compact. Since R is a random variable, the ball
B(0,R1/2) is a random set. The continuity of ϕ(t,ω,·) allows us to conclude that B is a
random set. The construction of B ensures that the set is absorbing and forward invariant.
The temperedness of (4.14) can be proved in the same way as in [16].

Similarly, we can prove that B1F(ω) and B1F(ω) are compact random sets in H1
0 .

Putting the above four lemmas together gives Theorem 4.1.

5 Synchronization

We show that dynamics (θ,ϕ1F) and (θ,ϕ2F) on both layers synchronize to a synchronized
model. To this end, we need a few estimates.

Lemma 5.1. Suppose that there exists a constant C0 such that E‖ψ01−ψ02‖2
0 ≤C0/F. For any

time interval [0, T], we have that

lim
F→∞

sup
0≤t≤T

E‖ψ1(·,t)−ψ2(·,t)‖
2
0=0, (5.1)

sup
0≤t≤T

E(‖∇ψ1(·,t)‖
2
0+‖∇ψ2(·,t)‖

2
0)+E

∫ T

0

(
‖∆ψ1(s)‖

2
0+‖∆ψ2(s)‖

2
0

)
ds≤K1, ∀T∈ [0,∞), (5.2)

where constant K1 is independent of F defined in (1.3).
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Proof. Using Lemma 4.1, we have

E‖∇ψ1(·,t)‖
2
0+E‖∇ψ2(·,t)‖

2
0+FE‖ψ1(·,t)−ψ2(·,t)‖

2
0

+νE

∫ t

0

(
‖∆ψ1(s)‖

2
0+‖∆ψ2(s)‖

2
0

)
ds

≤C2d0

∫ t

0
E

(
‖η1(θtω)‖2

1+‖η2(θtω)‖2
1

)
·E

(
‖∇ψ1‖

2
0+‖∇ψ2‖

2
0

)
ds

+E

∫ t

0
m(θtω)ds+2E

(
‖∇ψ01‖

2
0+‖∇ψ02‖

2
0

)
+C̃0, (5.3)

where

C̃0=
16

λ1
E(‖η1(0)‖

2
0+‖η2(0)‖

2
0)+

1

2F
E‖η1(0)−η2(0)‖

2
0+2C0.

By the Gronwall inequality, we have

sup
0≤t≤T

E‖∇ψ1(·,t)‖
2
0+E‖∇ψ2(·,t)‖

2
0

≤
(

2E(‖∇ψ01‖
2
0+‖∇ψ02‖

2
0)+C̃0+E

∫ T

0
m(θtω)ds

)

×exp
{

C2d0E

∫ T

0
(‖η1(θtω)‖2

1+‖η2(θtω)‖2
1)dt

}
. (5.4)

Estimates (5.3) and (5.4) imply that

sup
0≤t≤T

FE‖ψ1(·,t)−ψ2(·,t)‖
2
0+νE

∫ T

0
(‖∆ψ1(s)‖

2
0+‖∆ψ2(s)‖

2
0)ds

≤
(

2E(‖∇ψ01‖
2
0+‖∇ψ02‖

2
0)+C̃0+E

∫ T

0
m(θtω)ds

)

×
{

C2d0E

∫ T

0
(‖η1(θtω)‖2

1+‖η2(θtω)‖2
1)dt

×exp
(

C2d0E

∫ T

0
(‖η1(θtω)‖2

1+‖η2(θtω)‖2
1)dt

)
+1

}
. (5.5)

Consequently, estimates (5.4) and (5.5) imply (5.1) and (5.2) .

We claim that the following SPDE is the synchronized model for the two-layer QG
dynamics (1.1): the synchronized vorticity q and the corresponding streamfunction u
satisfy the following system

∂

∂t
q+ J(u,q+βy)=ν∆2u−

r

2
∆u+

1

2
f (x,y,t)+

Ẇ1+Ẇ2

2
, q=∆u, (5.6)

in the spatial domain O with the Dirichlet boundary condition and initial condition:

u
∣∣
∂O

=∆u
∣∣
∂O

=0, u(x,y,0)=u0(x,y). (5.7)
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Let η(x,y,t,ω) be the Ornstein-Uhlenbeck process which is defined by the solution of the
following linear stochastic partial differential equation

∂η

∂t
=ν(k+1)∆η+

Ẇ1+Ẇ2

2
, η

∣∣
∂O

=0, (5.8)

with some initial condition η0∈L2, where k>0 is a free control parameter. Let the process
ξ(x,y,t,ω) be the solution of the linear elliptic equation

