On a Class of Neumann Boundary Value Equations Driven by a $\left(p_{1}, \cdots, p_{n}\right)$-Laplacian Operator

AFROUZI G. A. ${ }^{1, *}$, HEIDARKHANI S. ${ }^{2}$, HADJIAN A. ${ }^{1}$ and SHAKERI S. ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.
${ }^{2}$ Department of Mathematics, Faculty of Sciences, Razi University, Kermanshah 67149, Iran.

Received 31 March 2011; Accepted 12 December 2011

Abstract

In this paper we prove the existence of an open interval ($\lambda^{\prime}, \lambda^{\prime \prime}$) for each λ in the interval a class of Neumann boundary value equations involving the (p_{1}, \ldots, p_{n})Laplacian and depending on λ admits at least three solutions. Our main tool is a recent three critical points theorem of Averna and Bonanno [Topol. Methods Nonlinear Anal. [1] (2003) 93-103].

AMS Subject Classifications: 35J65, 34A15
Chinese Library Classifications: O175.25, O175.8
Key Words: $\left(p_{1}, \ldots, p_{n}\right)$-Laplacian; Neumann problem; three solutions; critical points; multiplicity results.

1 Introduction

Here and in what follows, $\Omega \subset \mathbb{R}^{N}(N \geq 1)$ is a non-empty bounded open set with a boundary $\partial \Omega$ of class $C^{1}, p_{i}>N$ for $1 \leq i \leq n$ and λ is a positive parameter.

Let us consider the following quasilinear elliptic system

$$
\begin{cases}\Delta_{p_{1}} u_{1}+\lambda F_{u_{1}}\left(x, u_{1}, \cdots, u_{n}\right)=a_{1}(x)\left|u_{1}\right|^{p_{1}-2} u_{1} & \text { in } \Omega \tag{1.1}\\ \Delta_{p_{2}} u_{2}+\lambda F_{u_{2}}\left(x, u_{1}, \cdots, u_{n}\right)=a_{2}(x)\left|u_{2}\right|^{p_{2}-2} u_{2} & \text { in } \Omega \\ \vdots & \\ \Delta_{p_{n}} u_{n}+\lambda F_{u_{n}}\left(x, u_{1}, \cdots, u_{n}\right)=a_{n}(x)\left|u_{n}\right|^{p_{n}-2} u_{n} & \text { in } \Omega \\ \frac{\partial u_{i}}{\partial v}=0 \text { for } 1 \leq i \leq n & \text { on } \partial \Omega\end{cases}
$$

[^0] (A. Hadjian), s.shakeri@umz.ac.ir (S. Shakeri), s.heidarkhani@razi.ac.ir (S. Heidarkhani)
where $\Delta_{p_{i}} u_{i}:=\operatorname{div}\left(\left|\nabla u_{i}\right|^{p_{i}-2} \nabla u_{i}\right)$ is the p_{i}-Laplacian operator and v is the outer unit normal to $\partial \Omega$. Here, $F: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function such that the mapping $\left(t_{1}, t_{2}, \cdots, t_{n}\right) \rightarrow$ $F\left(x, t_{1}, t_{2}, \cdots, t_{n}\right)$ is measurable in Ω for all $\left(t_{1}, \cdots, t_{n}\right) \in \mathbb{R}^{n}$ and is C^{1} in \mathbb{R}^{n} for almost every $x \in \Omega$ satisfying the condition
$$
\sup _{\sum_{i=1}^{n}\left|t_{i}\right|^{p_{i} / p_{i} \leq \varrho}}\left|F\left(\cdot, t_{1}, \cdots, t_{n}\right)\right| \in L^{1}(\Omega)
$$
for every $\varrho>0, F_{u_{i}}$ denotes the partial derivative of F with respect to u_{i}, and $a_{i} \in L^{\infty}(\Omega)$ with $\operatorname{essinf}_{\Omega} a_{i} \geq 0$ for $1 \leq i \leq n$.

Throughout this paper, we let X be the Cartesian product of n spaces $W^{1, p_{i}}(\Omega)$ for $1 \leq i \leq n$, i.e., $X=W^{1, p_{1}}(\Omega) \times W^{1, p_{2}}(\Omega) \times \cdots \times W^{1, p_{n}}(\Omega)$ equipped with the norm

$$
\left\|\left(u_{1}, u_{2}, \cdots, u_{n}\right)\right\|:=\left\|u_{1}\right\|+\left\|u_{2}\right\|+\cdots+\left\|u_{n}\right\|,
$$

where

$$
\left\|u_{i}\right\|:=\left(\int_{\Omega}\left|\nabla u_{i}(x)\right|^{p_{i}} \mathrm{~d} x+\int_{\Omega} a_{i}(x)\left|u_{i}(x)\right|^{p_{i}} \mathrm{~d} x\right)^{\frac{1}{p_{i}}}
$$

for $1 \leq i \leq n$, which is equivalent to the usual one.
Put

$$
\begin{equation*}
c:=\max \left\{\sup _{u_{i} \in W^{1}, p_{i}(\Omega) \backslash\{0\}} \frac{\max _{x \in \bar{\Omega}}\left|u_{i}(x)\right|^{p_{i}}}{\left\|u_{i}\right\|^{p_{i}}}: \text { for } 1 \leq i \leq n\right\} . \tag{1.2}
\end{equation*}
$$

