
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS
J. Part. Diff. Eq., Vol. 25, No. 1, pp. 21-31

doi: 10.4208/jpde.v25.n1.2
February 2012

On a Class of Neumann Boundary Value Equations

Driven by a (p1,··· , pn)-Laplacian Operator

AFROUZI G. A.1,∗, HEIDARKHANI S.2, HADJIAN A.1 and
SHAKERI S.1

1 Department of Mathematics, Faculty of Mathematical Sciences, University of
Mazandaran, Babolsar, Iran.
2 Department of Mathematics, Faculty of Sciences, Razi University, Kermanshah
67149, Iran.

Received 31 March 2011; Accepted 12 December 2011
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1 Introduction

Here and in what follows, Ω⊂R
N(N≥1) is a non-empty bounded open set with a bound-

ary ∂Ω of class C1, pi >N for 1≤ i≤n and λ is a positive parameter.

Let us consider the following quasilinear elliptic system


































∆p1
u1+λFu1

(x,u1,··· ,un)= a1(x)|u1|p1−2u1 in Ω,

∆p2 u2+λFu2(x,u1,··· ,un)= a2(x)|u2|p2−2u2 in Ω,
...

∆pn un+λFun(x,u1,··· ,un)= an(x)|un|pn−2un in Ω,
∂ui

∂ν
=0 for 1≤ i≤n on ∂Ω,

(1.1)

∗Corresponding author. Email addresses: afrouzi@umz.ac.ir (G. A. Afrouzi), a.hadjian@umz.ac.ir

(A. Hadjian), s.shakeri@umz.ac.ir (S. Shakeri), s.heidarkhani@razi.ac.ir (S. Heidarkhani)

http://www.global-sci.org/jpde/ 21



22 G. A. Afrouzi, S. Heidarkhani, A. Hadjian and S. Shakeri / J. Partial Diff. Eq., 25 (2012), pp. 21-31

where ∆pi
ui :=div(|∇ui|pi−2∇ui) is the pi-Laplacian operator and ν is the outer unit nor-

mal to ∂Ω. Here, F : Ω×R
n → R is a function such that the mapping (t1,t2,··· ,tn)→

F(x,t1,t2,··· ,tn) is measurable in Ω for all (t1,··· ,tn)∈R
n and is C1 in R

n for almost every

x∈Ω satisfying the condition

sup
∑

n
i=1 |ti|pi /pi≤̺

|F(·,t1,··· ,tn)|∈L1(Ω)

for every ̺> 0, Fui
denotes the partial derivative of F with respect to ui, and ai ∈ L∞(Ω)

with essinfΩ ai ≥0 for 1≤ i≤n.

Throughout this paper, we let X be the Cartesian product of n spaces W1,pi(Ω) for

1≤ i≤n, i.e., X=W1,p1(Ω)×W1,p2(Ω)×···×W1,pn(Ω) equipped with the norm

‖(u1,u2,··· ,un)‖ :=‖u1‖+‖u2‖+···+‖un‖,

where

‖ui‖ :=
(

∫

Ω
|∇ui(x)|pidx+

∫

Ω
ai(x)|ui(x)|pidx

)
1
pi

for 1≤ i≤n, which is equivalent to the usual one.

Put

c :=max

{

sup
ui∈W1,pi(Ω)\{0}

maxx∈Ω |ui(x)|pi

‖ui‖pi
: for 1≤ i≤n

}

. (1.2)

Since pi>N for 1≤i≤n, X is compactly embedded in (C0(Ω))n, so that c<+∞. It follows

from [2, Proposition 4.1] that

sup
ui∈W1,pi(Ω)\{0}

maxx∈Ω |ui(x)|pi

‖ui‖pi
>

1

‖ai‖1
for 1≤ i≤n,

where ‖ai‖1 :=
∫

Ω
|ai(x)|dx for 1≤ i≤n, and so 1/‖ai‖1 ≤ c for 1≤ i≤n. In addition, if Ω

is convex, it is known [2] that

sup
ui∈W1,pi (Ω)\{0}

maxx∈Ω |ui(x)|
‖ui‖

≤2
pi−1

pi max

{

( 1

‖ai‖1

)
1
pi ,

diam(Ω)

N
1
pi

( pi−1

pi−N
m(Ω)

)

pi−1
pi ‖ai‖∞

‖ai‖1

}

for 1≤ i≤n, where m(Ω) is the Lebesgue measure of the set Ω, and equality occurs when

Ω is a ball.