∆ξ=−η , ξ|∂O =0. (5.9)

Then η= 1
2(η1+η2). Using the same change of unknown variable as in Section 3

q̃ :=q−η, ũ :=u+ξ,

Eq. (5.6) is transformed into the following random PDE

∂

∂t
∆u+ J(u−ξ,∆u+η+βy)

=ν∆2u−
r

2
∆(u−ξ)+

1

2
f (x,y,t)−νk∆η , (5.10)

in the spatial domain O with the Dirichlet boundary condition and an appropriate initial
condition:

u
∣∣
∂O

=∆u
∣∣
∂O

=0, u(x,y,0)=u0(x,y)+ξ(x,y,0). (5.11)

The same argument as in Section 3 allows us to prove that problem (5.10) and (5.11) is
well-posed and generates a RDS (θ,ϕ∞) in H1

0 . The same argument as in Section 4 allows
us to prove that RDS (θ,ϕ∞) possesses a compact pullback attractor {A∞(ω)}. Thus we
obtain the following theorem.

Theorem 5.1. (Well-posedness, RDS, pullback attractor, limiting model)

(I) Let u0∈H1
0 and f ∈L2. Then for all ω∈Ω and for all τ>0, the systems (5.10) and (5.11)

have an unique solution u(t) such that

u∈C
(
[0,∞);H1

0

)
∩L2

loc

(
0,∞;H2∩H1

0

)
∩L2

loc

(
τ,∞;H3∩{u

∣∣
∂O

=∆u
∣∣
∂O

=0}
)
.

The solution depends continuously on the initial condition u0∈H1
0 .

(II) In the space H1
0 , problem (5.10) and (5.11) generates a RDS (θ,ϕ∞) possessing a compact

pullback attractor {A∞(ω)}. Here ϕ∞(t,ω,u0)=u(t).

We note that the synchronized QG model (5.6) has the following property.

Lemma 5.2. (I) Let u(t) be the solution of (5.10). Then u(t) satisfies the following inequality

sup
0≤t≤T

E‖∇u(·,t)‖2
0+E

∫ T

0
‖∆u(s)‖2

0ds≤C1, ∀T∈ [0,∞), (5.12)
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where C1 is a constant.
(II) Let u(t) and ũ(t) be the solution of (5.10) with initial data u0 and ũ0, respectively. Then

the following inequality holds:

sup
0≤t≤T

E‖∇{u−ũ}(·,t)‖2
0 ≤ eC2T

E‖∇{u0−ũ0}‖
2
0, ∀T∈ [0,∞), (5.13)

where C2 is a constant.

Proof. The estimate (5.12) can be proved by the same argument as in the proof of estimate
(5.2). Let v=u−ũ. Then v satisfies the following equation

∂

∂t
∆v+ J(v,∆u+η+βy)+ J(ũ−ξ,∆v)=ν∆2v−

r

2
∆v, (5.14)

in the spatial domain O with the Dirichlet boundary condition and an appropriate initial
condition:

v
∣∣

∂O
=∆v

∣∣
∂O

=0, v(x,y,0)=u0(x,y)−ũ0(x,y,0). (5.15)

Taking the scalar product (5.14) with v and integration by parts we have

1

2

d

dt
‖∇v(t)‖2

0+ν‖∆v(t)‖2
0+

r

2
‖∇v(t)‖2

0

=−
∫

O
J(ũ−ξ,v)∆vdxdy≤‖∇(ũ−ξ)‖L4‖∇v‖L4‖∆v‖0

≤C‖∇(ũ−ξ)‖L4‖∇v‖
1
2
0 ‖∆v‖

3
2
0

≤
ν

2
‖∆v‖2

0+C‖∇(ũ−ξ)‖4
L4‖∇v‖2

0. (5.16)

By using estimates (5.12), (5.16) and Gronwall inequality, we obtain estimate (5.13).

