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Université de Cocody, UFR de Mathématiques et Informatique: 22 BP 582 Abidjan,
Ivory Coast.

Received 30 June 2012; Accepted 23 December 2012

Abstract. We study the dynamics of a piecewise (in time) distributed optimal con-
trol problem for Generalized MHD equations which model velocity tracking coupled
to magnetic field over time. The long-time behavior of solutions for an optimal dis-
tributed control problem associated with the Generalized MHD equations is studied.
First, a quasi-optimal solution for the Generalized MHD equations is constructed; this
quasi-optimal solution possesses the decay (in time) properties. Then, some prelimi-
nary estimates for the long-time behavior of all solutions of Generalized MHD equa-
tions are derived. Next, the existence of a solution of optimal control problem is proved
also optimality system is derived. Finally, the long-time decay properties for the opti-
mal solutions is established.
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1 Introduction

The control of viscous flows is very crucial to many technological and scientific appli-
cations. We are motivated to study the asymptotic behaviors and dynamics of solutions
for the controlled Generalized MHD equations (GMHD). In this paper we study the long
time behavior of the solution for optimal control problems associated with GMHD equa-
tions on the infinite time interval. The optimal control with the systems governed by
Navier-Stokes and Boussinesq equations was studying by L. Hou and Y. Yan [1] and by
H. Chun Lee and B. Chun Shin [2], respectively. This work is motivated by the desire to
steer over time a candidate velocity field u and magnetics field b to a target velocity field
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U and magnetics field B by appropriately controlling the body force. The existence of
solutions of GMHD equations was studied in [3].

We formulate here a controllability problem for the GMHD equations: find a triplet
(u,b, f ) such that the functional

J(0;+∞)(u,b, f )=
α

2

∫ +∞

0

∫

Ω
|(u,b)−(U,B)|2dxdt+

β

2

∫ +∞

0

∫

Ω
| f −F|2dxdt, (1.1)

is minimized subject to the 2-D GMHD equations:

∂u

∂t
+(u·▽)u−(b·▽)b+▽p+ν(−△)r u= f , in Ω×(0,∞), (1.2)

∂b

∂t
+(u·▽)b−(b·▽)u+θ(−△)r b=0, in Ω×(0,∞), (1.3)

▽·u=0, ▽·b=0, in Ω×(0,∞), (1.4)

u=0,△u=0, △2u=0, ··· , △ru=0, on ∂Ω×(0,∞), (1.5)

b·n=0, △b=0, △2b=0, ··· , △rb=0, on ∂Ω×(0,∞), (1.6)

∇u=0, ∇2u=0, ··· , ∇ru=0, on ∂Ω×(0,∞), (1.7)

∇b=0, ∇2b=0, ··· , ∇rb=0, on ∂Ω×(0,∞), (1.8)

u(0)=u0 and b(0)=b0, (1.9)

where n is an outward unit normal vector on ∂Ω and r a non negative integer, also ν>0
and θ > 0 are the kinematic viscosity and conductivity parameters, respectively. Here
α,β> 0 are given constants, Ω is a bounded, sufficiently smooth domain in R

2 with ∂Ω

denoting its boundary; U, B and F are a given desired velocity field, a given desired mag-
netic field and a given desired body force, respectively. Also, f is a distributed control
(body force), and u,b and p denote the velocity field, the magnetic field and the pressure
field, respectively.

S. S. Ravindran [4] was interesting in the standard case (r= 1) and he had also used
a curl term. The periodic case was studying by M. Gunzburger and C. Trenchea in [5]
and [6].

Intuitively, if a flow field (u,b) is close to the desired field (U,B), then the body force
corresponding to the two fields (u,b) and (U,B) should also be close. Hence, in order that
the optimal control solution of GMHD equations is close to the desired field (U,B), we
must place some restrictions on the desired body force F involved in the cost functional
(1.1) . In fact, throughout this paper we will simply choose for some P∈L2

0(Ω),

F :=∂tU+ν(−△)rU+(U.∇)U+∇P−(B.∇)B (1.10)

for the desired field (U,B) satisfying

∂tB+θ(−△)rB+(U.▽)B−(B.▽)U=0. (1.11)
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We make the following regularity assumptions on the prescribed data U,B and F :

{
(U,B)∈L∞

(
0,∞;

(
H2(Ω)∩Vr

)
×
(
H2(Ω)∩Vr

n

))
,

F∈L∞
(
0,∞;L2(Ω)

)
.

(A1)

Note that these hypotheses permit the special case of steady state (U,B). Thus one appli-
cation of the optimal control problem is to match a steady state flows field through the
control of external forces. Observe that (U,B) is not an optimal solution because (U,B)
in general does not satisfy the initial conditions. For technical reasons, we will need the
following assumptions





2θλ4k−2
1 − θ

2
− 4

θλ1
|‖∇U‖|2− 8

νλ1
|‖∇B‖|2>0, k∈N

∗,

2θλ4k
1 − θ

2
− 4

θλ1
|‖∇U‖|2− 8

νλ1
|‖∇B‖|2>0, k∈N,

2νλ4k−2
1 − 3ν

2
− 4

νλ1
|‖∇U‖|2>0, k∈N

∗,

2νλ4k
1 − 3ν

2
− 4

νλ1
|‖∇U‖|2>0, k∈N.

(A2)

We summarize the major components of this paper as follows.

• A quasi optimizer is constructed for the optimal control problem.

• We prove the existence of a solution for the distributed optimal control problem of
minimizing (1.1) subject to (1.2)-(1.9) and derive an optimality system of equations
from which optimal solutions may be deduced.

• The long-time behavior (dynamics) of the optimal solution is derived and the main
result is that the L2

(
0,∞;L2(Ω)

)
-distance ‖(u,b)(t)−(U,B)(t)‖ between the opti-

mal solution (u,b)(t) and the desired state (U,B)(t) decays to zero as time t→∞.

Our plan of the paper is as follows: Section 2 is devoted to preliminary material. In
Section 3 we construct a quasi-optimal control solution and some preliminary estimates
for all solutions of the GMHD equations. In Section 4 we prove the existence of an optimal
solution on the finite time interval and derive an optimality system of equations from
which optimal solutions may be deduced. Finally, in Section 5 we prove the decay of the
controlled dynamics to the desired dynamics.

2 Preliminaries

Throughout this work, C denotes a generic constant depending only on the physical do-
main Ω, the viscosity constant ν and the conductivity parameter θ. We will use the stan-
dard notations for the function spaces Lp(Ω) with the norm denoted by ‖·‖Lp(Ω) and the
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Sobolev spaces Hm(Ω) with the norm denoted by ‖·‖m . We simply denote by the norm of
L2(Ω) ‖·‖. The space Hm

0 (Ω) is consisting of functions in Hm(Ω) which vanish on bound-
ary ∂Ω. The vector valued counterparts of these spaces are denoted by Lp(Ω),Hm(Ω) and
Hm

0 (Ω).
We now introduce the solenoidal spaces

Wr =
{

u∈Hr−1(Ω), ∇·u=0 and u·n|∂Ω=0
}

,

Vr ={u∈Hr
0(Ω), ∇·u=0 and ∇u= ···=∇ru=△u= ···=△ru=0 on ∂Ω},

Vr
n={u∈Hr(Ω), ∇·u=0 and u·n|∂Ω=∇u= ···=∇ru=△u= ···=△ru=0 on ∂Ω}.

We identify the dual space of Wr with Wr itself under the L2(Ω) inner product and the
dual space of Vr and Vr

n is denoted by (Vr)∗ and (Vr
n)

∗, respectively. We have

Vr×Vn
r ⊂Vr×Wr ⊂ (Vr)∗×(Vr

n)
∗,

where the injections are continuous and each space is dense in the following one. Next,
we introduce the temporal-spatial function spaces Lr (0,T;Hm(Ω)) defined on QT =Ω×
(0,T) equipped with the norm

‖u‖Lp(0,T;Hm)=

(∫ T

0
‖u(t)‖p

m dt

)1/p

,

where p∈ [1,∞). We simply denote Q∞ by Q. The solenoidal temporal-spatial function
space

H1
u (QT)=

{
u∈L2(0,T;Vr); ∂tu∈L2(0,T;(Vr)∗)

}
,

H1
b (QT)=

{
b∈L2(0,T;Vr

n); ∂tb∈L2(0,T;(Vr
n)

∗)
}

,

that associated norms are respectively given by

‖v‖2
H1

u
=‖v‖2

L2(0,T;Vr)+‖∂tv‖2
L2(0,T;(Vr)∗) ,

‖w‖2
H1

b
=‖w‖2

L2(0,T;Vr
n)
+‖∂tw‖2

L2(0,T;(Vr
n)

∗) .

For convenience we simply denote by

H1(QT)=H1
u (QT)×H1

b (QT), Hm(Ω)=Hm(Ω)×Hm(Ω),

Hm
0 (Ω)=Hm

0 (Ω)×Hm
0 (Ω) and L2(Ω)=L2(Ω)×L2(Ω).

We denote by ‖|·|‖ the simplified norm notations of ‖·‖L∞(0,T;L2(Ω)) . This norm will be
applied solely to U,B,∇U and ∇B. For two normed spaces

‖(u,b)‖2
S1×S2

=‖u‖2
S1
+‖b‖2

S2
, ∀(u,b)∈S1×S2.
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For a function u and b in a temporal-spatial space, we often use the notation u(t) :=u(.,t)
and b(t) :=b(.,t) to stand for the restriction of u and b at time t as a function defined over
the spatial domain Ω.