By a (weak) solution of the system (1.1), we mean any u=(u1,u2,··· ,un)∈X such that
∫

Ω

n

∑
i=1

|∇ui(x)|pi−2∇ui(x)∇vi(x)dx

−λ
∫

Ω

n

∑
i=1

Fui
(x,u1(x),··· ,un(x))vi(x)dx+

∫

Ω

n

∑
i=1

ai(x)|ui(x)|pi−2ui(x)vi(x)dx=0
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for all v=(v1,v2,··· ,vn)∈X.

We shall establish the existence of a definite interval, in which λ lies, the system (1.1)

admits at least three weak solutions in X, by means of a recent abstract critical points

result of Averna and Bonanno [1] which is actually a refinement of a general principle

of Ricceri [3]. Various applications and extensions of this principle are already available;

see, for instance, [4–16]. For other basic notations and definitions we refer to [17].

2 Main results

First we here recall for the reader’s convenience the three critical points theorem of [1]

which is our main tool to prove the results. Here, Y∗ denotes the dual space of Y.

Theorem 2.1. ( [1, Theorem B]) Let Y be a real reflexive Banach space; Φ:Y→R a continuously

Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux

derivative admits a continuous inverse on Y∗; Ψ : Y →R a continuously Gâteaux differentiable

functional whose Gâteaux derivative is compact. Assume that

(i) lim‖u‖→+∞(Φ(u)+λΨ(u))=+∞ for all λ∈ [0,+∞[;

(ii) there is r∈R such that:

inf
Y

Φ< r, and ϕ1(r)< ϕ2(r),

where

ϕ1(r) := inf
u∈Φ−1(]−∞,r[)

Ψ(u)−inf
Φ−1(]−∞,r[)

w Ψ

r−Φ(u)
,

ϕ2(r) := inf
u∈Φ−1(]−∞,r[)

sup
v∈Φ−1([r,+∞[)

Ψ(u)−Ψ(v)

Φ(v)−Φ(u)
,

and Φ−1(]−∞,r[)
w

is the closure of Φ−1(]−∞,r[) in the weak topology.

Then, for each λ∈]1/ϕ2(r),1/ϕ1(r)[ the functional Φ+λΨ has at least three critical points in

Y.

For all γ>0 we denote by K(γ) the set

{

(t1,··· ,tn)∈R
n :

n

∑
i=1

|ti|pi

pi
≤γ

}

. (2.1)

We formulate our main result as follows:

Theorem 2.2. Assume that there exist two positive constants γ and δ with ∑
n
i=1(δ

pi /pi)>
(γ/∏

n
i=1 pi) such that
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(j)

1

γ

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx<
1

2

∫

Ω
F(x,δ,··· ,δ)dx

c
n

∑
i=1

(
n

∏
j=1,j 6=i

pj)‖ai‖1δpi

,

where

K

(

γ

∏
n
i=1 pi

)

=

{

(t1,··· ,tn) :
n

∑
i=1

|ti|pi

pi
≤ γ

∏
n
i=1 pi

}

(2.2)

( see (2.1)) and c is given by (1.2);

(jj)

limsup
|t1|→+∞,···,|tn|→+∞

F(x,t1,··· ,tn)

∑
n
i=1

|ti|pi

pi

≤0;

(jjj) F(x,0,··· ,0)=0 for every x∈Ω.

Then, setting

λ
′
:=

∑
n
i=1

δpi

pi
‖ai‖1

∫

Ω
F(x,δ,··· ,δ)−

∫

Ω
sup(t1,···,tn)∈K( γ

∏n
i=1

pi
)F(x,t1,··· ,tn)dx

, (2.3a)

λ
′′

:=
γ

(

c∏
n
i=1 pi

)∫

Ω
sup(t1,···,tn)∈K( γ

∏n
i=1

pi
)F(x,t1,··· ,tn)dx

, (2.3b)

for each λ∈]λ′
,λ

′′
[ the system (1.1) admits at least three weak solutions in X.