Lemma 5.3. Let ξ1 and ξ2 be the solution of (3.10), ξ be the solution of (5.9). Then we have the
following estimate

E‖∇(ξ1−ξ)(·,t)‖2
0+E‖∇(ξ2−ξ)(·,t)‖2

0

≤
1

16F
E‖(η1−η2)(·,t)‖

2
0, ∀t∈ [0,∞). (5.17)

Proof. From (3.10) and (5.9), we get the following system of random partial differential
equations

∆(ξ1−ξ)−F(ξ1−ξ2)=
1

2
(η2−η1),

∆(ξ2−ξ)−F(ξ2−ξ1)=
1

2
(η1−η2). (5.18)
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Taking the scalar product (5.18) with (ξ1−ξ,ξ2−ξ), and integration by parts we have

‖∇(ξ1−ξ)‖2
0+‖∇(ξ2−ξ)‖2

0+F‖ξ1−ξ2‖
2
0

=
1

2
(η1−η2,ξ1−ξ2)≤F‖ξ1−ξ2‖

2
0+

1

16F
‖η1−η2‖

2
0. (5.19)

This estimate (5.19) implies (5.17).

Let u1 =ψ1−u and u2 =ψ2−u be the differences in the streamfunctions, between the
top layer of (3.12) and the synchronized model (5.10), and between the bottom layer and
the synchronized model, respectively. By (3.12) and (5.10), we get the following coupled
system of random partial differential equations

∂

∂t

(
∆u1−F(u1−u2)

)
+ J

(
u1−(ξ1−ξ),q1+η1+βy

)
+ J

(
u−ξ,∆u1−F(u1−u2)+η1−η

)

=ν∆2u1+
r

2
∆(u−ξ)+

f

2
−νF(∆ξ1−∆ξ2)−νk∆(η1−η), (5.20a)

∂

∂t

(
∆u2−F(u2−u1)

)
+ J

(
u2−(ξ2−ξ),q2+η2+βy

)
+ J

(
u−ξ,∆u2−F(u2−u1)+η2−η

)

=ν∆2u2−r∆(u2−ξ2+ξ)−
r

2
∆(u−ξ)−

f

2
−νF(∆ξ2−∆ξ1)−νk∆(η2−η), (5.20b)

with the Dirichlet boundary condition and initial data

u1

∣∣
∂O

=∆u1

∣∣
∂O

=0, u2

∣∣
∂O

=∆u2

∣∣
∂O

=0, (5.21a)

u1(x,y,0)=ψ01(x,y)−u0(x,y)+ξ1(x,y,0,ω)−ξ(x,y,0,ω), (5.21b)

u2(x,y,0)=ψ02(x,y)−u0(x,y)+ξ2(x,y,0,ω)−ξ(x,y,0,ω), (5.21c)

where η1 and η2 are the stationary solutions to (3.6), η is the stationary solutions to (5.8),
ξ1 and ξ2 solve (3.10) in H2∩H1

0 , and ξ solves (5.9) in H2∩H1
0 .

Theorem 5.2. (Limit transition on finite time intervals) Assume that both models start at
the same initial data ψ01=ψ02=u0. Then we have the following convergence results on any finite
time interval [0,T]:

lim
F→∞

sup
0≤t≤T

E

(
‖∇u1(·,t)‖

2
0+‖∇u2(·,t)‖

2
0

)
=0, (5.22)

lim
F→∞

E

(
‖∇u1(·,T)‖

2
0+‖∇u2(·,T)‖

2
0

)
=0, ∀T∈ [0,∞), (5.23)

lim
F→∞

E

∫ T

0

(
‖∆u1(s)‖

2
0+‖∆u2(s)‖

2
0

)
ds=0, ∀T∈ [0,∞), (5.24)

where F is defined in (1.3). That is, as the layer depth h→0 or as density gradient across the two
layers ρ2−ρ1→0, the two-layer model (3.12) synchronizes to the averaged model (5.10) on finite
time intervals.
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Proof. Taking the scalar product (5.20) with (u1,u2) and integration by parts we have

1

2

d

dt

{
‖∇u1(t)‖

2
0+‖∇u2(t)‖

2
0+F‖u1(t)−u2(t)‖

2
0

}

+ν
{
‖∆u1(t)‖

2
0+‖∆u2(t)‖

2
0

}
+r‖∇u2(t)‖

2
0

=−
∫

O

{
J(ξ1−ξ,q1+η1+βy)u1+ J(ξ2−ξ,q2+η2+βy)u2

+ J(u−ξ,u1)∆u1+ J(u−ξ,u2)∆u2+
1

2
J(u−ξ,u1−u2)(η1−η2)

}
dxdy

+

(
νF∆(ξ1−ξ2)−

f

2
,u1−u2

)