We introduce some standard continuous bilinear or trilinear forms:

aν
(2k+1)(u,ϕ)=ν

∫

Ω
∇((−△)ku) :∇((−△)k ϕ)dx, k∈N,∀u,ϕ∈H2k+1(Ω),

aθ
(2k+1)(b,ψ)= θ

∫

Ω
∇((−△)kb) :∇((−△)kψ)dx, k∈N,∀b,ψ∈H2k+1(Ω),

aν
2k(u,ϕ)=ν

∫

Ω
((−△)ku)·((−△)k ϕ)dx, k∈N

∗,∀u,ϕ∈H2k(Ω),

aθ
2k(b,ψ)= θ

∫

Ω
((−△)kb)·((−△)kψ)dx, k∈N

∗,∀u,ψ∈H2k(Ω),

c(u,v,w)=
∫

Ω
(u·∇)v·wdx, ∀u,v,w∈Hr(Ω),

where the colon notation : denotes the inner product on R
2×2. Also, we denote by 〈·,·〉

the duality pairing between a Banach space and its dual. Note that for all u,v,w∈H1(Ω),
c have the following continuity properties (see [7])

|c(u,v,w)|≤21/4 ·‖u‖1/2 ·‖∇u‖1/2 ·‖∇v‖·‖w‖1/2 ·‖∇w‖1/2 . (2.1)

The trilinear form c have followings properties

c(u,v,w)=−c(u,w,v) and c(u,v,v)=0, for all u,v,w∈H1(Ω). (2.2)

Let λ1>0 be the greatest real number satisfying the Poincaré inequality

λ1‖ϕ‖2≤‖∇ϕ‖2 et λ1‖ψ‖2≤‖∇ψ‖2 , ∀ϕ∈Hr, ∀ψ∈Hr
n. (2.3)

Let Π : L2(Ω)→Wr be the Leray operator (i.e., the orthogonal projection with respect to
the L2(Ω)-norm), it is well known (see [8] and [9]) that there are constants γ1 > 0 and
γ2>0 depending only on Ω such that

γ1‖Π∆ϕ‖≤‖∆ϕ‖≤γ2‖Π∆ϕ‖, ∀ϕ∈H2(Ω)∩Hr
0(Ω),

γ1‖Π∆ψ‖≤‖∆ψ‖≤γ2‖Π∆ψ‖ , ∀ψ∈H2(Ω)∩Hr
n(Ω).

So that ‖Π∆.‖ is equivalent to the H2(Ω)-norm on H2(Ω)∩Hr(Ω) and on H2(Ω)∩Hr
n(Ω).

Definition 2.1. Given T∈ (0,∞), (u0,b0)∈Wr×Wr and f ∈ L2
(
0,T;L2(Ω)

)
, (u,b) is said to

be a solution of the GMHD equations on (0,T) if and only if (u,b)∈H1(QT) and (u,b) satisfies

〈∂tu(t),ϕ〉+aν
r (u(t),ϕ)+c(u(t),u(t),ϕ)−c(b(t),b(t),ϕ)= 〈 f (t),ϕ〉,

∀ϕ∈Vr, a.e. t∈ (0,∞), (2.4)

〈∂tb(t),ψ〉+aθ
r (b(t),ψ)+c(u(t),b(t),ψ)−c(b(t),u(t),ψ)=0,

∀ψ∈Vr
n, a.e. t∈ (0,∞), (2.5)
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with r=2k, k∈N
∗ or r=2k+1, k∈N

lim
t→0+

(u(t),b(t))=(u0,b0), in Wr×Wr. (2.6)

We point out that (u,b) ∈ H1(QT) implies (u,b) ∈ C([0,T];Wr×Wr). Hence, (2.6)
makes sense.

Now for T=∞, we define a solution for the GMHD equations as follows.

Definition 2.2. Given (u0,b0)∈Wr×Wr and f ∈L2
loc

(
0,T;L2

)
, (u,b) is said to be a solution of

the GMHD equations on (0,∞) if and only if (u,b)∈ L2
loc(0,∞;Vr×Vr

n)∩L∞(0,∞;Wr×Wr),
∂t(u,b)∈L2

loc(0,∞;(Vr)∗×(Vr
n)

∗) and (u,b) satisfies (2.4)-(2.6)with T=∞.

Now, we turn to the precise statement of the optimal control problem. For each T ∈
(0,∞], we define the cost functional JT by

JT(u,b, f )=
α

2

∫ T

0
‖(u(t),b(t))−(U(t),B(t))‖2

dt+
β

2

∫ T

0
‖ f (t)−F(t‖)2dt,

for all (u,b)∈(U,B)+L2(QT) and f ∈F+L2(QT). Note that J∞ is also simply denoted by
J.

We point out that in the case of T = ∞, which will be considered in the sequel, if
we choose the control f in the space L2(QT), it is happen (e.g., in the case of a steady
(U,B)) that the value of the cost functional J∞(u,b, f ) is always infinite for every triplet
(u,b, f ) under consideration. Therefore, the choice of the control set should also involve
(U,B) and F. We define the admissible elements as follows with XT and YT denoting
respectively the functional spaces as follows:

XT =H1(QT) for T∈ (0,∞),

X∞ =
{
(u,b)∈L2

loc(0,∞;Vr×Hr
n(Ω))∩L∞

(
0,∞;Wr×Hr−1

n (Ω)
)

;

∂t(u,b)∈L2
loc(0,∞;(Vr)∗×(Vr

n)
∗)
}

,

YT = L2(0,T;(Vr)∗) for T∈ (0,∞),

Y∞= L2
loc(0,∞;(Vr)∗).

Definition 2.3. For a given T∈(0,∞], a pair ((u,b), f )∈XT×YT is called an admissible element
if JT ((u,b), f ) < ∞ and ((u,b), f ) satisfies (2.4)-(2.6) . The set of all admissible elements are
denoted by Uad(T).

Now for each T∈ (0,∞], we state the optimal control problem on (0,T) as follows:

find a (u,b, f )∈Uad(T) such that

JT(u,b, f )≤T (ω,ψ,h), ∀(ω,ψ,h)∈Uad(T). (2.7)

We point out that in general, the initial state (u0,b0) is at a certain distance away from
the desired flow, or (u0,b0) 6= (U(t),B(t)) for all t, the cost functional generally has a
positive minimum. Therefore our optimal control problem has nontrivial solutions. We
denote by

∧
=(−△).
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Lemma 2.1. For all u∈Vr, we have

||
(∧)r

u||L2 ≥λ2r−1
1 ||∇u||L2 , (2.8)

where λ1 is a constant that appears in the Poincarré inequality.

Proof. We will prove it by induction.

For r = 1, integration by parts and the use of the Poincarré inequality (2.3) and the
Schwarz inequality give

||∇u||2L2 =(∇u,∇u)=(
∧

u,u)≤||
∧

u||L2 ||u||L2 ≤ 1

λ1
||
∧

u||L2 ||∇u||L2 ,

and then

||
∧

u||L2 ≥λ1||∇u||L2 .

For r=2, thanks to the Poincarré inequality (2.3) and integration by parts, with the use of
the Schwarz inequality, we get

λ2
1||
∧

u||2L2 ≤||∇(
∧

u)||2L2 =
(
∇(
∧

u),∇(
∧

u)
)

=
(
−△(

∧
u),
∧

u
)
=
( 2∧

u,
∧

u
)
≤||

2∧
u||L2‖

∧
u||L2 ,

which implies

‖
(∧)2

u‖L2 ≥λ2
1‖
∧

u‖|L2 ≥λ3
1‖∇u‖L2 .

Assume that at the level r

‖
(∧)r

u‖L2 ≥λ2r−1
1 ‖∇u‖|L2 ,

then thanks to the Poincarré inequality (2.3) and integration by parts, with the use of the
Schwarz inequality, we get

λ2
1||

r∧
u||2L2 ≤||∇(

r∧
u)||2L2 =

(
∇(

r∧
u),∇(

r∧
u)
)

=
(
−△(

r∧
u),

r∧
u
)
=
(r+1∧

u,
r∧

u
)
≤‖

r+1∧
u‖L2‖

r∧
u‖L2 ,

which implies

‖
(∧)r+1

u‖L2 ≥λ2
1‖
(∧)r

u||L2 ≥λ2r+1
1 ||∇u||L2 =λ

2(r+1)−1
1 ||∇u||L2 .

This finishes the proof of Lemma 2.1.
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Let r=2k,k∈N
∗ . The system becomes

∂u

∂t
+ν

2k∧
u+(u·▽)u−(b·▽)b+▽p= f , in Ω×(0,∞),

∂b

∂t
+θ

2k∧
b+(u·▽)b−(b·▽)u=0, in Ω×(0,∞),

▽·u=0, ▽·b=0, in Ω×(0,∞),

u=0, △u=0, △2u=0, ··· , △ru=0, on ∂Ω×(0,∞),

b·n=0, △b=0, △2b=0, ··· , △rb=0, on ∂Ω×(0,∞),

∇u=0, ∇2u=0, ··· , ∇ru=0, on ∂Ω×(0,∞),

∇b=0, ∇2b=0, ··· , ∇rb=0, on ∂Ω×(0,∞),

u(0)=u0 and b(0)=b0.