Since $p_{i}>N$ for $1 \leq i \leq n, X$ is compactly embedded in $\left(C^{0}(\bar{\Omega})\right)^{n}$, so that $c<+\infty$. It follows from [2, Proposition 4.1] that

$$
\sup _{u_{i} \in W^{1, p_{i}}(\Omega) \backslash\{0\}} \frac{\max _{x \in \bar{\Omega}}\left|u_{i}(x)\right|^{p_{i}}}{\left\|u_{i}\right\|^{p_{i}}}>\frac{1}{\left\|a_{i}\right\|_{1}} \quad \text { for } 1 \leq i \leq n
$$

where $\left\|a_{i}\right\|_{1}:=\int_{\Omega}\left|a_{i}(x)\right| \mathrm{d} x$ for $1 \leq i \leq n$, and so $1 /\left\|a_{i}\right\|_{1} \leq c$ for $1 \leq i \leq n$. In addition, if Ω is convex, it is known [2] that

$$
\begin{aligned}
& \sup _{u_{i} \in W^{1, p_{i}}(\Omega) \backslash\{0\}} \frac{\max _{x \in \bar{\Omega}}\left|u_{i}(x)\right|}{\left\|u_{i}\right\|} \\
& \leq 2^{\frac{p_{i}-1}{p_{i}}} \max \left\{\left(\frac{1}{\left\|a_{i}\right\|_{1}}\right)^{\frac{1}{p_{i}}}, \frac{\operatorname{diam}(\Omega)}{N^{\frac{1}{p_{i}}}}\left(\frac{p_{i}-1}{p_{i}-N} m(\Omega)\right)^{\frac{p_{i}-1}{p_{i}}} \frac{\left\|a_{i}\right\|_{\infty}}{\left\|a_{i}\right\|_{1}}\right\}
\end{aligned}
$$

for $1 \leq i \leq n$, where $m(\Omega)$ is the Lebesgue measure of the set Ω, and equality occurs when Ω is a ball.

By a (weak) solution of the system (1.1), we mean any $u=\left(u_{1}, u_{2}, \cdots, u_{n}\right) \in X$ such that

$$
\begin{aligned}
& \int_{\Omega} \sum_{i=1}^{n}\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla v_{i}(x) \mathrm{d} x \\
& \quad-\lambda \int_{\Omega} \sum_{i=1}^{n} F_{u_{i}}\left(x, u_{1}(x), \cdots, u_{n}(x)\right) v_{i}(x) \mathrm{d} x+\int_{\Omega} \sum_{i=1}^{n} a_{i}(x)\left|u_{i}(x)\right|^{p_{i}-2} u_{i}(x) v_{i}(x) \mathrm{d} x=0
\end{aligned}
$$

for all $v=\left(v_{1}, v_{2}, \cdots, v_{n}\right) \in X$.
We shall establish the existence of a definite interval, in which λ lies, the system (1.1) admits at least three weak solutions in X, by means of a recent abstract critical points result of Averna and Bonanno [1] which is actually a refinement of a general principle of Ricceri [3]. Various applications and extensions of this principle are already available; see, for instance, [4-16]. For other basic notations and definitions we refer to [17].

2 Main results

First we here recall for the reader's convenience the three critical points theorem of [1] which is our main tool to prove the results. Here, Y^{*} denotes the dual space of Y.

Theorem 2.1. ([1, Theorem B]) Let Y be a real reflexive Banach space; $\Phi: Y \rightarrow \mathbb{R}$ a continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on $Y^{*} ; \Psi: Y \rightarrow \mathbb{R}$ a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact. Assume that
(i) $\lim _{\|u\| \rightarrow+\infty}(\Phi(u)+\lambda \Psi(u))=+\infty$ for all $\lambda \in[0,+\infty[$;
(ii) there is $r \in \mathbb{R}$ such that:

$$
\inf _{Y} \Phi<r, \quad \text { and } \quad \varphi_{1}(r)<\varphi_{2}(r)
$$

where

$$
\begin{aligned}
& \varphi_{1}(r):=\inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\Psi(u)-\inf _{\Phi^{-1}(]-\infty, r[)}{ }^{w} \Psi}{r-\Phi(u)}, \\
& \varphi_{2}(r):=\inf _{u \in \Phi^{-1}(]-\infty, r[)_{v \in \Phi^{-1}([r,+\infty[)} \sup \frac{\Psi(u)-\Psi(v)}{\Phi(v)-\Phi(u)}},
\end{aligned}
$$

and ${\overline{\Phi^{-1}(]-\infty, r[)}}^{w}$ is the closure of $\Phi^{-1}(]-\infty, r[)$ in the weak topology.
Then, for each $\lambda \in] 1 / \varphi_{2}(r), 1 / \varphi_{1}(r)[$ the functional $\Phi+\lambda \Psi$ has at least three critical points in Y.