0

+
1

2
νk(∆(η1−η2),u1−u2)0

−
r

2
(∆(u−ξ),u1−u2)0−r(∆(ξ2−ξ),u2)0. (5.25)

Employing estimates (3.11), (5.1), (5.2), (5.12) and (5.17), we know that

E

(
νF∆(ξ1−ξ2)−

f

2
,u1−u2

)

0

−rE(∆(ξ2−ξ),u2)0

=E

(
νF∆(ξ1−ξ2)−

f

2
,ψ1−ψ2

)

0

+rE(∇(ξ2−ξ),∇u2)0

−→0, as F→∞, (5.26)

E

∫ t

0

{
1

2
νk(∆(η1−η2),u1−u2)0−

r

2
(∆(u−ξ),u1−u2)0

}
ds

=E

∫ t

0

{
−

1

2
νk
(
∇(η1−η2),∇(ψ1−ψ2)

)
0
−

r

2
(∆(u−ξ),ψ1−ψ2)0

}
ds

−→0, as F→∞, ∀ t ∈ [0,T], (5.27)

E

∫ t

0

∫

O
{J(ξ1−ξ,q1+η1+βy)u1+ J(ξ2−ξ,q2+η2+βy)u2}

=E

∫ t

0

∫

O
{J(ξ1−ξ,∆ψ1+η1+βy)u1+ J(ξ2−ξ,∆ψ2+η2+βy)u2+FJ(ξ1−ξ2,u2)(ψ1−ψ2)}

≤E

∫ t

0
{‖∇(ξ1−ξ)‖L4‖∇u1‖L4‖∆ψ1+η1+βy‖0

+‖∇(ξ2−ξ)‖L4‖∇u2‖L4‖∆ψ2+η2+βy‖0+F‖ξ1−ξ2‖0‖∇u2‖L4‖∇(ψ1−ψ2)‖L4}ds

≤E

∫ t

0

{
K2‖∇(ξ1−ξ)‖

1
2
0 ‖∆(ξ1−ξ)‖

1
2
0 ‖∇u1‖L4‖∆ψ1+η1+βy‖0

+K2‖∇(ξ2−ξ)‖
1
2
0 ‖∆(ξ2−ξ)‖

1
2
0 ‖∇u2‖L4‖∆ψ2+η2+βy‖0

+K3F‖ξ1−ξ2‖0‖∇u2‖L4‖∆(ψ1−ψ2)‖
3
4
0 ‖ψ1−ψ2‖

1
4
0

}
ds

−→0, as F→∞, ∀ t ∈ [0,T], (5.28)
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E

∫ t

0

∫

O

1

2
J(u−ξ,u1−u2)(η1−η2)dxdyds

=E

∫ t

0

∫

O

1

2
J(u−ξ,ψ1−ψ2)(η1−η2)dxdyds

≤
1

2
E

∫ t

0
‖η1−η2‖0‖∇(u−ξ)‖L4‖∇(ψ1−ψ2)‖L4 ds

≤
K3

2
E

∫ t

0
‖η1−η2‖0‖∇(u−ξ)‖L4‖∆(ψ1−ψ2)‖

3
4
0 ‖ψ1−ψ2‖

1
4
0 ds

→0, as F→∞, ∀ t ∈ [0,T], (5.29)

∫

O
{J(u−ξ,u1)∆u1+ J(u−ξ,u2)∆u2}dxdy

≤‖∇(u−ξ)‖L4 {‖∇u1‖L4‖∆u1‖0+‖∇u2‖L4‖∆u2‖0}

≤K2‖∇(u−ξ)‖L4

{
‖∇u1‖

1
2
0 ‖∆u1‖

3
2
0 +‖∇u2‖

1
2
0 ‖∆u2‖

3
2
0

}

≤
ν

2

{
‖∆u1‖

2
0+‖∆u2‖

2
0

}
+K4‖∇(u−ξ)‖4

L4

{
‖∇u1‖

2
0+‖∇u2‖

2
0

}
, (5.30)

where constants K2, K3 and K4 are independent of F. Then, ∀ǫ > 0, ∃F0 ≫ 1, such that
∀F>F0, we have that

E‖∇u1(t)‖
2
0+‖∇u2(t)‖

2
0+E

∫ t

0

{
‖∆u1(s)‖

2
0+‖∆u2(s)‖

2
0

}
ds

≤ǫ+K5E

∫ t

0

{
‖∇u1‖

2
0+‖∇u2‖

2
0

}
ds, ∀t∈ [0,T],

where constant K5 is independent of F. By Gronwall inequality, we obtain that

sup
0≤t≤T

E‖∇u1(t)‖
2
0+‖∇u2(t)‖

2
0+E

∫ T

0

{
‖∆u1(s)‖

2
0+‖∆u2(s)‖

2
0

}
ds

≤ǫeK5T, ∀ǫ>0, F>F0. (5.31)

Estimate (5.31) implies (5.22), (5.23) and (5.24). The proof of this Theorem is therefore
complete.

