Existence of Nontrivial Weak Solutions to Quasi-Linear Elliptic Equations with Exponential Growth

WANG Chong*
Department of Mathematics, the George Washington University, Washington DC 20052, USA.

Received 13 June 2012; Accepted 1 December 2012

$$
\begin{aligned}
& \text { Abstract. In this paper, we study the existence of nontrivial weak solutions to the } \\
& \text { following quasi-linear elliptic equations } \\
& \qquad-\triangle_{n} u+V(x)|u|^{n-2} u=\frac{f(x, u)}{|x|^{\beta}}, \quad x \in \mathbb{R}^{n} \quad(n \geqslant 2), \\
& \text { where }-\triangle_{n} u=-\operatorname{div}\left(|\nabla u|^{n-2} \nabla u\right), 0 \leqslant \beta<n, V: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { is a continuous function, } f(x, u) \\
& \text { is continuous in } \mathbb{R}^{n} \times \mathbb{R} \text { and behaves like } e^{\alpha u^{n-1}} \text { as } u \rightarrow+\infty .
\end{aligned}
$$

AMS Subject Classifications: 35J20, 35J60
Chinese Library Classifications: O175
Key Words: Trudinger-Moser inequality; exponential growth.

1 Introduction

Consider nonlinear elliptic equations of the form

$$
\begin{equation*}
-\triangle_{p} u=f(x, u), \quad \text { in } \Omega, \tag{1.1}
\end{equation*}
$$

where Ω is a smooth bounded domain in \mathbb{R}^{n}, and $-\triangle_{p} u=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$. Brézis [1], Brézis-Nirenberg [2] and Bartsh-Willem [3] studied this problem under the assumptions that $p=2$ and $|f(x, u)| \leqslant c\left(|u|+|u|^{q-1}\right)$. Garcia-Alonso [4] studied this problem under the assumptions that $p \leqslant n$ and $p^{2} \leqslant n$. When $\Omega=\mathbb{R}^{n}$ and $p=2$, Kryszewski-Szulkin [5], Alama-Li [6], Ding-Ni [7] and Jeanjean [8] studied the following equations in stead of (1.1):

$$
-\triangle u+V(x) u=f(x, u), \quad \text { in } \mathbb{R}^{n} .
$$

[^0]In this paper we consider quasi-linear elliptic equations in the whole Euclidean space

$$
\begin{equation*}
-\triangle_{n} u+V(x)|u|^{n-2} u=\frac{f(x, u)}{|x|^{\beta}}, \quad x \in \mathbb{R}^{n} \quad(n \geqslant 2) \tag{1.2}
\end{equation*}
$$

where $-\triangle_{n} u=-\operatorname{div}\left(|\nabla u|^{n-2} \nabla u\right), 0 \leqslant \beta<n, V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous function, $f(x, u)$ is continuous in $\mathbb{R}^{n} \times \mathbb{R}$ and behaves like $e^{\alpha u^{n-1}}$ as $u \rightarrow+\infty$.
D. Cao [9] and Cao-Zhang [10] studied problem (1.2) in the case $n=2$ and $\beta=0$. Panda [11], do Ó et al. [12,13] and Alevs-Figueiredo [14] studied problem (1.2) in general dimension and $\beta=0$. When $\beta \neq 0$, (1.2) was studied by Adimurthi-Yang [15], do Ó et al. [16], Yang [17], Zhao [18], and others. Similar problems in \mathbb{R}^{4} or complete noncompact Riemannian manifolds were also studied by Yang [19,20].