For all $\gamma>0$ we denote by $K(\gamma)$ the set

$$
\begin{equation*}
\left\{\left(t_{1}, \cdots, t_{n}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n} \frac{\left|t_{i}\right|^{p_{i}}}{p_{i}} \leq \gamma\right\} \tag{2.1}
\end{equation*}
$$

We formulate our main result as follows:
Theorem 2.2. Assume that there exist two positive constants γ and δ with $\sum_{i=1}^{n}\left(\delta^{p_{i}} / p_{i}\right)>$ $\left(\gamma / \prod_{i=1}^{n} p_{i}\right)$ such that
(j)

$$
\frac{1}{\gamma} \int_{\Omega} \sup _{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Pi_{i=1}^{p} p_{i}^{p}}\right)} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x<\frac{1}{2} \frac{\int_{\Omega} F(x, \delta, \cdots, \delta) \mathrm{d} x}{c \sum_{i=1}^{n}\left(\prod_{j=1, j \neq i}^{n} p_{j}\right)\left\|a_{i}\right\|_{1} \delta^{p_{i}}},
$$

where

$$
\begin{equation*}
K\left(\frac{\gamma}{\prod_{i=1}^{n} p_{i}}\right)=\left\{\left(t_{1}, \cdots, t_{n}\right): \sum_{i=1}^{n} \frac{\left|t_{i}\right|^{p_{i}}}{p_{i}} \leq \frac{\gamma}{\prod_{i=1}^{n} p_{i}}\right\} \tag{2.2}
\end{equation*}
$$

(see (2.1)) and c is given by (1.2);
(jj)

$$
\limsup _{\left|t_{1}\right| \rightarrow+\infty, \cdots,\left|t_{n}\right| \rightarrow+\infty} \frac{F\left(x, t_{1}, \cdots, t_{n}\right)}{\sum_{i=1}^{n} \frac{\mid t_{i} p_{i}}{p_{i}}} \leq 0 ;
$$

(ijj) $F(x, 0, \cdots, 0)=0$ for every $x \in \Omega$.
Then, setting

$$
\begin{align*}
& \lambda^{\prime}:=\frac{\sum_{i=1}^{n} \frac{\delta p_{i}}{p_{i}}\left\|a_{i}\right\|_{1}}{\int_{\Omega} F(x, \delta, \cdots, \delta)-\int_{\Omega} \sup _{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Pi_{i=1}^{p} p_{i}}\right)} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x^{\prime}}, \tag{2.3a}\\
& \lambda^{\prime \prime}:=\frac{\gamma}{\left(c \prod_{i=1}^{n} p_{i}\right) \int_{\Omega} \sup _{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Gamma_{i=1}^{n} p_{i}}\right)} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x}, \tag{2.3b}
\end{align*}
$$

for each $\lambda \in] \lambda^{\prime}, \lambda^{\prime \prime}[$ the system (1.1) admits at least three weak solutions in X.
Proof. For each $u=\left(u_{1}, \cdots, u_{n}\right) \in X$, put

$$
\begin{equation*}
\Phi(u):=\sum_{i=1}^{n} \frac{\left\|u_{i}\right\|^{p_{i}}}{p_{i}}, \quad \Psi(u):=-\int_{\Omega} F\left(x, u_{1}(x), \cdots, u_{n}(x)\right) \mathrm{d} x . \tag{2.4}
\end{equation*}
$$