Proof. For each u=(u1,··· ,un)∈X, put

Φ(u) : =
n

∑
i=1

‖ui‖pi

pi
, Ψ(u) : =−

∫

Ω
F(x,u1(x),··· ,un(x))dx. (2.4)

It is well known that Φ and Ψ are well defined and continuously Gâteaux differentiable

functionals with

Φ′(u)(v)=
∫

Ω

n

∑
i=1

|∇ui(x)|pi−2∇ui(x)∇vi(x)dx+
∫

Ω

n

∑
i=1

ai(x)|ui(x)|pi−2ui(x)vi(x)dx,

Ψ′(u)(v)=−
∫

Ω

n

∑
i=1

Fui
(x,u1(x),··· ,un(x))vi(x)dx

for every u = (u1,··· ,un), v = (v1,··· ,vn) ∈ X, as well as Ψ′ : X → X∗ is continuous and

compact operator (see [17, Proposition 26.2]). Also, Φ′ :X→X∗ is an uniformly monotone
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operator in X, and since Φ′ is coercive and semicontinuous in X, by applying [17, The-

orem 26.A ], Φ′ admits a continuous inverse on X∗. Furthermore, by [17, Proposition

25.20], Φ is sequentially weakly lower semicontinuous.

Thanks to the assumption (jj), for each λ>0 one has that

lim
‖u‖→+∞

(Φ(u)+λΨ(u))=+∞.

Put r :=γ/(c∏
n
i=1 pi). From the hypothesis (j), we get

1

γ

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx

<

∫

Ω
F(x,δ,··· ,δ)dx

c
n

∑
i=1

(

n

∏
j=1,j 6=i

pj

)

‖ai‖1δpi

− 1

γ

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx, (2.5)

thus, since ∑
n
i=1δpi /pi >γ/∏

n
i=1 pi, and c‖ai‖1≥1 for 1≤ i≤n, we have

1

γ

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx

<

∫

Ω
F(x,δ,··· ,δ)dx−

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx

c
n

∑
i=1

(

n

∏
j=1,j 6=i

pj

)

‖ai‖1δpi

, (2.6)

from which, multiplying by c∏
n
i=1 pi, we obtain

1

γ

(

c
n

∏
i=1

pi

)

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx

<

∫

Ω
F(x,δ,··· ,δ)dx−

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx

n

∑
i=1

δpi

pi
‖ai‖1

. (2.7)
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We claim that

ϕ1(r)≤
1

γ

(

c
n

∏
i=1

pi

)

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx (2.8a)

ϕ2(r)≥

∫

Ω
F(x,δ,··· ,δ)dx−

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx

n

∑
i=1

δpi

pi
‖ai‖1

, (2.8b)

from which (ii) of Theorem 2.1 follows. In fact, taking into account that the function

identically 0 obviously belongs to Φ−1(]−∞,r[), and that Ψ(0)=0, we get

ϕ1(r)≤
1

r
sup

Φ−1(]−∞,r[)
w

∫

Ω
F(x,u1(x),··· ,un(x))dx, (2.9)

and, since Φ−1(]−∞,r[)
w
=Φ−1(]−∞,r]), we have

1

r
sup

Φ−1(]−∞,r[)
w

∫

Ω
F(x,u1(x),··· ,un(x))dx=

1

r
sup

Φ−1(]−∞,r])

∫

Ω
F(x,u1(x),··· ,un(x))dx.

Since for each ui∈W1,pi(Ω)

sup
x∈Ω

|ui(x)|pi ≤ c‖ui‖pi

for 1≤ i≤n (see (1.2)), we have that

sup
x∈Ω

n

∑
i=1

|ui(x)|pi

pi
≤ c

n

∑
i=1

‖ui‖pi

pi
= cΦ(u) (2.10)

for every u=(u1,··· ,un)∈X. Thus, taking into account that ∑
n
i=1 |ui(x)|pi /pi ≤γ/∏

n
i=1 pi,

for every u=(u1,··· ,un)∈X such that Φ(u)≤ r and for each x∈Ω, we obtain

1

r
sup

Φ−1(]−∞,r])

∫

Ω
F(x,u1(x),··· ,un(x))dx≤ 1

r

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx.

So, (2.8a) follows at once by the definition of r.