We are now ready to present our main conclusion on synchronization.

Theorem 5.3. (Synchronization) Assume that W1=W2. Let {A1F(ω)} and {A2F(ω)} be the
global random pullback attractor for the RDSs (θ,ϕ1F) and (θ,ϕ2F) generated by (3.12), respec-
tively. Then

lim
F→∞

sup
{

distH1
0

(
ψ1,A∞(ω)

)
: ψ1∈A1F(ω)

}
=0, (5.32)

lim
F→∞

sup
{

distH1
0

(
ψ2,A∞(ω)

)
: ψ2∈A2F(ω)

}
=0. (5.33)

Here {A∞(ω)} is the random pullback attractor for the RDS (θ,ϕ∞) generated by (5.10).
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Proof. We continue the line of research introduced in [24]. W1 =W2 implies that metric
dynamical systems θ are same in RDSs (θ,ϕ1F), (θ,ϕ2F) and (θ,ϕ∞).

Assume that (5.32) does not hold for some ω∈Ω. Then there exists a sequence {Fn}
with Fn→∞ and a sequence ψ1n ∈A1Fn(ω) such that

distH1
0

(
ψ1n,A∞(ω)

)
≥δ>0, ∀n=1,2,··· . (5.34)

By the invariance property of the attractor A1Fn(ω), for every t > 0 there exists vt
n ∈

A1Fn(θ−tω) such that ψ1n = ϕ1Fn(t,θ−tω,vt
n). Since A1Fn(ω) is compact and estimate (4.5)

holds, we can assume that there exist ψ1∗ and vt
∗ in H1

0 such that

lim
n→∞

‖∇(ψ1n−ψ1∗)‖0 =0, lim
n→∞

‖∇(vt
n−vt

∗)‖0=0. (5.35)

Therefore, if we show that ψ1∗∈A∞(ω), then we obtain a contradiction to (5.34).
From Lemma 5.2, Theorem 5.2 and (5.35), it follows that

E‖∇
(
ψ1n−ϕ∞(t,θ−tω,vt

∗)
)
‖0

≤E‖∇
(

ϕ1Fn(t,θ−tω,vt
n)−ϕ∞(t,θ−tω,vt

n)
)
‖0

+E‖∇(ϕ∞
(
t,θ−tω,vt

n)−ϕ∞(t,θ−tω,vt
∗)
)
‖0 −→0 as n→∞.

Then ψ∗=ϕ∞(t,θ−tω,vt
∗). However, it follows from (4.5) and (5.35) that vt

∗∈B0(ω), where

B0(ω)=
{

ψ1∈H1
0 : ‖∇ψ1‖

2
0≤R(ω)

}
.

Thus we have that
ψ∗∈ ϕ∞

(
t,θ−tω,B0(ω)

)
for every t>0.

Since ϕ∞
(
t,θ−tω,B0(ω)

)
→A∞(ω) as t→∞, this implies that ψ∗∈A∞(ω). This contradic-

tion to (5.34) implies (5.32). Moreover, (5.33) can be proved by the same argument.

6 Conclusions

Now we conclude this paper by stating our main results concerning stochastic two-layer
quasi-geostrophic model (1.1). By using inverse transformation we define the cocycle ϕ∞

for (5.6) by the formula

ϕ∞
(
t,ω,·

)
=
(

R∞
m

)−1
(θtω)◦ϕ∞

(
t,ω,R∞

m(ω)·
)
,

where the RDS (θ,ϕ∞) is generated by (5.10), R∞
m(ω) : H1

0 → H1
0 is a random mapping of

the form
R∞

m(ω)U=U+ξ, U∈H1
0 .