It is well known that Φ and Ψ are well defined and continuously Gâteaux differentiable functionals with

$$
\begin{aligned}
& \Phi^{\prime}(u)(v)=\int_{\Omega} \sum_{i=1}^{n}\left|\nabla u_{i}(x)\right|^{p_{i}-2} \nabla u_{i}(x) \nabla v_{i}(x) \mathrm{d} x+\int_{\Omega} \sum_{i=1}^{n} a_{i}(x)\left|u_{i}(x)\right|^{p_{i}-2} u_{i}(x) v_{i}(x) \mathrm{d} x, \\
& \Psi^{\prime}(u)(v)=-\int_{\Omega} \sum_{i=1}^{n} F_{u_{i}}\left(x, u_{1}(x), \cdots, u_{n}(x)\right) v_{i}(x) \mathrm{d} x
\end{aligned}
$$

for every $u=\left(u_{1}, \cdots, u_{n}\right), v=\left(v_{1}, \cdots, v_{n}\right) \in X$, as well as $\Psi^{\prime}: X \rightarrow X^{*}$ is continuous and compact operator (see [17, Proposition 26.2]). Also, $\Phi^{\prime}: X \rightarrow X^{*}$ is an uniformly monotone
operator in X, and since Φ^{\prime} is coercive and semicontinuous in X, by applying [17, Theorem 26.A], Φ^{\prime} admits a continuous inverse on X^{*}. Furthermore, by [17, Proposition $25.20], \Phi$ is sequentially weakly lower semicontinuous.

Thanks to the assumption (jj), for each $\lambda>0$ one has that

$$
\lim _{\|u\| \rightarrow+\infty}(\Phi(u)+\lambda \Psi(u))=+\infty .
$$

Put $r:=\gamma /\left(c \prod_{i=1}^{n} p_{i}\right)$. From the hypothesis (j$)$, we get

$$
\begin{align*}
& \frac{1}{\gamma} \int_{\Omega\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\prod_{i=1}^{p} p_{i}}\right)} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x \\
< & \frac{\int_{\Omega} F(x, \delta, \cdots, \delta) \mathrm{d} x}{c \sum_{i=1}^{n}\left(\prod_{j=1, j \neq i}^{n} p_{j}\right)\left\|a_{i}\right\|_{1} \delta^{p_{i}}}-\frac{1}{\gamma} \int_{\Omega_{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\prod_{i=1}^{p} p_{i}}\right)}} \sup ^{n}\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x, \tag{2.5}
\end{align*}
$$

thus, since $\sum_{i=1}^{n} \delta p_{i} / p_{i}>\gamma / \prod_{i=1}^{n} p_{i}$, and $c\left\|a_{i}\right\|_{1} \geq 1$ for $1 \leq i \leq n$, we have

$$
\begin{align*}
& \frac{1}{\gamma} \int_{\Omega_{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Pi_{i=1}^{p} p_{i}}\right)} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x} \\
< & \int_{\Omega} F(x, \delta, \cdots, \delta) \mathrm{d} x-\int_{\Omega_{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Pi_{i=1}^{\eta} p_{i}^{p}}\right)}} \sup ^{c \sum_{i=1}^{n}\left(\prod_{j=1, j \neq i}^{n} p_{j}\right)\left\|a_{i}\right\|_{1} \delta^{p_{i}}}, \tag{2.6}
\end{align*}
$$

from which, multiplying by $c \prod_{i=1}^{n} p_{i}$, we obtain

$$
\begin{align*}
& \frac{1}{\gamma}\left(c \prod_{i=1}^{n} p_{i}\right) \int_{\Omega_{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Pi_{i=1}^{i} p_{i}}\right)}} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x \\
< & \frac{\int_{\Omega} F(x, \delta, \cdots, \delta) \mathrm{d} x-\int_{\Omega_{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Pi_{i=1}^{\gamma} p_{i}}\right)}} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x}{\sum_{i=1}^{n} \frac{\delta^{p_{i}}}{p_{i}}\left\|a_{i}\right\|_{1}} . \tag{2.7}
\end{align*}
$$

We claim that

$$
\begin{align*}
& \varphi_{1}(r) \leq \frac{1}{\gamma}\left(c \prod_{i=1}^{n} p_{i}\right) \int_{\Omega_{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\left.\Pi_{i=1}^{r} p_{i}\right)}\right.} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x} \sup , \tag{2.8a}\\
& \varphi_{2}(r) \geq \frac{\int_{\Omega} F(x, \delta, \cdots, \delta) \mathrm{d} x-\int_{\Omega} \sup _{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Gamma_{i=1}^{\gamma} p_{i}}\right)} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x}{\sum_{i=1}^{n} \frac{\delta_{i}^{p_{i}}}{p_{i}}\left\|a_{i}\right\|_{1}} \tag{2.8b}
\end{align*}
$$

from which (ii) of Theorem 2.1 follows. In fact, taking into account that the function identically 0 obviously belongs to $\Phi^{-1}(]-\infty, r[)$, and that $\Psi(0)=0$, we get

$$
\begin{equation*}
\varphi_{1}(r) \leq \frac{1}{r^{-1}(]-\infty, r[)^{w}} \int_{\Omega} F\left(x, u_{1}(x), \cdots, u_{n}(x)\right) \mathrm{d} x, \tag{2.9}
\end{equation*}
$$