Moreover, for each v=(v1,··· ,vn)∈X such that Φ(v)≥ r, we have

ϕ2(r)≥ inf
u∈Φ−1(]−∞,r[)

∫

Ω
F(x,v1(x),··· ,vn(x))dx−

∫

Ω
F(x,u1(x),··· ,un(x))dx

Φ(v)−Φ(u)
.
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Thus, from ∑
n
i=1 |ui(x)|pi /pi ≤γ/∏

n
p=1 pi, for every u=(u1,··· ,un)∈X such that Φ(u)< r

and for each x∈Ω, we obtain

inf
u∈Φ−1(]−∞,r[)

∫

Ω
F(x,v1(x),··· ,vn(x))dx−

∫

Ω
F(x,u1(x),··· ,un(x))dx

Φ(v)−Φ(u)

≥ inf
u∈Φ−1(]−∞,r[)

∫

Ω
F(x,v1(x),··· ,vn(x))dx−

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx

Φ(v)−Φ(u)
,

from which, being 0<Φ(v)−Φ(u)≤Φ(v) for every u∈Φ−1(]−∞,r[), and under further

condition
∫

Ω
F(x,v1(x),··· ,vn(x))dx≥

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx, (2.11)

we can write

inf
u∈Φ−1(]−∞,r[)

∫

Ω
F(x,v1(x),··· ,vn(x))dx−

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx

Φ(v)−Φ(u)

≥

∫

Ω
F(x,v1(x),··· ,vn(x))dx−

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx

n

∑
i=1

‖vi‖pi

pi

.

If we put v(x) :=(δ,··· ,δ), for each x∈Ω, we have ‖vi‖=‖ai‖1/pi

1 δ for 1≤ i≤n.

Now since ∑
n
i=1δpi /pi >γ/∏

n
i=1 pi, bearing in mind that 1/‖ai‖1 ≤ c for 1≤ i≤ n, we

get Φ(v)=∑
n
i=1(δ

pi‖ai‖1)/pi>r. Moreover, with this choice of v, (2.7) ensures (2.11), thus

(2.8b) is also proved.

Taking into account that the weak solutions of the system (1.1) are exactly the solu-

tions of the equation Φ′(u)+λΨ′(u)=0, we have the conclusion by using of Theorem 2.1.

Namely, by observing that

1

ϕ2(r)
≤

n

∑
i=1

δpi

pi
‖ai‖1

∫

Ω
F(x,δ,··· ,δ)dx−

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx
, (2.12a)

1

ϕ1(r)
≥ γ
(

c
n

∏
i=1

pi

)

∫

Ω
sup

(t1,···,tn)∈K( γ

∏n
i=1

pi
)

F(x,t1,··· ,tn)dx

, (2.12b)



28 G. A. Afrouzi, S. Heidarkhani, A. Hadjian and S. Shakeri / J. Partial Diff. Eq., 25 (2012), pp. 21-31

for each λ∈]λ′
,λ

′′
[ the system (1.1) admits at least three weak solutions in X.

Since
∫

Ω
F(δ,··· ,δ)dx=m(Ω)F(δ,··· ,δ), we have the following remarkable consequence

of Theorem 2.2.

Theorem 2.3. Let F : R
n→R be a C1-function and assume that there exist two positive constants

γ and δ with ∑
n
i=1δpi /pi >γ/∏

n
i=1 pi such that

(j
′
)

1

γ
max

(t1,···,tn)∈K( γ

∏n
i=1

pi
)
F(t1,··· ,tn)<

1

2

F(δ,··· ,δ)

c
n

∑
i=1

(

n

∏
j=1,j 6=i

pj

)

‖ai‖1δpi

,

where K is defined by (2.2) and c is given by (1.2);

(jj
′
)

limsup
|t1|→+∞,···,|tn|→+∞

F(t1,··· ,tn)
n

∑
i=1

|ti|pi

pi

≤0;

(jjj
′
) F(0,··· ,0)=0.

Then, setting

λ
′
:=

n

∑
i=1

δpi

pi
‖ai‖1

m(Ω)
(

F(δ,··· ,δ)− max
(t1,···,tn)∈K( γ

∏n
i=1

pi
)
F(t1,··· ,tn)

) , (2.13a)

λ
′′

:=
γ

m(Ω)
(

c
n

∏
i=1

pi

)

max
(t1,···,tn)∈K( γ

∏n
i=1

pi
)
F(t1,··· ,tn)

, (2.13b)

for each λ∈]λ′
,λ

′′
[ the system











































∆p1
u1+λFu1

(u1,··· ,un)= a1(x)|u1|p1−2u1 in Ω,

∆p2 u2+λFu2(u1,··· ,un)= a2(x)|u2|p2−2u2 in Ω,

...