We define a function space

$$
E \triangleq\left\{u \in W^{1, n}\left(\mathbb{R}^{n}\right): \int_{\mathbb{R}^{n}} V(x)|u|^{n} \mathrm{~d} x<\infty\right\}
$$

with the norm

$$
\begin{equation*}
\|u\| \triangleq\left\{\int_{\mathbb{R}^{n}}\left(|\nabla u|^{n}+V(x)|u|^{n}\right) \mathrm{d} x\right\}^{\frac{1}{n}} \tag{1.3}
\end{equation*}
$$

We say that $u \in E$ is a weak solution of problem (1.2) if for all $\varphi \in E$ we have

$$
\int_{\mathbb{R}^{n}}\left(|\nabla u|^{n-2} \nabla u \nabla \varphi+V(x)|u|^{n-2} u \varphi\right) \mathrm{d} x=\int_{\mathbb{R}^{n}} \frac{f(x, u)}{|x|^{\beta}} \varphi \mathrm{d} x .
$$

If a weak solution u satisfies $u(x) \geqslant 0$ for almost every $x \in \mathbb{R}^{n}$, we say u is positive.
Throughout this paper we assume the following two conditions on the potential $V(x)$:
$\left(V_{1}\right) V(x) \geqslant V_{0}>0$;
$\left(V_{2}\right)$ The function $\frac{1}{V(x)}$ belongs to $L^{1 /(n-1)}\left(\mathbb{R}^{n}\right)$.
We also assume that the nonlinearity $f(x, s)$ satisfies the following:
$\left(H_{1}\right)$ There exist constants $\alpha_{0}, b_{1}, b_{2}>0$ such that for all $(x, s) \in \mathbb{R}^{n} \times \mathbb{R}^{+}$,

$$
|f(x, s)| \leqslant b_{1} s^{n-1}+b_{2}\left\{e^{\alpha_{0}|s| \frac{n}{n-1}}-\sum_{k=0}^{n-2} \frac{\alpha_{0}^{k}|s|^{\frac{k n}{n-1}}}{k!}\right\}
$$

(H_{2}) There exists $\mu>n$, such that for all $x \in \mathbb{R}^{n}$ and $s>0$,

$$
0<\mu F(x, s) \equiv \mu \int_{0}^{s} f(x, t) \mathrm{d} t \leqslant s f(x, s) ;
$$

$\left(H_{3}\right)$ There exist constants $R_{0}, M_{0}>0$, such that for all $x \in \mathbb{R}^{n}$ and $s>R_{0}$,

$$
F(x, s) \leqslant M_{0} f(x, s) ;
$$

$\left(H_{4}\right)$

$$
\lim _{s \rightarrow 0+} \sup \frac{n|F(x, s)|}{s^{n}}<\lambda_{\beta}
$$

uniformly with respect to $\mathrm{x} \in \mathbb{R}^{n}$, where

$$
\lambda_{\beta} \triangleq \inf _{u \in E, u \neq 0} \frac{\|u\|^{n}}{\int_{\mathbb{R}^{n}} \frac{\mid \|^{n}}{|x|^{\mathbf{j}}} \mathrm{d} x} ;
$$

$\left(H_{5}\right)$ There exist constants $p>n$ and C_{p} such that

$$
f(x, s) \geqslant C_{p} s^{p-1}
$$

for all $s \geqslant 0$ and all $x \in \mathbb{R}^{n}$, where

$$
C_{p}>\left(\frac{p-n}{p}\right)^{\frac{p-n}{n}}\left(\frac{n \alpha_{0}}{(n-\beta) \alpha_{n}}\right)^{\frac{(n-1)(p-n)}{n}} S_{p}^{p}
$$

$\alpha_{n}=n \omega_{n-1} \frac{1}{n-1}, \omega_{n-1}$ is the volume of the unit sphere S^{n-1}, and

$$
S_{p} \triangleq \inf _{u \in E, u \neq 0} \frac{\left(\int_{\mathbb{R}^{n}}\left(|\nabla u|^{n}+V(x)|u|^{n}\right) \mathrm{d} x\right)^{\frac{1}{n}}}{\left(\int_{\mathbb{R}^{n}} \frac{\left.|u|^{p}\right|^{p}}{|x|^{\beta}} \mathrm{d}\right)^{\frac{1}{p}}}=\inf _{u \in E, u \neq 0} \frac{\|u\|}{\left(\int_{\mathbb{R}^{n}} \frac{|u|^{\mid}}{|x|^{\beta}} \mathrm{d} x\right)^{\frac{1}{p}}} ;
$$

$\left(H_{6}\right)$ when $s \leqslant 0, f(x, s)=0$ for all $x \in \mathbb{R}^{n}$.
Our main result is the following theorem:
Theorem 1.1. Assume that $\mathrm{V}(\mathrm{x})$ is a continuous function satisfying $\left(\mathrm{V}_{1}\right)$ and $\left(\mathrm{V}_{2}\right) . f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow$ \mathbb{R} is a continuous function and the hypotheses $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{6}\right)$ hold. Then Eq. (1.2) has a nontrivial positive weak solution.