\left.\left. and, since ${\overline{\Phi^{-1}(]-\infty, r[)}}^{w}=\Phi^{-1}(]-\infty, r\right]\right)$, we have

$$
\frac{1}{r^{-1}(]-\infty, r[)^{w}} \int_{\Omega} F\left(x, u_{1}(x), \cdots, u_{n}(x)\right) \mathrm{d} x=\frac{1}{r_{\left.\left.\Phi^{-1}(]-\infty, r\right]\right)} \sup _{\Omega} F\left(x, u_{1}(x), \cdots, u_{n}(x)\right) \mathrm{d} x . . . \text {. }{ }^{\Phi^{-1}} .}
$$

Since for each $u_{i} \in W^{1, p_{i}}(\Omega)$

$$
\sup _{x \in \Omega}\left|u_{i}(x)\right|^{p_{i}} \leq c\left\|u_{i}\right\|^{p_{i}}
$$

for $1 \leq i \leq n$ (see (1.2)), we have that

$$
\begin{equation*}
\sup _{x \in \Omega} \sum_{i=1}^{n} \frac{\left|u_{i}(x)\right|^{p_{i}}}{p_{i}} \leq c \sum_{i=1}^{n} \frac{\left\|u_{i}\right\|^{p_{i}}}{p_{i}}=c \Phi(u) \tag{2.10}
\end{equation*}
$$

for every $u=\left(u_{1}, \cdots, u_{n}\right) \in X$. Thus, taking into account that $\sum_{i=1}^{n}\left|u_{i}(x)\right|^{p_{i}} / p_{i} \leq \gamma / \prod_{i=1}^{n} p_{i}$, for every $u=\left(u_{1}, \cdots, u_{n}\right) \in X$ such that $\Phi(u) \leq r$ and for each $x \in \Omega$, we obtain

$$
\frac{1}{r^{\prime}} \sup _{\left.\left.\Phi^{-1}(]-\infty, r\right]\right)} \int_{\Omega} F\left(x, u_{1}(x), \cdots, u_{n}(x)\right) \mathrm{d} x \leq \frac{1}{r} \int_{\Omega_{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Gamma_{i=1}^{r} p_{i}}\right)}} \sup F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x .
$$

So, (2.8a) follows at once by the definition of r.
Moreover, for each $v=\left(v_{1}, \cdots, v_{n}\right) \in X$ such that $\Phi(v) \geq r$, we have

$$
\varphi_{2}(r) \geq \inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\int_{\Omega} F\left(x, v_{1}(x), \cdots, v_{n}(x)\right) \mathrm{d} x-\int_{\Omega} F\left(x, u_{1}(x), \cdots, u_{n}(x)\right) \mathrm{d} x}{\Phi(v)-\Phi(u)} .
$$

Thus, from $\sum_{i=1}^{n}\left|u_{i}(x)\right|^{p_{i}} / p_{i} \leq \gamma / \prod_{p=1}^{n} p_{i}$, for every $u=\left(u_{1}, \cdots, u_{n}\right) \in X$ such that $\Phi(u)<r$ and for each $x \in \Omega$, we obtain

$$
\begin{aligned}
& \inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\int_{\Omega} F\left(x, v_{1}(x), \cdots, v_{n}(x)\right) \mathrm{d} x-\int_{\Omega} F\left(x, u_{1}(x), \cdots, u_{n}(x)\right) \mathrm{d} x}{\Phi(v)-\Phi(u)} \\
& \geq \inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\int_{\Omega} F\left(x, v_{1}(x), \cdots, v_{n}(x)\right) \mathrm{d} x-\int_{\Omega} \sup _{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\left.\Pi_{i=1}^{n p_{i}}\right)}\right.} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x}{\Phi(v)-\Phi(u)},
\end{aligned}
$$

from which, being $0<\Phi(v)-\Phi(u) \leq \Phi(v)$ for every $u \in \Phi^{-1}(]-\infty, r[)$, and under further condition

$$
\begin{equation*}
\int_{\Omega} F\left(x, v_{1}(x), \cdots, v_{n}(x)\right) \mathrm{d} x \geq \int_{\Omega} \sup _{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\prod_{i=1}^{\eta} p_{i}}\right)} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x \tag{2.11}
\end{equation*}
$$

we can write

$$
\begin{aligned}
& \inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\int_{\Omega} F\left(x, v_{1}(x), \cdots, v_{n}(x)\right) \mathrm{d} x-\int_{\Omega\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Pi_{i=1}^{n} p_{i}}\right)} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x}{} \sup _{\Omega(v)-\Phi(u)}^{\int_{\Omega} F\left(x, v_{1}(x), \cdots, v_{n}(x)\right) \mathrm{d} x-\int_{\Omega} \sup _{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Pi_{i=1}^{n} p_{i}}\right)} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x} \\
& \sum_{i=1}^{n} \frac{\left\|v_{i}\right\|^{p_{i}}}{p_{i}}
\end{aligned} .
$$