Using the inner product and the 2k integrations by parts we find




1

2

d

dt
‖u(t)‖2+ν

∥∥∥
∧k u(t)

∥∥∥
2
−c(b(t),b(t),u(t))= 〈 f ,u(t)〉,

1

2

d

dt
‖b(t)‖2+θ

∥∥∥
∧k b(t)

∥∥∥
2
−c(b(t),u(t),b(t))=0,

(2.9)

the use of the Lemma 2.1 and the Schwarz inequality gives




1

2

d

dt
‖u(t)‖2+νλ

2(2k−1)
1 ‖∇u(t)‖2−c(b(t),b(t),u(t))≤‖ f‖·‖u‖,

1

2

d

dt
‖b(t)‖2+θλ

2(2k−1)
1 ‖∇b(t)‖2−c(b(t),u(t),b(t))≤0.

(2.10)

Then also ∀u∈Vr and ∀b∈Vr
n,

{
aν

2k(u,u)=ν‖∧k u‖2≥νλ
2(2k−1)
1 ‖∇u‖2,

aθ
2k(b,b)= θ‖∧k b‖2 ≥ θλ

2(2k−1)
1 ‖∇b‖2.

(2.11)

Now let r=2k+1,k∈N. The system becomes

∂u

∂t
−ν△

2k∧
u+(u·∇)u−(b·∇)b+∇p= f , in Ω×(0,∞) ,

∂b

∂t
−θ△

2k∧
b+(u·∇)b−(b·∇)u=0, in Ω×(0,∞) ,

∇·u=0, ∇·b=0, in Ω×(0,∞) ,

u=0, △u=0, △2u=0, ··· , △ru=0, on ∂Ω×(0,∞),

b·n=0, △b=0, △2b=0, ··· , △rb=0, on ∂Ω×(0,∞),
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∇u=0, ∇2u=0, ··· , ∇ru=0, on ∂Ω×(0,∞),

∇b=0, ∇2b=0, ··· , ∇rb=0, on ∂Ω×(0,∞),

u(0)=u0 and b(0)=b0.

Using the inner product and the 2k+1 integrations by parts give





1

2

d

dt
‖u(t)‖2+ν

∥∥∥∇∧k u(t)
∥∥∥

2
−c(b(t),b(t),u(t))= 〈 f ,u(t)〉,

1

2

d

dt
‖b(t)‖2+θ

∥∥∥∇∧k b(t)
∥∥∥

2
−c(b(t),u(t),b(t))=0.

(2.12)

The Poincarré inequality (2.3) and the use of Lemma 2.1 lead us to

∥∥∇(−△)ku(t)
∥∥≥λ1

∥∥(−△)ku(t)
∥∥≥λ2k

1 ‖∇u(t)‖. (2.13)

Then (2.3), Lemma 2.1, the Schwartz inequality and 2k+1 integrations by parts give





1

2

d

dt
‖u(t)‖2+νλ4k

1 ‖∇u(t)‖2−c(b(t),b(t),u(t))≤‖ f‖·‖u‖,

1

2

d

dt
‖b(t)‖2+θλ4k

1 ‖∇b(t)‖2−c(b(t),u(t),b(t))≤0.

(2.14)

Hence also ∀u∈Vr and ∀b∈Vr
n,

aν
(2k+1)(u,u)=ν‖∇

k∧
u‖2≥νλ4k

1 ‖∇u‖2, (2.15a)

aθ
(2k+1)(b,b)= θ‖∇

k∧
b‖2 ≥ θλ4k

1 ‖∇b‖2. (2.15b)

Throughout this paper we denote by

(v,w)=(u,b)−(U,B), and g= f −F,

unless we specify them. Then (2.4)-(2.6) are equivalent to

(v,w)∈XT∩L2(0,∞;Vr×Vr
n), g∈YT∩L2

(
0,T;L2(Ω)

)
,

〈∂tv(t),ϕ〉+aν
r (v(t),ϕ)+c(v(t),v(t),ϕ)+c(v(t),U(t),ϕ)

+c(U(t),v(t),ϕ)−c(w(t),w(t),ϕ)−c(w(t),B(t),ϕ)

−c(B(t),w(t),ϕ)= 〈g(t),ϕ〉, ∀ϕ∈Vr a.e. t∈ (0,∞), (2.16)

〈∂tw(t),ψ〉+aθ
r (w(t),ψ)+c(v(t),w(t),ψ)+c(v(t),B(t),ψ)

+c(U(t),w(t),ψ)−c(w(t),v(t),ψ)−c(w(t),U(t),ψ)

−c(B(t),v(t),ψ)=0, ∀ψ∈Vr
n a.e. t∈ (0,∞), (2.17)
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with r=2k,k∈N
∗ or r=2k+1, k∈N

lim
t→0+

(u(t),b(t))=(u0,b0), in Wr×Wr. (2.18)

The cost functional can be rewritten as

KT (v,w,g)
def
= JT(v+U,w+B,g+F)=

α

2

∫ +∞

0
‖(v,w)(t)‖2dt+

β

2

∫ +∞

0
‖g(t)‖2dt, (2.19)

by defining

Vad(T)
def
=
{
((v,w),g)∈XT∩L2(0,T;Vr×Vr

n)×YT∩L2
(
0,T;L2(Ω)

)
,

KT (v,w,g)<∞, ((v,w) ,g) satisfies (2.16),(2.18)
}

.

For each T ∈(0,∞], we can restate the optimization problem (2.7) in terms of the auxiliary
variables (v,w,g) :

find a (v,w,g)∈Vad(T) such that KT (v,w,g)≤KT (z,k,h) , ∀(z,k,h)∈Vad(T). (2.20)

3 Preliminary estimates for the dynamics

3.1 A quasi optimizer

To estimate the dynamics of the optimal control solution, we need to find a sharp bound
for the value of inf(u,b, f )∈Uad(T) JT(u,b, f ). It is important that this bound is uniform in T.

We now construct a quasi-optimizer (ũ,b̃, f̃ )∈Uad(∞) for J∞ (·,·). We can in turn derive
some preliminary estimates for the optimal solutions. By a quasi-optimizer we mean an

element (ũ,b̃, f̃ )∈Uad(∞) satisfying
∥∥(ũ,b̃)(t)−(U,B)(t)

∥∥→ 0 as t → ∞. The following
theorem asserts the existence of such an element.

Theorem 3.1. Assume that the assumptions (A1) and (A2) (in the introduction above) hold.

Then there exists a pair
(
(ũ,b̃), f̃

)
∈Uad(∞) satisfying ∀t≥0

∥∥∥(ũ,b̃)(t)−(U,B)(t)
∥∥∥

2
≤‖(u0,b0)−(U0,B0)‖2e−ǫt (3.1)

and ∀T∈ (0,∞]

JT(ũ,b̃, f̃ )≤ α‖(u0,b0)−(U0,B0)‖2

2ε

(
1−e−εT

)
(3.2)

with

ǫ=min

{
2θλ4k−2

1 − θ

2
− 4

θλ1
|‖∇U‖|2− 8

νλ1
|‖∇B‖|2 , 2νλ4k−2

1 − 3ν

2
− 4

νλ1
|‖∇U‖|2 ,

2θλ4k
1 − θ

2
− 4

θλ1
|‖∇U‖|2− 8

νλ1
|‖∇B‖|2 , 2νλ4k

1 − 3ν

2
− 4

νλ1
|‖∇U‖|2

}
. (3.3)
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Proof. For r = 2k (k ∈N
∗), by substituting ϕ= v(t) and ψ = w(t) in (2.16)-(2.17), using

(2.11) and summing, we have

1

2

d

dt
‖v(t)‖2+

1

2

d

dt
‖w(t)‖2+νλ

2(2k−1)
1 ‖∇v(t)‖2

+θλ
2(2k−1)
1 ‖∇w(t)‖2+c(v(t),U(t),v(t))−c(w(t),U(t),w(t))

−c(w(t),B(t),v(t))+c(v(t),B(t),w(t))≤〈g(t),v(t)〉 . (3.4)

The use of (2.1) and (2.3) gives

|c(v(t),U(t),v(t))|≤
√

2‖v(t)‖·|‖∇U‖|·‖∇v(t)‖

≤νλ1

4
‖v(t)‖2+

2

νλ1
|‖∇U‖|2 ·‖∇v(t)‖2

≤ν

4
‖∇v(t)‖2+

2

νλ1
|‖∇U‖|2 ·‖∇v(t)‖2

, (3.5)

and

|c(w(t),B(t),v(t))|≤ θ

4
‖∇w(t)‖2+

2

θλ1
|‖∇B‖|2 ·‖∇v(t)‖2 , (3.6)

so that combining the last inequalities give

d

dt
‖v(t)‖2+

d

dt
‖w(t)‖2+2νλ

2(2k−1)
1 ‖∇v(t)‖2+2θλ

2(2k−1)
1 ‖∇w(t)‖2

≤3ν

2
‖∇v(t)‖2+

θ

2
‖∇w(t)‖2+

4

νλ1
|‖∇U‖|2 ·‖∇v(t)‖2+

4

νλ1
|‖∇U‖|2 ·‖∇w(t)‖2

+
8

νλ1
|‖∇B‖|2 ·‖∇w(t)‖2+2|〈g(t),v(t)〉|, (3.7)

hence

d

dt

(
‖v(t)‖2+‖w(t)‖2

)
+

(
2νλ4k−2

1 − 3ν

2
− 4

νλ1
|‖∇U‖|2

)
‖∇v(t)‖2

+

(
2θλ4k−2

1 − θ

2
− 4

θλ1
|‖∇U‖|2− 8

νλ1
|‖∇B‖|2

)
‖∇w(t)‖2≤2|〈g(t),v(t)〉|. (3.8)