∆pn un+λFun(u1,··· ,un)= an(x)|un|pn−2un in Ω,

∂ui

∂ν
=0 for 1≤ i≤n on ∂Ω,

(2.14)

admits at least three weak solutions in X.
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Now, we give an example to illustrate Theorem 2.3.

Example 2.1. Consider the system



























∆3u1+λe−u1 u11
1 (12−u1)=

2(x2+y2)

π
|u1|u1 in Ω,

∆3u2+λe−u2 u13
2 (14−u2)=

2(x2+y2)

π
|u2|u2 in Ω,

∂u1

∂ν
=

∂u2

∂ν
=0 on ∂Ω,

(2.15)

where Ω= {(x,y)∈R
2 : x2+y2

< 9}. Note that c= 1536/π and we choose δ= 10, γ= 3,

ai(x,y)=2(x2+y2)/π for i=1,2 and

F(t1,t2)= e−t1 t12
1 +e−t2 t14

2

for each (t1,t2)∈R
2. We see that

max
|t1|3+|t2|3≤1

(e−t1 t12
1 +e−t2 t14

2 )≤max
|t1|≤1

e−t1 t12
1 +max

|t2|≤1
e−t2 t14

2 =2e,

which gives that

1

2c

F(δ,δ)

p2‖a1‖1δp1+p1‖a2‖1δp2
− 1

γ
max

(t1,t2)∈K( γ
p1 p2

)
F(t1,t2)

≥ π

2×1536

e−101012+e−101014

6×81×103
−

max|t1|≤1e−t1 t12
1 +max|t2|≤1e−t2 t14

2

3

=
π

1536

e−10109+e−101011

972
− 2e

3
>0, (2.16)

and

limsup
(|t1|,|t2|)→(+∞,+∞)

F(t1,t2)
1
3 |t1|3+ 1

3 |t2|3
=0. (2.17)

Hence, Theorem 2.3 is applicable to the system (2.15) for every

λ∈
] 54×103

9π(e−101012+e−101014−2e)
,

1

1536×108e

[

. (2.18)

Finally, we conclude this paper by giving an immediate consequence of Theorem 2.3

when n=1.

Corollary 2.1. Let f :R→R be a continuous function. Put F(t)=
∫ t

0
f (ξ)dξ for each t∈R and

assume that there exist two positive constants γ and δ with δp
>γ such that
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(j
′′
)

1

γ
max

t∈[− p
√

γ, p
√

γ]
F(t)<

1

2

F(δ)

c‖a‖1δp
, with c= sup

u∈W1,p(Ω)\{0}

(‖u‖∞

‖u‖

)p

;

(jj
′′
)

limsup
|t|→+∞

F(t)

|t|p ≤0.

Then, setting

λ
′
:=

‖a‖1δp

p
(

m(Ω)
(

F(δ)−maxt∈[− p
√

γ, p
√

γ]F(t)
)

) , (2.19a)

λ
′′

:=
γ

m(Ω)(pc)maxt∈[− p
√

γ, p
√

γ]F(t)
, (2.19b)

for each λ∈]λ′
,λ

′′
[ the problem







∆pu+λ f (u)= a(x)|u|p−2u in Ω,
∂u

∂ν
=0 on ∂Ω,

(2.20)

admits at least three weak solutions in W1,p(Ω).
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[14] Kristály A., Existence of two non-trivial solutions for a class of quasilinear elliptic variational
systems on strip-like domains, Proc. Edinb. Math. Soc. (Series 2), 48 (2005), 465-477.

[15] Li C. and Tang C.-L., Three solutions for a class of quasilinear elliptic systems involving the
(p,q)-Laplacian, Nonlinear Anal., 69 (2008), 3322-3329.

[16] Marano S. A. and Motreanu D., On a three critical points theorem for non-differentiable
functions and applications to nonlinear boundary value problems, Nonlinear Anal., 48 (2002),
37-52.

[17] Zeidler E., Nonlinear Functional Analysis and its Applications, II/B, Berlin-Heidelberg-New
York, 1990.