If we put $v(x):=(\delta, \cdots, \delta)$, for each $x \in \Omega$, we have $\left\|v_{i}\right\|=\left\|a_{i}\right\|_{1}^{1 / p_{i}} \delta$ for $1 \leq i \leq n$.
Now since $\sum_{i=1}^{n} \delta^{p_{i}} / p_{i}>\gamma / \prod_{i=1}^{n} p_{i}$, bearing in mind that $1 /\left\|a_{i}\right\|_{1} \leq c$ for $1 \leq i \leq n$, we get $\Phi(v)=\sum_{i=1}^{n}\left(\delta^{p_{i}}\left\|a_{i}\right\|_{1}\right) / p_{i}>r$. Moreover, with this choice of $v,(2.7)$ ensures (2.11), thus (2.8b) is also proved.

Taking into account that the weak solutions of the system (1.1) are exactly the solutions of the equation $\Phi^{\prime}(u)+\lambda \Psi^{\prime}(u)=0$, we have the conclusion by using of Theorem 2.1. Namely, by observing that

$$
\begin{align*}
& \frac{1}{\varphi_{2}(r)} \leq \frac{\sum_{i=1}^{n} \frac{\delta^{p_{i}}}{p_{i}}\left\|a_{i}\right\|_{1}}{\int_{\Omega} F(x, \delta, \cdots, \delta) \mathrm{d} x-\int_{\Omega} \sup _{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Pi_{i=1}^{n} p_{i}}\right)} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x} \tag{2.12a}\\
& \frac{1}{\varphi_{1}(r)} \geq \frac{\gamma}{\left(c \prod_{i=1}^{n} p_{i}\right) \int_{\Omega} \sup _{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Pi_{i=1}^{n} p_{i}}\right)} F\left(x, t_{1}, \cdots, t_{n}\right) \mathrm{d} x} \tag{2.12b}
\end{align*}
$$

for each $\lambda \in] \lambda^{\prime}, \lambda^{\prime \prime}$ [the system (1.1) admits at least three weak solutions in X.
Since $\int_{\Omega} F(\delta, \cdots, \delta) \mathrm{d} x=m(\Omega) F(\delta, \cdots, \delta)$, we have the following remarkable consequence of Theorem 2.2.

Theorem 2.3. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{1}-function and assume that there exist two positive constants γ and δ with $\sum_{i=1}^{n} \delta p_{i} / p_{i}>\gamma / \prod_{i=1}^{n} p_{i}$ such that
(j')

$$
\frac{1}{\gamma} \max _{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Pi_{i=1}^{\gamma} p_{i}^{p}}\right)} F\left(t_{1}, \cdots, t_{n}\right)<\frac{1}{2} \frac{F(\delta, \cdots, \delta)}{c \sum_{i=1}^{n}\left(\prod_{j=1, j \neq i}^{n} p_{j}\right)\left\|a_{i}\right\|_{1} \delta^{p_{i}}}
$$

where K is defined by (2.2) and c is given by (1.2);
(jj')

$$
\limsup _{\left|t_{1}\right| \rightarrow+\infty, \cdots,\left|t_{n}\right| \rightarrow+\infty} \frac{F\left(t_{1}, \cdots, t_{n}\right)}{\sum_{i=1}^{n} \frac{\left|t_{i}\right|_{i}^{p_{i}}}{p_{i}}} \leq 0
$$

(jij' $) F(0, \cdots, 0)=0$.
Then, setting

$$
\begin{align*}
& \lambda^{\prime}:=\frac{\sum_{i=1}^{n} \frac{\delta p_{i}}{p_{i}}\left\|a_{i}\right\|_{1}}{m(\Omega)\left(F(\delta, \cdots, \delta)-\max _{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\Gamma_{i=1}^{n} p_{i}}\right)} F\left(t_{1}, \cdots, t_{n}\right)\right)}, \tag{2.13a}\\
& \lambda^{\prime \prime}:=\frac{\gamma}{m(\Omega)\left(c \prod_{i=1}^{n} p_{i}\right)_{\left(t_{1}, \cdots, t_{n}\right) \in K\left(\frac{\gamma}{\left.\Gamma_{i=1}^{\gamma} p_{i}\right)}\right.} F\left(t_{1}, \cdots, t_{n}\right)}, \tag{2.13b}
\end{align*}
$$