Here the assumption $\left(H_{5}\right)$ is different from that of [17]. $\left(H_{5}\right)$ was also used in [16] and [18]. An example of f satisfying $\left(H_{1}\right)-\left(H_{6}\right)$ reads

$$
f(t)= \begin{cases}2^{l} l!C_{p} \sum_{k=l}^{\infty} \frac{\left(\frac{n}{n-1}-\chi(t)\right)^{\left.\frac{1}{n-1}\right)^{k}}}{k!}, & t \geq 0, \\ 0, & t<0,\end{cases}
$$

where $l \geq N$ is an integer, C_{p} is as in $\left(H_{5}\right), \chi:[0, \infty) \rightarrow \mathbb{R}$ is a smooth function such that $0 \leq \chi \leq 1, \chi \equiv 0$ on $[0, A], \chi \equiv 1$ on $[2 A, \infty)$, and $\left|\chi^{\prime}\right| \leq 2 / A$, where A is a large constant, say $A>4^{n-1}$. For details we refer the reader to in [20, Proposition 2.9]. Other examples were also given in [16] and [18] respectively.

2 Compactness analysis

We will give some preliminary results before proving Theorem 1.1. Define a function $\zeta: \mathbb{N} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\zeta(n, s)=e^{s}-\sum_{k=0}^{n-2} \frac{s^{k}}{k!}=\sum_{k=n-1}^{\infty} \frac{s^{k}}{k!} . \tag{2.1}
\end{equation*}
$$

Let $s \geqslant 0, p \geqslant 1$ be real numbers and $n \geqslant 2$ be an integer, then there holds (see [17])

$$
\begin{equation*}
(\zeta(n, s))^{p} \leqslant \zeta(n, p s) \tag{2.2}
\end{equation*}
$$

Problem (1.2) is closely related to a singular Trudinger-Moser type inequality [15]. That is, for all $\alpha>0,0 \leqslant \beta<n$, and $u \in W^{1, n}\left(\mathbb{R}^{n}\right)(n \geqslant 2)$, there holds

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{e^{\alpha|u|^{\frac{n}{n-1}}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u| \frac{k n}{n-1}}{k!}}{|x|^{\beta}} \mathrm{d} x<\infty . \tag{2.3}
\end{equation*}
$$

Furthermore, we have for all $\alpha \leqslant\left(1-\frac{\beta}{n}\right) \alpha_{n}$ and $\tau>0$,

$$
\begin{equation*}
\sup _{\int_{\mathbb{R}^{n}}\left(|\nabla u|^{n}+\left.\tau| |\right|^{n}\right) \mathrm{d} x \leqslant 1} \int_{\mathbb{R}^{n}} \frac{e^{\alpha|u|^{\frac{n}{n-1}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u|^{\frac{k n}{n-1}}}{k!}}}{|x|^{\beta}} \mathrm{d} x<\infty . \tag{2.4}
\end{equation*}
$$

In this paper, we also need the following result which is taken from Lemma 2.4 in [17]. That is, if $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous and $\left(V_{1}\right),\left(V_{2}\right)$ are satisfied, then for any $q \geqslant 1$, there holds

$$
\begin{equation*}
E \hookrightarrow L^{q}\left(\mathbb{R}^{n}\right) \quad \text { compactly. } \tag{2.5}
\end{equation*}
$$