For r=2k+1(k∈N), by substituting ϕ=v(t) and ψ=w(t) in (2.16)-(2.17), using (2.15)
and summing, we have

1

2

d

dt
‖v(t)‖2+

1

2

d

dt
‖w(t)‖2+νλ4k

1 ‖∇v(t)‖2+θλ4k
1 ‖∇w(t)‖2

+ c(v(t),U(t),v(t))−c(w(t),U(t),w(t))−c(w(t),B(t),v(t))

+ c(v(t),B(t),w(t))≤〈g(t),v(t)〉 . (3.9)
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Hence combining the last inequality with (3.5)-(3.6) give

d

dt
‖v(t)‖2+

d

dt
‖w(t)‖2+2νλ4k

1 ‖∇v(t)‖2+2θλ4k
1 ‖∇w(t)‖2

≤3ν

2
‖∇v(t)‖2+

θ

2
‖∇w(t)‖2+

4

νλ1
|‖∇U‖|2 ·‖∇v(t)‖2+

4

νλ1
|‖∇U‖|2 ·‖∇w(t)‖2

+
8

νλ1
|‖∇B‖|2 ·‖∇w(t)‖2+2|〈g(t),v(t)〉|. (3.10)

Then

d

dt

(
‖v(t)‖2+‖w(t)‖2

)
+

(
2νλ4k

1 − 3ν

2
− 4

νλ1
|‖∇U‖|2

)
‖∇v(t)‖2

+

(
2θλ4k

1 − θ

2
− 4

θλ1
|‖∇U‖|2− 8

νλ1
|‖∇B‖|2

)
‖∇w(t)‖2≤2|〈g(t),v(t)〉|, (3.11)

or again (3.8) and (3.11) become

d

dt

(
‖v(t)‖2+‖w(t)‖2

)
+

ǫ

λ1

(
‖∇v(t)‖2+‖∇w(t)‖2

)
≤2|〈g(t),v(t)〉|, (3.12)

so that the use of (2.3) gives

d

dt
‖(v(t),w(t))‖2+ǫ‖(v(t),w(t))‖2≤2|〈g(t),v(t)〉|. (3.13)

In particular, we let
(
ṽ,w̃

)
be the solution of (2.16)-(2.18) when g≡0, i.e.,

(
ũ,b̃, f̃

)
satisfy

(1.2)-(1.9) with f̃ = F. Thus we apply the Gronwall’s inequality to (3.13) with g ≡ 0 to
obtain

‖(ṽ,w̃)(t)‖2≤‖(v0,w0)‖2e−ǫt≤‖(u0,b0)−(U0,B0)‖2e−ǫt,

which gives the conclusion (3.1). Furthermore, we see that for each T∈(0,∞], (with f =F)

JT(ũ,b̃, f̃ )=
α

2

∫ T

0
‖(ṽ,w̃)(t)‖2

dt

≤α‖(u0,b0)−(U0,B0)‖2

2ε

(
1−e−εT

)

≤α‖(u0,b0)−(U0,B0)‖2

2ε
. (3.14)

This completes the proof of this theorem.

Remark 3.1. It follows from Theorem 3.1 that

lim
T→∞

min
(ũ,b̃, f̃ )∈Uad(T)

JT(ũ,b̃, f̃ )=0.
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We see that a quasi optimizer (ũ,b̃, f̃ ) has been created in the sense that
∥∥∥(ũ,b̃)(t)−(U,B)(t)

∥∥∥→0, as t→∞ and J∞(ũ,b̃, f̃ ) is bounded.

In fact,
∥∥(ũ,b̃)(t)−(U,B)(t)

∥∥→0 exponentially as t→∞. The true optimizer is expected

to have the property
∥∥(ũ,b̃)(t)−(U,B)(t)

∥∥→0 as t→∞ and at the same time, minimize
the work involved to realize and maintain the optimizer flow.

3.2 Estimate for the dynamics of admissible elements

In this section, we will derive some estimates for the dynamics of all solutions of (1.2)-
(1.9). These estimates in turn will allow us to derive preliminary estimates for the dy-
namics of the optimal solutions. First we consider the L∞

(
0,T;L2(Ω)

)
estimates in terms

of the initial data and the functional values.

Theorem 3.2. Let T ∈ (0,∞]. Assume that the assumptions (A1) and (A2) hold. If (u,b, f )∈
Uad(T), then ∀t∈ [0,T],

‖(u,b)(t)−(U,B)(t)‖2≤‖(u0,b0)−(U0,B0)‖2+
2√
αβ

JT(u,b, f ). (3.15)

If in addition,

JT(u,b, f )≤ JT(ũ,b̃, f̃ ),

then
‖(u,b)(t)−(U,B)(t)‖2≤K0‖(u0,b0)−(U0,B0)‖2 , (3.16)

where ǫ and (ũ,b̃, f̃ ) are defined in Theorem 3.1 and

K0=

(
1+

1

2ǫ

√
α

β

)
.

Proof. Applying the Schwarz and the Young inequalities to (3.13) we find

d

dt
‖(v,w)(t)‖2+ǫ‖(v,w)(t)‖2 ≤ 1√

αβ
(α‖(v)(t)‖2+β‖g(t)‖2)

≤ 1√
αβ

(α‖(v,w)(t)‖2+β‖g(t)‖2). (3.17)

Multiplying both sides of this inequality by eǫt and then integrating in t over (0,t), lead
us to

‖(v,w)(t)‖2≤‖(v,w)(0)‖2 e−ǫt+
1√
αβ

∫ t

0

(
α‖(v,w)(s)‖2+β‖g(s)‖2

)
eǫ(s−t)ds

≤‖(v,w)(0)‖2
e−ǫt+

1√
αβ

∫ T

0

(
α‖(v,w)(t)‖2+β‖g(t)‖2

)
dt

≤‖(v,w)(0)‖2 e−ǫt+
2√
αβ

JT(u,b, f ).
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This yields the inequality (3.15) . Moreover combining the condition JT(u,b, f )≤ JT(ũ,b̃, f̃ )
with the inequality (3.15) and the Theorem 3.1 we find the inequality (3.16) . This finishes
the proof of this theorem.

Now, using the uniform Gronwall’s inequality we derive L∞(0,T;Hr) estimates.

Theorem 3.3. Let T∈(0,∞] and (u,b, f )∈Uad(T). Assume that the assumptions (A1) and (A2)

hold and assume further that JT(u,b, f )≤ JT(ũ,b̃, f̃ ). Then for each ε>0, we have

(u−U,b−B)∈L2(0,T;Hr(Ω))∩L∞(ε,T;Hr(Ω))∩C([ε,T] ;Hr(Ω)),

with ∫ T

0
‖∇(u,b)(s)−∇(U,B)(s)‖2

ds≤K1‖(u0,b0)−(U0,B0)‖2
, (3.18)

and

‖∇(u,b)(t)−∇(U,B)(t)‖2≤K2‖(u0,b0)−(U0,B0)‖2
, ∀t≥ ε, (3.19)

where

K1=
λ1

ε

(
1+

1

ε

√
α

β

)
,

K2=2CK0

(
1

ν3
+

2

θν
+

1

θ3

)
‖(u0,b0)−(U0,B0)‖2 ,

K3=2(C5+C6) .

Proof. Let T∈ (0,∞] be given. For each ε>0, it follows from the regularity results for the
GMHD equations (see [3]) that (v,w)∈ L2(0,T;Hr(Ω)) ∩C([ε,T];Hr(Ω)) if T<∞ so that
(3.15) holds.

When T=∞, we have (v,w)∈L2
loc(0,T;Hr(Ω)) ∩C([ε,T];Hr(Ω)).

Applying Young and Schwarz inequalities to (3.12) and integrating by parts in t over
(0,T), we obtain easily (3.18).