for each $\lambda \in] \lambda^{\prime}, \lambda^{\prime \prime}[$ the system

$$
\begin{cases}\Delta_{p_{1}} u_{1}+\lambda F_{u_{1}}\left(u_{1}, \cdots, u_{n}\right)=a_{1}(x)\left|u_{1}\right|^{p_{1}-2} u_{1} & \text { in } \Omega \tag{2.14}\\ \Delta_{p_{2}} u_{2}+\lambda F_{u_{2}}\left(u_{1}, \cdots, u_{n}\right)=a_{2}(x)\left|u_{2}\right|^{p_{2}-2} u_{2} & \text { in } \Omega \\ \vdots & \\ \Delta_{p_{n}} u_{n}+\lambda F_{u_{n}}\left(u_{1}, \cdots, u_{n}\right)=a_{n}(x)\left|u_{n}\right|^{p_{n}-2} u_{n} & \text { in } \Omega \\ \frac{\partial u_{i}}{\partial v}=0 \text { for } 1 \leq i \leq n & \text { on } \partial \Omega\end{cases}
$$

admits at least three weak solutions in X .

Now, we give an example to illustrate Theorem 2.3.
Example 2.1. Consider the system

$$
\begin{cases}\Delta_{3} u_{1}+\lambda e^{-u_{1}} u_{1}^{11}\left(12-u_{1}\right)=\frac{2\left(x^{2}+y^{2}\right)}{\pi}\left|u_{1}\right| u_{1} & \text { in } \Omega \tag{2.15}\\ \Delta_{3} u_{2}+\lambda e^{-u_{2}} u_{2}^{13}\left(14-u_{2}\right)=\frac{2\left(x^{2}+y^{2}\right)}{\pi}\left|u_{2}\right| u_{2} & \text { in } \Omega \\ \frac{\partial u_{1}}{\partial v}=\frac{\partial u_{2}}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<9\right\}$. Note that $c=1536 / \pi$ and we choose $\delta=10, \gamma=3$, $a_{i}(x, y)=2\left(x^{2}+y^{2}\right) / \pi$ for $i=1,2$ and

$$
F\left(t_{1}, t_{2}\right)=e^{-t_{1}} t_{1}^{12}+e^{-t_{2}} t_{2}^{14}
$$

for each $\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$. We see that

$$
\max _{\left|t_{1}\right|^{3}+\left|t_{2}\right|^{3} \leq 1}\left(e^{-t_{1}} t_{1}^{12}+e^{-t_{2}} t_{2}^{14}\right) \leq \max _{\left|t_{1}\right| \leq 1} e^{-t_{1}} t_{1}^{12}+\max _{\left|t_{2}\right| \leq 1} e^{-t_{2}} t_{2}^{14}=2 e,
$$

which gives that

$$
\begin{align*}
& \frac{1}{2 c} \frac{F(\delta, \delta)}{p_{2}\left\|a_{1}\right\|_{1} \delta^{p_{1}}+p_{1}\left\|a_{2}\right\|_{1} \delta^{p_{2}}}-\frac{1}{\gamma} \max _{\left(t_{1}, t_{2}\right) \in K\left(\frac{\gamma}{p_{1} p_{2}}\right)} F\left(t_{1}, t_{2}\right) \\
\geq & \frac{\pi}{2 \times 1536} \frac{e^{-10} 10^{12}+e^{-10} 10^{14}}{6 \times 81 \times 10^{3}}-\frac{\max _{\left|t_{1}\right| \leq 1} e^{-t_{1}} t_{1}^{12}+\max _{\left|t_{2}\right| \leq 1} e^{-t_{2}} t_{2}^{14}}{3} \\
= & \frac{\pi}{1536} \frac{e^{-10} 10^{9}+e^{-10} 10^{11}}{972}-\frac{2 e}{3}>0, \tag{2.16}
\end{align*}
$$

and

$$
\begin{equation*}
\limsup _{\left(\left|t_{1}\right|,\left|t_{2}\right|\right) \rightarrow(+\infty,+\infty)} \frac{F\left(t_{1}, t_{2}\right)}{\frac{1}{3}\left|t_{1}\right|^{3}+\frac{1}{3}\left|t_{2}\right|^{3}}=0 \tag{2.17}
\end{equation*}
$$

Hence, Theorem 2.3 is applicable to the system (2.15) for every

$$
\begin{equation*}
\lambda \in] \frac{54 \times 10^{3}}{9 \pi\left(e^{-10} 10^{12}+e^{-10} 10^{14}-2 e\right)}, \quad \frac{1}{1536 \times 108 e}[. \tag{2.18}
\end{equation*}
$$

Finally, we conclude this paper by giving an immediate consequence of Theorem 2.3 when $n=1$.