Define a functional $J: E \rightarrow \mathbb{R}$ by

$$
J(u) \triangleq \frac{1}{n}\|u\|^{n}-\int_{\mathbb{R}^{n}} \frac{F(x, u)}{|x|^{\beta}} \mathrm{d} x,
$$

where $0 \leqslant \beta<n,\|u\|$ is the norm of $u \in E$ defined by (1.3), $F(x, s)=\int_{0}^{s} f(x, t) \mathrm{d} t$ is the primitive of $f(x, s)$. Assume $f(x, u)$ satisfies the hypotheses $\left(H_{1}\right)$, then there exist some positive constants $\alpha_{1}>\alpha_{0}$ and b_{3} such that for all $(x, s) \in \mathbb{R}^{n} \times \mathbb{R}$,

$$
F(x, s) \leqslant b_{3} \zeta\left(n, \alpha_{1} \left\lvert\, s^{\frac{n}{n-1}}\right.\right)
$$

where $\zeta(n, s)$ is defined by (2.1). Thus J is well defined thanks to (2.3).

Lemma 2.1. Assume $V(x) \geqslant V_{0}$ in $\mathbb{R}^{n},\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$ hold. Then for any nonnegative, compactly supported function $u \in W^{1, n}\left(\mathbb{R}^{n}\right) \backslash\{0\}$, there holds $J(t u) \rightarrow-\infty$ as $t \rightarrow+\infty$.
Proof. We follow the line of [15]. $\left(H_{2}\right)$ and $\left(H_{3}\right)$ imply that there exists $R_{0}>0$ such that for all $s>R_{0}$,

$$
\frac{\mu}{s} \leqslant \frac{\frac{\partial}{\partial s} F(x, s)}{F(x, s)}=\frac{\partial}{\partial s}(\ln F(x, s)),
$$

therefore,

$$
\left(\frac{s}{R_{0}}\right)^{\mu} \leqslant \frac{F(x, s)}{F\left(x, R_{0}\right)}
$$

It follows that

$$
F(x, s) \geqslant F\left(x, R_{0}\right) R_{0}^{-\mu} \cdot s^{\mu} .
$$

Let $c_{1}=F\left(x, R_{0}\right) R_{0}^{-\mu}$, then we have for all $(x, s) \in \Omega \times[0,+\infty), F(x, s) \geqslant c_{1} s^{\mu}-c_{2}$, which is under the assumption that u is supported in a bounded domain Ω and c_{2} is a positive constant. This implies that

$$
J(t u) \leqslant \frac{t^{n}}{n}\|u\|^{n}-\int_{\Omega} \frac{c_{1} t^{\mu} u^{\mu}}{|x|^{\beta}} \mathrm{d} x=t^{n}\left(\frac{\|u\|^{n}}{n}-c_{1} t^{\mu-n} \int_{\Omega} \frac{u^{\mu}}{|x|^{\beta}} \mathrm{d} x\right) .
$$

Since $\mu>n$, this implies $J(t u) \rightarrow-\infty$ as $t \rightarrow+\infty$.
Lemma 2.2. Assume that $V(x) \geqslant V_{0}$ in $\mathbb{R}^{n},\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{4}\right)$ are satisfied. Then there exist $\delta>0$ and $r>0$ such that $J(u) \geqslant \delta$ for all $\|u\|=r$.
Proof. According to $\left(H_{4}\right)$, there exist $\tau, \delta>0$ such that if $|s| \leqslant \delta$,

$$
\frac{n|F(x, s)|}{|s|^{n}}<\lambda_{\beta}-\tau
$$

Therefore for all $x \in \mathbb{R}^{n},|s| \leqslant \delta$, we have

$$
\begin{equation*}
F(x, s) \leqslant \frac{\lambda_{\beta}-\tau}{n}|s|^{n} . \tag{2.6}
\end{equation*}
$$

On the other hand, according to $\left(H_{1}\right)$, we can obtain that for any $|s| \geqslant \delta$,

$$
\begin{equation*}
F(x, s) \leqslant C_{\delta}|s|^{n+1} R\left(\alpha_{0}, s\right), \tag{2.7}
\end{equation*}
$$

where

$$
C_{\delta}=\frac{b_{1}}{n|\delta| \cdot \sum_{k=n-1}^{\infty} \frac{\left(\alpha_{0}|\delta|^{\left.\frac{n}{n-1}\right)^{k}}\right.}{k!}}+\frac{b_{2}}{|\delta|^{n}}, \quad R\left(\alpha_{0}, s\right)=\sum_{k=n-1}^{\infty} \frac{\left(\alpha_{0}|s|^{\left.\frac{n}{n-1}\right)^{k}}\right.}{k!} .
$$