Then we set ϕ=−Π∆v(t) and ψ=−Π∆w(t) in (2.16) and (2.17) , respectively. Note
that

aν
2k (v(t),−Π∆v(t))=

〈
ν(−∆)2kv(t),−Π∆v(t)

〉
=ν
∥∥∥Π∇(−∆)kv(t)

∥∥∥
2
,

aθ
2k (w(t),−Π∆w(t))=

〈
θ(−∆)2kw(t),−Π∆w(t)

〉
= θ
∥∥∥Π∇(−∆)kw(t)

∥∥∥
2
,

and

aν
(2k+1) (v(t),−Π∆v(t))=

〈
−ν∆(−∆)2kv(t),−Π∆v(t)

〉
=ν
∥∥∥Π(−∆)k+1v(t)

∥∥∥
2
,

aθ
(2k+1) (w(t),−Π∆w(t))=

〈
−θ∆(−∆)2kw(t),−Π∆w(t)

〉
= θ
∥∥∥Π(−∆)k+1w(t)

∥∥∥
2
.
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Applying Sobolev imbedding and interpolation results, we obtain for r=2k (k∈N
∗)

1

2

d

dt
‖∇v(t)‖2+νλ4k

1 ‖Π∇v(t)‖2

≤‖v(t)‖1/2‖∇v(t)‖‖Π∆v(t)‖3/2

+‖v(t)‖1/2‖∇v(t)‖1/2‖∇U(t)‖1/2‖∆U(t)‖1/2‖Π∆v(t)‖
+‖U(t)‖1/2‖∇U(t)‖1/2‖∇v(t)‖1/2‖Π∆v(t)‖3/2

+‖w(t)‖1/2‖∇w(t)‖‖Π∆w(t)‖1/2‖Π∆v(t)‖
+‖w(t)‖1/2‖∇w(t)‖1/2‖∇B(t)‖1/2‖∆B(t)‖1/2‖Π∆v(t)‖
+‖B(t)‖1/2‖∇B(t)‖1/2‖∇w(t)‖1/2‖Π∆w(t)‖1/2‖Π∆v(t)‖
+‖g(t)‖‖Π∆v(t)‖ , (3.20)

and

1

2

d

dt
‖∇w(t)‖2+θλ4k

1 ‖Π∇v(t)‖2

≤‖v(t)‖1/2‖∇v(t)‖1/2‖∇w(t)‖1/2‖Π∆w(t)‖3/2

+‖v(t)‖1/2‖∇v(t)‖1/2‖∇B(t)‖1/2‖∆B(t)‖1/2‖Π∆w(t)‖
+‖U(t)‖1/2‖∇U(t)‖1/2‖∇w(t)‖1/2‖Π∆w(t)‖3/2

+‖w(t)‖1/2‖∇w(t)‖1/2‖∇v(t)‖1/2‖Π∆v(t)‖1/2‖Π∆w(t)‖
+‖w(t)‖1/2‖∇w(t)‖1/2‖∇U(t)‖1/2‖∆U(t)‖1/2‖Π∆w(t)‖
+‖B(t)‖1/2‖∇B(t)‖1/2‖∇v(t)‖1/2‖Π∆v(t)‖1/2‖Π∆w(t)‖ . (3.21)

Applying now the Young and the Poincarré inequalities and summing each inequal-
ity, we get

1

2

d

dt
‖∇(v,w)(t)‖2≤ C

ν3
‖v(t)‖2‖∇v(t)‖4+

C

νθ
‖w(t)‖2‖∇w(t)‖4

+
C

θ3
‖v(t)‖2‖∇v(t)‖2‖∇w(t)‖2+

C

θν
‖w(t)‖2‖∇w(t)‖2‖∇v(t)‖2

+C5‖∇v(t)‖2+C6‖∇w(t)‖2+
1

ν
‖g(t)‖2 , (3.22)

with

C5=

(
C

ν3
‖U(t)‖2‖∇U(t)‖2+

C

ν
√

λ1

‖∇U(t)‖‖∆U(t)‖

+
C

νθ
‖B(t)‖2‖∇B(t)‖2+

C

θ
√

λ1

‖∇B(t)‖‖∆B(t)‖−νλ4k
1

)
,
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C6=

(
C

θ3
‖U(t)‖2‖∇U(t)‖2+

C

θ
√

λ1

‖∇U(t)‖‖∆U(t)‖

+
C

νθ
‖B(t)‖2‖∇B(t)‖2+

C

ν
√

λ1

‖∇B(t)‖‖∆B(t)‖−θλ4k
1

)
.

Likewise, for r= 2k+1 (k∈N), we use the same technique and we obtain (3.22). But in
this case C5 and C6 are given by:

C′
5=

(
C

ν3
‖U(t)‖2‖∇U(t)‖2+

C

ν
√

λ1

‖∇U(t)‖‖∆U(t)‖

+
C

νθ
‖B(t)‖2‖∇B(t)‖2+

C

θ
√

λ1

‖∇B(t)‖‖∆B(t)‖−νλ4k−2
1

)
,

C′
6=

(
C

θ3
‖U(t)‖2‖∇U(t)‖2+

C

θ
√

λ1

‖∇U(t)‖‖∆U(t)‖

+
C

νθ
‖B(t)‖2‖∇B(t)‖2+

C

ν
√

λ1

‖∇B(t)‖‖∆B(t)‖−θλ4k−2
1

)
.

The use of (3.16) gives

d

dt
‖∇(v,w)(t)‖2≤K2‖∇(v,w)(t)‖2‖∇(v,w)(t)‖2+K3‖∇(v,w)(t)‖2+

2

ν
‖g(t)‖2

,

where

K2=2CK0

(
1

ν3
+

2

θν
+

1

θ3

)
‖(u0,b0)−(U0,B0)‖2 ,

and
K3=2(C5+C6), or K3=2(C′

5+C′
6).

To apply the uniform Gronwall’s inequality to this last inequality, we need the fol-
lowing estimates which followed from (3.2), for each ε>0, we have

∫ t+ε

t
‖∇(u,b)(s)−∇(U,B)(s)‖2

ds≤K1‖(u0,b0)−(U0,B0)‖2
,

and
∫ t+ε

t

(
K2‖∇(u,b)(s)−∇(U,B)(s)‖2+

2

ν
‖g(s)‖2

)
ds

≤
(

K1K2+
2α

νε

)
‖(u0,b0)−(U0,B0)‖2 .

This completes the proof.

An immediate consequence of Theorems 3.2 and 3.3 is the following preliminary es-
timates for the optimal solutions.
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Theorem 3.4. Assume that the assumptions (A1) and (A2) hold. Let T∈ (0,∞] and (û,b̂, f̂ )∈
Uad(T) be an optimal solution for (2.7) . Then

∥∥∥
(

û,b̂
)
(t)−(U,B)(t)

∥∥∥
2
≤K0‖(u0,b0)−(U0,B0)‖2 , (3.23)

∫ T

0

∥∥∥∇(û,b̂)(s)−∇(U,B)(s)
∥∥∥

2
ds≤K1‖(u0−U0,b0−B0)‖2 , (3.24)

and ∥∥∥∇(û,b̂)(t)−∇(U,B)(t)
∥∥∥

2
≤K2(ε)‖(u0−U0,b0−B0)‖2

, ∀t≥ ε, (3.25)

where all constants are as defined in Theorems 3.2 and 3.3.

4 Existence of an optimal control

4.1 The case of finite time interval

In this section, we first give the existence of an optimal solution for (2.7) with T<∞ and
we give also an optimality system. We then derive some estimates for the adjoint state.

4.1.1 Existence of an optimal control

Theorem 4.1. Let T∈(0,∞). Then there exists an optimal solution (û,b̂, f̂ )∈Uad(T) for the prob-

lem (2.7), i.e. there exists at least an element f̂∈L2
(
0,T;L2(Ω)

)
and (û,b̂)∈C([0,T];Wr×Wr)∩

L2(0,T;Vr×Vr
n) such that the functional JT(u,b, f ) attains its minimum at (û,b̂, f̂ ) and (û,b̂)

satisfies (2.4)-(2.6) with f̂ = f .

Proof. Note first that, since T is finite, assumption (A1) yields

(U,B)∈L2(0,T;Hr(Ω)×Hr
n(Ω)), F∈L2

(
0,T;L2(Ω)

)
.

Let (un,bn, fn)∈Uad(T) be a minimizing sequence for the problem (2.7). Hence

lim
n→∞

JT(un,bn, fn)= inf
(u,b, f )∈Uad(T)

JT(u,b, f ). (4.1)

The cost functional verifies

JT(u,b, f )≥ β

2

∫ T

0
‖ f (t)‖2

dt− β

2

∫ T

0
‖F(t)‖2

dt,

so that fn is bounded in L2
(
0,T;L2(Ω)

)
. Indeed, suppose that fn is not bounded. Then, it

would exist a sub-sequence of ( fnk
) again noted fn such that

lim
n→∞

‖ fn‖L2(0,T;L2(Ω))=+∞
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and then since F∈L2
(
0,T;L2(Ω)

)
,

lim
n→∞

JT(un,bn, fn)=+∞.

This contradicts (4.1). Therefore fn is bounded in L2
(
0,T;L2(Ω)

)
.

Using the estimates in Theorem 3.4, for v̂ = (un,bn), (un,bn) remains bounded in
C([0,T];Hr×Hr

n)∩L2(0,T;Hr(Ω)×Hr
n(Ω)) whenever u0,b0,U0,B0∈L2

(
0,T;L2(Ω)

)
.

Note that (u,b) remains bounded in L2(0,T;Hr(Ω)) see [3], then thanks to (1.2)-(1.3)
and the Schwarz inequality, we obtain:

∥∥∥∥
∂u

∂t

∥∥∥∥≤‖u‖·‖∇u‖+‖b‖·‖∇b‖+‖∇p‖+ν‖u‖Hr +‖ f‖,

∥∥∥∥
∂b

∂t

∥∥∥∥≤‖u‖·‖∇b‖+‖b‖·‖∇u‖+θ‖b‖Hr .

Also

‖u‖Hr ≤sup
[0,T]

‖u‖Hr ≤‖u‖L∞(0,T,L2(Ω),

‖b‖Hr ≤sup
[0,T]

‖b‖Hr ≤‖b‖L∞(0,T,L2(Ω).