Corollary 2.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Put $F(t)=\int_{0}^{t} f(\xi) \mathrm{d} \xi$ for each $t \in \mathbb{R}$ and assume that there exist two positive constants γ and δ with $\delta^{p}>\gamma$ such that
(${ }^{\prime \prime}$)

$$
\frac{1}{\gamma} \max _{t \in[-\sqrt[p]{\gamma}, \sqrt[p]{\gamma}]} F(t)<\frac{1}{2} \frac{F(\delta)}{c\|a\|_{1} \delta^{p}}, \text { with } c=\sup _{u \in W^{1, p}(\Omega) \backslash\{0\}}\left(\frac{\|u\|_{\infty}}{\|u\|}\right)^{p}
$$

(jj" ${ }^{\prime \prime}$

$$
\limsup _{|t| \rightarrow+\infty} \frac{F(t)}{|t|^{p}} \leq 0
$$

Then, setting

$$
\begin{align*}
& \lambda^{\prime}:=\frac{\|a\|_{1} \delta^{p}}{p\left(m(\Omega)\left(F(\delta)-\max _{t \in[-\sqrt[p]{\gamma}, \sqrt[p]{\gamma}]} F(t)\right)\right)}, \tag{2.19a}\\
& \lambda^{\prime \prime}:=\frac{\gamma}{m(\Omega)(p c) \max _{t \in[-\sqrt[p]{\gamma}, \sqrt[p]{\gamma}]} F(t)^{\prime}} \tag{2.19b}
\end{align*}
$$

for each $\lambda \in] \lambda^{\prime}, \lambda^{\prime \prime}[$ the problem

$$
\begin{cases}\Delta_{p} u+\lambda f(u)=a(x)|u|^{p-2} u & \text { in } \Omega \tag{2.20}\\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

admits at least three weak solutions in $W^{1, p}(\Omega)$.

References

[1] Averna D. and Bonanno G., A three critical points theorem and its applications to the ordinary Dirichlet problem, Topol. Methods Nonlinear Anal., 22 (2003), 93-103.
[2] Anello G. and Cordaro G., An existence theorem for the Neumann problem involving the p-Laplacian, J. Convex Anal., 10(1) (2003), 185-198.
[3] Ricceri B., On a three critical points theorem, Arch. Math. (Basel), 75 (2000), 220-226.
[4] Afrouzi G. A. and Heidarkhani S., Existence of three solutions for a class of Dirichlet quasilinear elliptic systems involving the $\left(p_{1}, \cdots, p_{n}\right)$-Laplacian, Nonlinear Anal., 70 (2009), 135143.
[5] Afrouzi G. A. and Heidarkhani S., Multiplicity theorems for a class of Dirichlet quasilinear elliptic systems involving the $\left(p_{1}, \cdots, p_{n}\right)$-Laplacian, Nonlinear Anal., 73 (2010), 2594-2602.
[6] Afrouzi G. A., Heidarkhani S., and O'Regan D., Three solutions to a class of Neumann doubly eigenvalue elliptic systems driven by a $\left(p_{1}, \cdots, p_{n}\right)$-Laplacian, Bull. Korean Math. Soc., 47(6) (2010), 1235-1250.
[7] Anello G. and Cordaro G., Existence of solutions of the Neumann problem for a class of equations involving the p-Laplacian via a variational principle of Ricceri, Arch. Math. (Basel), 79 (2002), 274-287.
[8] Anello G. and Cordaro G., Positive infinitely many arbitrarily small solutions for the Dirichlet problem involving the p-Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 511-519.
[9] Averna D. and Bonanno G., Three solutions for a Neumann boundary value problem involving the p-Laplacian, Le Matematiche, 60 (Fasc. I) (2005), 81-91.
[10] Bonanno G. and Candito P., Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. (Basel), 80(4) (2003), 424-429.
[11] Bonanno G. and Livrea R., Multiplicity theorems for the Dirichlet problem involving the p-Laplacian, Nonlinear Anal., 54 (2003), 1-7.
[12] Faraci F., Multiplicity results for a Neumann problem involving the p-Laplacian, J. Math. Anal. Appl., 277 (2003), 180-189.
[13] Heidarkhani S. and Tian Y., Multiplicity results for a class of gradient systems depending on two parameters, Nonlinear Anal., 73 (2010), 547-554.
[14] Kristály A., Existence of two non-trivial solutions for a class of quasilinear elliptic variational systems on strip-like domains, Proc. Edinb. Math. Soc. (Series 2), 48 (2005), 465-477.
[15] Li C. and Tang C.-L., Three solutions for a class of quasilinear elliptic systems involving the (p, q)-Laplacian, Nonlinear Anal., 69 (2008), 3322-3329.
[16] Marano S. A. and Motreanu D., On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems, Nonlinear Anal., 48 (2002), 37-52.
[17] Zeidler E., Nonlinear Functional Analysis and its Applications, II/B, Berlin-Heidelberg-New York, 1990.

[^0]: *Corresponding author. Email addresses: afrouzi@umz.ac.ir (G. A. Afrouzi), a.hadjian@umz.ac.ir