Combining (2.6) and (2.7), we have for all $(x, s) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$,

$$
\begin{equation*}
F(x, s) \leqslant \frac{\lambda_{\beta}-\tau}{n}|s|^{n}+C|s|^{n+1} R\left(\alpha_{0}, s\right), \tag{2.8}
\end{equation*}
$$

where $C=C_{\delta}$. Here we also use the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{|u|^{n+1} R\left(\alpha_{0}, u\right)}{|x|^{\beta}} \mathrm{d} x \leqslant C\|u\|^{n+1}, \tag{2.9}
\end{equation*}
$$

which is taken from Lemma 4.2 in [15]. According to the definition of λ_{β}, we get

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{|u|^{n}}{|x|^{\beta}} \mathrm{d} x \leqslant \frac{\|u\|^{n}}{\lambda_{\beta}} . \tag{2.10}
\end{equation*}
$$

Thanks to (2.8), (2.9), and (2.10), we obtain

$$
\begin{align*}
J(u) & \geqslant \frac{1}{n}\|u\|^{n}-\int_{\mathbb{R}^{n}} \frac{\lambda_{\beta}-\tau}{n} \frac{|u|^{n}}{|x|^{\beta}} \mathrm{d} x-\int_{\mathbb{R}^{n}} \frac{|u|^{n+1} R\left(\alpha_{0}, u\right)}{|x|^{\beta}} \mathrm{d} x \\
& \geqslant \frac{1}{n}\|u\|^{n}-\frac{\lambda_{\beta}-\tau}{n} \cdot \frac{\|u\|^{n}}{\lambda_{\beta}}-C\|u\|^{n+1} \\
& =\|u\| \cdot\left(\frac{\tau}{n \lambda_{\beta}}\|u\|^{n-1}-C\|u\|^{n}\right) . \tag{2.11}
\end{align*}
$$

For sufficiently small $r>0$, we have

$$
\begin{equation*}
\frac{\tau}{n \lambda_{\beta}} r^{n-1}-C r^{n} \geqslant \frac{\tau}{2 n \lambda_{\beta}} r^{n-1}, \tag{2.12}
\end{equation*}
$$

which is due to $\tau>0$. Therefore, according to (2.11) and (2.12), for all $\|u\|=r$,

$$
J(u) \geqslant r \cdot \frac{\tau}{2 n \lambda_{\beta}} \cdot r^{n-1}=\frac{\tau}{2 n \lambda_{\beta}} \cdot r^{n} .
$$

Finally, let $\delta=\frac{\tau}{2 n \lambda_{\beta}} \cdot r^{n}$, we have $J(u) \geqslant \delta$ for all $\|u\|=r$.
Lemma 2.3. Critical points of J are weak solutions of (1.2).
Proof. Though the proof is standard, we write it for completeness. Define a function $g(t)=J(u+t \varphi)$, namely

$$
g(t)=\frac{1}{n} \int_{\mathbb{R}^{n}}\left(|\nabla(u+t \varphi)|^{n}+V(x)|u+t \varphi|^{n}\right) \mathrm{d} x-\int_{\mathbb{R}^{n}} \frac{F(x, u+t \varphi)}{|x|^{\beta}} \mathrm{d} x .
$$

By a simple calculation,

$$
\left.g^{\prime}(t)\right|_{t=0}=\left.J^{\prime}(u+t \varphi) \cdot \varphi\right|_{t=0}=J^{\prime}(u) \cdot \varphi .
$$

Let $f_{1}(t)=|\nabla(u+t \varphi)|^{n}, f_{2}(t)=|u+t \varphi|^{n}$, and

$$
f_{3}(t)=\int_{\mathbb{R}^{n}} \frac{F(x, u+t \varphi)}{|x|^{\beta}} \mathrm{d} x .
$$