Hence ∂u
∂t and ∂b

∂t are bounded in L2(0,T,L2(Ω). Then

d

dt
(un,bn) is bounded in L∞

(
0,T;L2(Ω)

)
,

and consequently in L2
(
0,T;L2(Ω)

)
, since L∞(0,T;Hr(Ω))⊂ L2(0,T;Hr(Ω)). Therefore

we can find a pair (û,b̂, f̂ ) and a subsequence, still denoted by (un,bn, fn), such that





fn −→ f̂ in L2
(
0,T;L2(Ω)

)
weakly ,

un−→ û in L2(0,T;Vr) weakly and in L∞(0,T;(Vr)∗)∗−weakly,

bn−→ b̂ in L2(0,T;Vr
n) weakly and in L∞(0,T;(Vr

n)
∗)∗−weakly,

∂tun −→∂tû in L2
(
0,T;L2(Ω)

)
weakly,

∂tbn −→∂t b̂ in L2
(
0,T;L2(Ω)

)
weakly.

Using the fact that, from compactness of the inclusion of L2(0,T;Vr) in L2(0,T;Wr),

un −→ û and bn −→ b̂ strongly in L2(0,T;Wr), we set

(∂tun,ϕ)⇀ (∂tû,ϕ), (∂tbn,ϕ)⇀
(

∂tb̂,ϕ
)

, aν
r (un,ϕ)⇀ aν

r (û,ϕ),

aθ
r (bn,ϕ)⇀ aθ

r

(
b̂,ϕ
)

, c(un,un,ϕ)⇀ c(û,û,ϕ), c(bn,bn,ϕ)⇀ c
(

b̂,b̂,ϕ
)

,
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so that (û,b̂) is a solution of (2.4)-(2.6) with f = f̂ .
Moreover, using lower semicontinuity yields that:

∫ T

0
‖û(t)−U(t)‖2dt≤ lim

n→∞

∫ T

0
‖un(t)−U(t)‖2dt,

∫ T

0

∥∥∥b̂(t)−B(t)
∥∥∥

2
dt≤ lim

n→∞

∫ T

0
‖bn(t)−B(t)‖2

dt,

∫ T

0

∥∥∥ f̂ (t)−F(t)
∥∥∥

2
dt≤ lim

n→∞

∫ T

0
‖ fn(t)−F(t)‖2dt,

which implies

JT(û,b̂, f̂ )≤ JT(un,bn, fn).

and therefore the proof is completed.

4.1.2 Optimality system

For numerical needs and thanks to [10], let us give here some results of an optimality
system, consisting in the forward GMHD equations given by (2.4)-(2.5) with initial data

lim
t→0+

(u(t),b(t))=(u0,b0),

the backward in the time adjoint system

−〈∂tξ(t),ϕ〉+aν
r (ξ(t),ϕ)+c(u(t),ϕ,ξ(t))+c(ϕ,u(t),ξ(t))−c(b(t),ϕ,η(t))

−c(ϕ,b(t),η(t))= 〈α(u−U)(t),ϕ〉, ∀ϕ∈Vr a.e. t∈ (0,∞), (4.2)

−〈∂tη(t),ψ〉+aθ
r (η(t),ψ)+c(u(t),ψ,η(t))+ c(ψ,u(t),η(t)))−c(b(t),ψ,ξ(t))

−c(ψ,b(t),ξ(t))= 〈α(b−B)(t),ψ〉 , ∀ψ∈Vr
n a.e. t∈ (0,∞), (4.3)

with final condition
lim

t→T−
(ξ(t),η(t))=(0,0).

The above system of equations is a weak formulation of the system:

∂u

∂t
+ν(−△)ru+(u·▽)u−(b·▽)b+▽p= f ,

∂b

∂t
+θ(−△)rb+(u·▽)b−(b·▽)u=0,

▽·u=0, ▽·b=0,

− ∂ξ

∂t
+ν(−△)rξ−(u·▽)ξ+(▽u)T ξ+(b·▽)η−(▽b)T η+▽π=α(u−U),

− ∂η

∂t
+θ(−△)rη −(u·▽)η+(▽u)Tη+(b·▽)ξ−(▽b)T ξ=α(b−B),

▽·ξ=0, ▽·η=0,

f =F−β−1ξ,
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in QT with the same initial, final and boundary conditions. We see that the optimal
solution (û,b̂, f̂ ) along with the Lagrange multiplier (ξ̂,µ̂).

4.2 The case of the infinite time interval

We prove now the existence of an optimal solution for (2.7) on the infinite time interval
(0,∞). We will make use of the existence results on finite time intervals.

Theorem 4.2. There exists an optimal solution (û,b̂, f̂ )∈Uad(T) for (2.7) with T=∞.

Proof. For each T∈(0,∞), we may use Theorem 4.1 to choose a (uT,bT, fT)∈Uad(T) which
solves (2.7) and satisfies

JT(uT,bT, fT)= inf
(ω,ψ,h)∈Uad(T)

JT(ω,ψ,h), (4.4)

〈∂tuT(t),ϕ〉+aν
r (uT(t),ϕ)+c(uT(t),uT(t),ϕ)−c(bT(t),bT(t),ϕ)= 〈 f (t),ϕ〉,

∀ϕ∈Vr a.e. t∈ (0,∞), (4.5)

〈∂tbT(t),ψ〉+aθ
r (bT(t),ψ)+c(uT(t),bT(t),ψ)−c(bT(t),uT(t),ψ)=0,

∀ψ∈Vr
n a.e. t∈ (0,∞) (4.6)

and

lim
t→0+

(uT(t),bT(t))=(u0,b0), in Wr×Wr. (4.7)

The fact that Uad(∞)|(0,∞)⊂Uad(T) for each finite T yields that

JT(uT,bT, fT)≤ JT(w,ψ,h)< J∞(w,ψ,h), for all (ω,ψ,h)∈Uad(∞).

Using the bound of J∞(ũ,b̃, f̃ ) for a quasi-optimizer (ũ,b̃, f̃ ) constructed in Section 3-1, we

have (ũ,b̃, f̃ )∈Uad(∞) and then

JT(uT,bT, fT)≤ inf
(ω,ψ,h)∈Uad(∞)

J∞(ω,ψ,h)<∞. (4.8)

For each integer l > 0, we denote by (ul ,bl, fl) a solution of (4.4)-(4.7) for T = l. We set
(vl ,wl,gl) = (ul−U,bl−B, fl−F). Then, (vl ,wl,gl) satisfies (2.16)-(2.18) with T = l. Us-
ing (4.8) and the standard estimates for the MHD and GMHD equations on finite time
interval, we obtain that ‖gl‖L2(0,l;L2(Ω)), ‖(ul,bl)‖H1(Ql)

and ‖(ul,bl)‖L∞(0,l;Wr×Wr) are uni-

formly bounded for all l. Hence, by induction we may choose successive subsequences

of positive integers
{

l
(m)
n

}∞

n=1
for m=1,2,··· such that

{
l
(1)
n

}∞

n=1
⊃
{

l
(2)
n

}∞

n=1
⊃
{

l
(3)
n

}∞

n=1
⊃···
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and

(v
l
(m)
n

,w
l
(m)
n
)⇀ (v(m),w(m)), in H1(Qm) as n→∞,

(v
l
(m)
n

,w
l
(m)
n
)

∗
⇀ (v(m),w(m)), in L∞(0,m;Wr×Wr) as n→∞,

g
l
(m)
n

⇀ g(m), in L2
(
0,m;L2(Ω)

)
as n→∞,

for some (v(m),w(m))∈H1(Qm) and g(m)∈L2
(
0,m;L2(Ω)

)
. Hence, by extracting the diag-

onal subsequence, we have that for each m′,

(v
l
(m)
m

,w
l
(m)
m
)⇀ (v(m

′),w(m′)), in H1(Qm′) as m→∞, (4.9)

(v
l
(m)
m

,w
l
(m)
m
)

∗
⇀ (v(m

′),w(m′)), in L∞
(
0,m′;Wr×Wr

)
as m→∞, (4.10)

g
l
(m)
m

⇀ g(m), in L2
(
0,m′;L2(Ω)

)
as m→∞. (4.11)

For each integer m′
>0, (4.9)-(4.11) and standard techniques for the MHD equations,

compactness results and density arguments (see [7, 11]) allows us to pass to the limit as
m→∞ in the equation

∫ m′

0

{〈
∂tvl

(m)
n
(t),ϕ

〉
χ(t)+aν

r

(
v

l
(m)
n
(t),ϕ

)
χ(t)

+c
(

v
l
(m)
n
(t),v

l
(m)
n

(t),ϕ
)

χ(t)+c
(

v
k
(m)
n
(t),U(t),ϕ

)
χ(t)

+c
(

U(t),v(m)
n
(t),ϕ

)
χ(t)−c

(
w

l
(m)
n
(t),w

l
(m)
n
(t),ϕ

)
χ(t)

−c
(

w
l
(m)
n
(t),B(t),ϕ

)
χ(t)−c

(
B(t),w

l
(m)
n
(t),ϕ

)
χ(t)

}
dt

=
∫ m′

0

〈
g

l
(m)
n
(t),ϕ

〉
χ(t)dt, ∀ϕ∈Vr,χ∈C

[
0,m′] with Ø(m′)=0,

and

∫ m′

0

{〈
∂twl

(m)
n
(t),ψ

〉
χ(t)+aθ

r

(
w

l
(m)
n
(t),ψ

)
χ(t)