All statements concerning RDSs (θ,ϕ), (θ,ϕ1F), (θ,ϕ2F) and (θ,ϕ∞) can be easily reformu-
lated as statements concerning the RDSs (θ,ϕ), (θ,ϕ1F), (θ,ϕ2F) and (θ,ϕ∞), respectively.
From Theorems 3.1, 4.2, 5.1, 5.2 and 5.3, we obtain the following theorem:
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Theorem 6.1. (Well-posedness, pullback attractor and synchronization)

1. Let q0∈H−1 and f ∈ L2. Then for P-a.e. ω∈Ω and for all τ>0, the system (1.1)– (1.4)
has a unique solution {q(t),ψ(t)} such that

q∈C
(
[0,∞);H−1

)
∩L2

loc

(
0,∞;L2

)
∩L2

loc

(
τ,∞;H1

0

)
.

The function ψ associated to q by (1.2) satisfies

ψ∈C
(
[0,∞);H1

0

)
∩L2

loc

(
0,∞;H2∩H1

0

)
∩L2

loc

(
τ,∞;H3∩{ψ|∂O =∆ψ|∂O =0}

)
.

The solution depends continuously on the initial condition q0∈H−1.
2. Problem (1.1)–(1.4) generates a RDS (θ,ϕ) in space H−1 with the metric dynamical

system θ generated by the Wiener process W=(W1,W2) in

(
C0(R,H−1),B(C0(R,H−1)),P

)
,

and the cocycle ϕ defined by the formula ϕ(t,ω,q0)=q(t).
3. Let ψ(t)=

(
ψ1(t),ψ2(t)

)
be the unique solution of problem (1.1)–(1.4) with initial data

ψ0=(ψ01,ψ01). Then problem (1.1)– (1.4) generates a RDS (θ,ϕ1F) in space H1
0 with the metric

dynamical system θ generated by the Wiener process W1 in (C0(R,H1
0),B(C0(R,H1

0)),P) and
the cocycle ϕ1F defined by the formula ϕ1F(t,ω,ψ01)=ψ1(t).

4. Let ψ(t)=
(
ψ1(t),ψ2(t)

)
be the unique solution of problem (1.1)–(1.4) with initial data

ψ0=(ψ02,ψ02). Then problem (1.1)– (1.4) generates a RDS (θ,ϕ2F) in space H1
0 with the metric

dynamical system θ generated by the Wiener process W2 in (C0(R,H1
0),B(C0(R,H1

0)),P) and
the cocycle ϕ2F defined by the formula ϕ2F(t,ω,ψ02)=ψ2(t).

5. Let u0 ∈ H1
0 and f ∈ L2. Then for P-a.e. ω∈Ω and for all τ > 0, the system (5.6) and

(5.7) has a unique solution u(t) such that

u∈C([0,∞);H1
0)∩L2

loc(0,∞;H2∩H1
0)∩L2

loc(τ,∞;H3∩{u|∂O =∆u|∂O =0}).

The solution depends continuously on the initial condition u0∈H1
0 .

6. Problem (5.6) and (5.7) generates a RDS (θ,ϕ∞) in space H1
0 with the metric dynamical

system θ generated by the Wiener process (W1+W2)/2 in (C0(R,H1
0),B(C0(R,H1

0)),P) and
the cocycle ϕ∞ defined by the formula ϕ∞(t,ω,u0)=u(t).

7. Assume that both models (1.1) and (5.6) start at the same initial data ψ01 =ψ02 = u0.
Then we have the following convergence results on any finite time interval [0,T]:

lim
F→∞

sup
0≤t≤T

E(‖∇{ψ1−u}(·,t)‖2
0+‖∇{ψ2−u}(·,t)‖2

0)=0.

8. The RDS (θ,ϕ) has a compact pullback attractor {A(ω)} in phase space H−1 for P-a.e.
ω ∈ Ω. The RDSs (θ,ϕ1F), (θ,ϕ2F) and (θ,ϕ∞) have compact pullback attractors {A1F(ω)},

{A2F(ω)} and {A
∞
(ω)} in phase space H1

0 for P-a.e. ω∈Ω, respectively.
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9. Assume that W1=W2. Then attractors {A1F(ω)} and {A2F(ω)} are upper semicontin-
uous as F→∞ in the sense that

lim
F→∞

sup
ψ1∈A1F(ω)

inf
u∈A

∞
(ω)

‖∇(ψ1−u)‖0=0, ∀ω∈Ω,

lim
F→∞

sup
ψ2∈A2F(ω)

inf
u∈A

∞
(ω)

‖∇(ψ2−u)‖0=0, ∀ω∈Ω.
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