+c
(

v
l
(m)
n
(t),w

l
(m)
n
(t),ψ

)
χ(t)+c

(
v

l
(m)
n
(t),B(t),ψ

)
χ(t)

+c
(

U(t),w
l
(m)
n
(t),ψ

)
χ(t)−c

(
w

l
(m)
n
(t),v

l
(m)
n
(t),ψ

)
χ(t)

−c
(

w
l
(m)
n
(t),U(t),ψ

)
χ(t)−c

(
B(t),v

l
(m)
n
(t),ψ

)
χ(t)

}
dt

=0, ∀ψ∈Vr
n, χ∈C

[
0,m′] with Ø(m′)=0,



Dynamics for Controlled 2D Generalized MHD Systems with Distributed Controls 69

to obtain

∫ m′

0

{〈
∂tv

(m′)(t),ϕ
〉

χ(t)+aν
r

(
v(m

′)(t),ϕ
)

χ(t)

+c
(

v(m
′)(t),v(m

′)(t),ϕ
)

χ(t)+c
(

v(m
′)(t),U(t),ϕ

)
χ(t)

+c
(

U(t),v(m
′)(t),ϕ

)
χ(t)−c

(
w(m′)(t),w(m′)(t),ϕ

)
χ(t)

−c
(

w(m′)(t),B(t),ϕ
)

χ(t)−c
(

B(t),w(m′)(t),ϕ
)

χ(t)
}

dt

=
∫ m′

0

〈
g(m

′)(t),ϕ
〉

χ(t)dt, ∀ϕ∈Vr, χ∈C
[
0,m′] with Ø(m′)=0,

and ∫ m′

0

{〈
∂tw

(m′)(t),ψ
〉

χ(t)+aθ
r

(
w(m′)(t),ψ

)
χ(t)

+c
(

v(m
′)(t),w(m′)(t),ψ

)
χ(t)+c

(
v(m

′)(t),B(t),ψ
)

χ(t)

+c
(

U(t),w(m′)(t),ψ
)

χ(t)−c
(

w(m′)(t),v(m
′)(t),ψ

)
χ(t)

−c
(

w(m′)(t),U(t),ψ
)

χ(t)−c
(

B(t),v(m
′)(t),ψ

)
χ(t)

}
dt

=0, ∀ψ∈Vr
n, χ∈C [0,m′] with Ø(m′)=0,

which is equivalent to

〈
∂tu

(m′)(t),ϕ
〉
+aν

r

(
u(m′)(t),ϕ

)
+c
(

u(m′)(t),u(m′)(t),ϕ
)

−c
(

b(m
′)(t),b(m

′)(t),ϕ
)
=
〈

f (m
′)(t),ϕ

〉
, ∀ϕ∈Vr a.e. t∈ (0,∞),

(4.12)

and 〈
∂tb

(m′)(t),ψ
〉
+aθ

r

(
b(m

′)(t),ψ
)
+c
(

u(m′)(t),b(m
′)(t),ψ

)

−c
(

b(m
′)(t),u(m′)(t),ψ

)
=0, ∀ψ∈Vr

n a.e. t∈ (0,∞),
(4.13)

where (
u(m′),b(m

′)
)
=(v(m

′),w(m′))+(U,B).

By uniqueness of weak limits, we have that

(v(m1),w(m1))
∣∣∣
(0,m2)

=(v(m2),w(m2)),

and

g(m1)
∣∣∣
(0,m2)

= g(m2),

for all m1,m2 with m1 <m2. Thus, the functions (v̂(t),ŵ(t)) := (v(m)(t),w(m)(t)) if t≤m
and ĝ(t) := g(m)(t) if t≤m are well defined on (0,∞) and furthermore, (v̂,ŵ)∈ H1

Loc(Q)
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and ĝ∈L2
(
0,∞;L2(Ω)

)
. Upon setting (û,b̂)=(v̂,ŵ)+(U,B) and f̂ = ĝ+F and noting that

m′ is arbitrary in (4.12)-(4.13) , we are easily led to

〈∂tû(t),ϕ〉+aν
r (û(t),ϕ)+c(û(t),û(t),ϕ)−c

(
b̂(t),b̂(t),ϕ

)

=
〈

f (m
′)(t),ϕ

〉
, ∀ϕ∈Vr a.e. t∈ (0,∞), (4.14)

and
〈

∂tb̂(t),ψ
〉
+aθ

r

(
b̂(t),ψ

)
+c
(

û(t),b̂(t),ψ
)

−c
(

b̂(t),û(t),ψ
)
=0, ∀ψ∈Vr

n a.e. t∈ (0,∞). (4.15)

Now we examine the initial condition for (û,b̂). The continuous embedding

H1(QT) →֒C([0,T];Wr×Wr)

implies that (û(0),b̂(0)) is well defined in Wr×L2(Ω). Let χ be a continuously differen-
tiable function in [0,∞) with a bounded support, integrating by parts, using the fact that
(u

l
(m)
m
(0),b

l
(m)
m
(0))=(u0,b0) and then passing to the limit, we obtain

∫ ∞

0

{
−
〈

u
l
(m)
n
(t),ϕ

〉
χ′(t)+aν

r

(
u

l
(m)
n
(t),ϕ

)
χ(t)+c

(
u

l
(m)
n
(t),û(t),ϕ

)
χ(t)

−c
(

b
l
(m)
n
(t),b

l
(m)
n
(t),ϕ

)
χ(t)

}
dt

=
∫ ∞

0

〈
f (m

′)(t),ϕ
〉

χ(t)dt+〈u0,ϕ〉χ(0), ∀ϕ∈Vr, (4.16)

and
∫ ∞

0

{
−
〈

b
l
(m)
n
(t),ψ

〉
χ′(t)+aθ

r

(
b

l
(m)
n
(t),ψ

)
χ(t)+c

(
u

l
(m)
n
(t),b

l
(m)
n
(t),ψ

)
χ(t)

−c
(

b
l
(m)
n
(t),u

l
(m)
n
(t),ψ

)
χ(t)

}
dt= 〈b0,ψ〉χ(0), ∀ψ∈Vr

n. (4.17)

Thus, by passing to the limit in the last equations we obtain

∫ ∞

0

{
−〈û(t),ϕ〉χ′(t)+aν

r (û(t),ϕ)χ(t)+c(û(t),û(t),ϕ)χ(t)

−c
(

b̂(t),b̂(t),ϕ
)

χ(t)
}

dt=
∫ ∞

0

〈
f (m

′)(t),ϕ
〉

χ(t)dt+〈u0,ϕ〉χ(0), ∀ϕ∈Vr, (4.18)

and
∫ ∞

0

{
−
〈

b̂(t),ψ
〉

χ′(t)+aθ
r

(
b̂(t),ψ

)
χ(t)+c

(
û(t),b̂(t),ψ

)
χ(t)

−c
(

b̂(t),û(t),ψ
)

χ(t)
}

dt= 〈b0,ψ〉χ(0), ∀ψ∈Vr
n. (4.19)
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On the other and, by multiplying (4.14) and (4.15) by χ(t) and integrating by parts we
obtain
∫ ∞

0

{
−〈û(t),ϕ〉χ′(t)+aν

r (û(t),ϕ)χ(t)+c(û(t),û(t),ϕ)χ(t)

−c
(

b̂(t),b̂(t),ϕ
)

χ(t)
}

dt=
∫ ∞

0

〈
f (m

′)(t),ϕ
〉

χ(t)dt+〈û0,ϕ〉χ(0), ∀ϕ∈Vr, (4.20)

and
∫ ∞

0

{
−
〈

b̂(t),ψ
〉

χ′(t)+aθ
r

(
b̂(t),ψ

)
χ(t)+c

(
û(t),b̂(t),ψ

)
χ(t)

−c
(

b̂(t),û(t),ψ
)

χ(t)
}

dt= 〈b̂0,ψ〉χ(0), ∀ψ∈Vr
n. (4.21)

A comparison of (4.18)-(4.19) and (4.20)-(4.21) yields (û0,b̂0)=(u0,b0) in Wr×Wr. Finally,

using the lower semicontinuity of the functional JT(.,.,.) and the fact that (v̂,ŵ)=(û,b̂)−
(U,B)∈L2(0,∞;Vr×Vn

r) and ĝ= f̂ −F∈L2
(
0,∞;L2(Ω)

)
, we obtain

J
l
(m)
m
(û,b̂, f̂ )≤ liminf

m→∞
J
l
(m)
m
(u

l
(m)
m

,b
l
(m)
m

, f
l
(m)
m
)≤ J∞(ω,ψ,h), ∀(ω,ψ,h)∈Uad(∞),

so that by letting m→∞,

J∞(û,b̂, f̂ )≤ J∞(ω,ψ,h), ∀(ω,ψ,h)∈Uad(∞).

Hence we have proved that (û,b̂, f̂ ) is the desired optimizer for (2.7) with T=∞.

5 Dynamics of optimal control solutions on the infinite time

interval

For many feedback control models, the controlled flow exponentially decays to the de-
sired flow. For our optimal control system, Theorems 3.3 and 3.4 gave some preliminary
results as ‖(u,b) (t)−(U,B)(t)‖ stays bounded. We will prove much stronger results in
this Section: ‖(u,b) (t)−(U,B)(t)‖ approach zero as t goes to ∞. We point out that these
last results are not unique to the solutions of the optimal control system; these results can
be proved under weaker conditions.

Lemma 5.1. Let T∈ (0,∞). Assume that (u,b, f )∈Uad(T) and λ1>1. If

‖(u,b) (t)−(U,B)(t)‖>0

for all t∈ (t1,t2)⊂ [0,T], then

‖(u,b) (t2)−(U,B)(t2)‖≤‖(u,b) (t1)−(U,B)(t1)‖+K4

√
t2−t1(JT(u,b, f ))1/2

,
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with

K4=

(
1

α

(
2

ν
+

2

θ

)2(
|‖∇U‖|2+|‖∇B‖|2

)2
+

1

β

)1/2

.

If in addition, the assumptions (A1) and (A2) hold and JT(u,b, f )≤ JT(ũ,b̃, f̃ ), where (ũ,b̃, f̃ ) is
defined in Theorem 3.1, then

‖(u,b) (t2)−(U,B)(t2)‖≤‖(u,b) (t1)−(U,B)(t1)‖

+K4

√
t2−t1‖(u0,b0)−(U0,B0)‖

√
α

2ε
. (5.1)

Proof. By setting ϕ=v(t) and ψ=w(t) in (2.16)-(2.17) we obtain, for r=2k (k∈N
∗),

1

2

d

dt
‖v(t)‖2+ν

∥∥∥
k∧

v(t)
∥∥∥

2
= c(w(t),w(t),v(t))−c(v(t),U(t),v(t))

+c(w(t),B(t),v(t))+c(B(t),w(t),v(t))+〈g(t),v(t)〉 , (5.2)

1

2

d

dt
‖w(t)‖2+θ

∥∥∥
k∧

w(t)
∥∥∥

2
= c(w(t),v(t),w(t))−c(v(t),B(t),w(t))

+c(w(t),U(t),w(t))+c(B(t),v(t),w(t)) , (5.3)

summing, thanks to (2.11) and using Sobolev imbedding and interpolation results

1

2

d

dt

(
‖v(t)‖2+‖w(t)‖2

)
+νλ

2(2k−1)
1 ‖∇v(t)‖2+θλ

2(2k−1)
1 ‖∇w(t)‖2

≤
√

2‖∇v(t)‖·|‖∇U(t)‖|·‖v(t)‖+
√

2‖∇w(t)‖·|‖∇B(t)‖|·‖v(t)‖
+
√

2‖∇w(t)‖·|‖∇U(t)‖|·‖w(t)‖+
√

2‖∇v(t)‖·|‖∇B(t)‖|·‖w(t)‖+‖g(t)‖·‖v(t)‖ ,

we have

1

2

d

dt
‖(v(t),w(t))‖2+

(
λ

2(2k−1)
1 −1

)(
ν‖∇v(t)‖2+θ‖∇w(t)‖2

)

≤‖g(t)‖·‖v(t)‖+
(

1

ν
|‖∇U(t)‖|2+ 1

θ
|‖∇B(t)‖|2

)
·‖v(t)‖2

+

(
1

θ
|‖∇U(t)‖|2+ 1

ν
|‖∇B(t)‖|2

)
·‖w(t)‖2 ,

using the Poincarré inequality

‖(v(t),w(t))‖ d

dt
‖(v(t),w(t))‖+λ1

(
λ

2(2k−1)
1 −1

)(
ν‖v(t)‖2+θ‖w(t)‖2

)

≤
(

1

ν
+

1

θ

)(
|‖∇U(t)‖|2+|‖∇B(t)‖|2

)
·‖v(t),w(t)‖2+‖g(t)‖·‖v(t),w(t)‖ . (5.4)
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For r=2k+1(k∈N), using the same method, we obtain

‖(v(t),w(t))‖ d

dt
‖(v(t),w(t))‖+λ1

(
λ4k

1 −1
)(

ν‖v(t)‖2+θ‖w(t)‖2
)

≤
(

1

ν
+

1

θ

)(
|‖∇U(t)‖|2+|‖∇B(t)‖|2

)
·‖v(t),w(t)‖2+‖g(t)‖·‖v(t),w(t)‖ . (5.5)

The inequalities (5.4) and (5.5) become

‖(v(t),w(t))‖ d

dt
‖(v(t),w(t))‖+ε1‖(v(t),w(t))‖2

≤C0 ·‖(v(t),w(t))‖2+‖g(t)‖·‖(v(t),w(t))‖ ,

where

ε1=min
{

νλ1

(
λ

2(2k−1)
1 −1

)
,θλ1

(
λ

2(2k−1)
1 −1

)
,νλ1

(
λ4k

1 −1
)

,θλ1

(
λ4k

1 −1
)}

,

and

C0=

(
1

ν
+

1

θ

)(
|‖∇U‖|2+|‖∇B‖|2

)
.

If ‖v(t),w(t)‖>0 for all t∈ (t1,t2), then we may divide this inequality by ‖v(t),w(t)‖ to
obtain

d

dt
‖(v,w)(t)‖+ε1‖(v,w)(t)‖≤C0‖(v,w)(t)‖+‖g(t)‖

≤
(

1

α
C2

0+
1

β

)1/2(
α‖(v,w)(t)‖2+β‖g(t)‖2

)1/2
,

for all t∈ (t1,t2). Multiplying the last inequality by eε1t and then integrating over (t1,t2),
we are led to

‖(v,w)(t2)‖eε1t2

≤‖(v,w)(t1)‖eε1t1+

(
1

α
C2

0+
1

β

)1/2∫ t2

t1

(
α‖(v,w)(t)‖2+β‖g(t)‖2

)1/2
eε1tdt,

we have

‖(v,w)(t2)‖
≤‖(v,w)(t1)‖e−ε1(t2−t1)

+

(
1

α
C2

0+
1

β

)1/2(∫ t2

t1

(α‖(v,w)(t)‖2+β‖g(t)‖2)dt

)1/2(∫ t2

t1

e−2ε1(t2−t)dt

)1/2

,
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with e−ε1(t2−t1)<1,

‖(v,w)(t2)‖≤‖(v,w)(t1)‖+
(

1

α
C2

0+
1

β

)1/2

(JT(u,b, f ))1/2
.

(∫ t2

t1

e−2ε1(t2−t)dt

)1/2

≤‖(v,w)(t1)‖+
(

1

α
C2

0+
1

β

)1/2

(JT(u,b, f ))1/2

(
1−e−2ε1(t2−t1)

2ε1

)1/2

≤‖(v,w)(t1)‖+
√

t2−t1

(
1

α
C2

0+
1

β

)1/2

(JT(u,b, f ))1/2 ,

where we have used the fact that 1−e−y ≤ y for y≥ 0. Hence, we have shown (5.1) and
(5.1) simply follows from the bound (3.2) so that applying the mean value theorem to
the last factor we have the result.

We are now prepared to establish the asymptotic decay property of

‖(u(t),b(t))−(U,B(t))‖

as t→∞ for any (u,b, f )∈Uad(∞).

Theorem 5.1. Assume that

(u,b, f )∈Uad(T).

Then

lim
t→∞

‖(u(t),b(t))−(U(t),B(t))‖=0. (5.6)

Proof. If J∞(u,b, f )=0, then the theorem is trivial. Thus we assume

J∞(u,b, f )>0,

and proceed to prove (5.6) by contradiction. Assume that (5.6) is false. For given ǫ> 0
we set

δ=
ǫ2

4(t2−t1)(K4)
2 J∞(u,b, f )

>0. (5.7)

Then we may choose a sequence {tn} such that tn →∞, tn+1−tn ≥δ and

‖(u(tn),b(tn))−(U(tn),B(tn))‖≥ǫ>0,

then we can show that

‖(u(t),b(t))−(U(t),B(t))‖>0, ∀t∈ (tn−δ,tn). (5.8)

Indeed, we set

t=sup{t∈ (tn−1,tn) : ‖−(U(t),B(t))‖=0}
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and assume that tn−t<δ, i.e., t∈ (tn−δ,tn) . Then we have

‖(u(t),b(t))−(U(t),B(t))‖>0, on
(
t,tn

)
,

so that by (5.1),

∥∥(u(t),b(t)
)
−
(
U(t),B(t)

)∥∥≥‖(u(tn),b(tn))−(U(tn),B(tn))‖−K4δ1/2(JT(u,b, f ))1/2

≥ǫ− ǫ

2
=

ǫ

2
,

which contradicts
∥∥(u(t),b(t)

)
−
(
U(t),B(t)

)∥∥= 0. This proves the assertion (5.8) . Now
using (5.1) again, we have

‖(u(t),b(t))−(U(t),B(t))‖≥‖(u(tn),b(tn))−(U(tn),B(tn))‖−K4δ1/2(JT(u,b, f ))1/2

≥ǫ− ǫ

2
=

ǫ

2
, ∀t∈ (tn−δ,tn),

and we are led to

J∞(u,b, f )≥ α

2

∞

∑
n=2

∫ tn

tn−δ
‖(u(t),b(t))−(U(t),B(t))‖2≥ α

2

∞

∑
n=2

ǫ

2
δ=∞,

which contradicts the assumption J∞(u,b, f )<∞. Hence, (5.6) is true.
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