Clearly we have

$$
\begin{aligned}
\left.f_{1}^{\prime}(t)\right|_{t=0} & =\frac{n}{2} \times 2 \times|\nabla u|^{n-2} \cdot \nabla u \cdot \nabla \varphi=n|\nabla u|^{n-2} \cdot \nabla u \cdot \nabla \varphi, \\
\left.f_{2}^{\prime}(t)\right|_{t=0} & =\frac{n}{2}|u|^{n-2} \times 2 u \times \varphi=n|u|^{n-2} u \varphi, \\
\left.f_{3}^{\prime}(t)\right|_{t=0} & =\int_{\mathbb{R}^{n}} \frac{f(x, u)}{|x|^{\beta}} \cdot \varphi \mathrm{d} x .
\end{aligned}
$$

Combining the above, we have for all $\varphi \in E$,

$$
\begin{equation*}
J^{\prime}(u) \cdot \varphi=\int_{\mathbb{R}^{n}}\left(|\nabla u|^{n-2} \cdot \nabla u \cdot \nabla \varphi+V(x)|u|^{n-2} u \varphi\right) \mathrm{d} x-\int_{\mathbb{R}^{n}} \frac{f(x, u)}{|x|^{\beta}} \cdot \varphi \mathrm{d} x . \tag{2.13}
\end{equation*}
$$

Therefore, $J^{\prime}(u) \cdot \varphi=0$ is equivalent to

$$
\int_{\mathbb{R}^{n}}\left(|\nabla u|^{n-2} \cdot \nabla u \cdot \nabla \varphi+V(x)|u|^{n-2} u \varphi\right) \mathrm{d} x-\int_{\mathbb{R}^{n}} \frac{f(x, u)}{|x|^{\beta}} \cdot \varphi \mathrm{d} x=0 .
$$

Hence we get the desired result.
Lemma 2.4. Assume $\left(\mathrm{H}_{5}\right)$ is satisfied, then there exists a function $u_{p} \in E$ which satisfies $\left\|u_{p}\right\|=$ S_{p}, and for $t \in[0,+\infty)$, we define

$$
J\left(t u_{p}\right) \triangleq \frac{t^{n}}{n}\left\|u_{p}\right\|^{n}-\int_{\mathbb{R}^{n}} \frac{F\left(x, t u_{p}\right)}{|x|^{\beta}} \mathrm{d} x .
$$

There holds

$$
\begin{equation*}
\max _{t \geqslant 0} J\left(t u_{p}\right)<\frac{1}{n}\left(\frac{n-\beta}{n} \frac{\alpha_{n}}{\alpha_{0}}\right)^{n-1} . \tag{2.14}
\end{equation*}
$$

Proof. Similar to [18], assume $\left\{u_{k}\right\}$ is a bounded positive sequence of functions in E which satisfies

$$
\int_{\mathbb{R}^{n}} \frac{\left|u_{k}\right|^{p}}{|x|^{\beta}} \mathrm{d} x=1 \quad \text { and } \quad\left\|u_{k}\right\| \rightarrow S_{p}
$$

Meanwhile we assume that $u_{k} \rightharpoonup u_{p}$ in $E, u_{k} \rightarrow u_{p}$ in $L^{q}\left(\mathbb{R}^{n}\right)$ for all $q \geqslant 1, u_{k}(x) \rightarrow u_{p}(x)$ almost everywhere. Using the Hölder inequality and the Mean Value Theorem, we can easily prove that for any $\varepsilon>0$, there exists a constant K such that when $k>K$,

$$
\left|\int_{\mathbb{R}^{n}} \frac{\left|u_{k}\right|^{p}-\left|u_{p}\right|^{p}}{|x|^{\beta}} \mathrm{d} x\right|<\varepsilon .
$$

Therefore,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{\left|u_{k}\right|^{p}}{|x|^{\beta}} \mathrm{d} x \rightarrow \int_{\mathbb{R}^{n}} \frac{\left|u_{p}\right|^{p}}{|x|^{\beta}} \mathrm{d} x=1 . \tag{2.15}
\end{equation*}
$$

Next we will prove

$$
\begin{equation*}
\left\|u_{p}\right\| \leqslant \liminf _{k \rightarrow \infty}\left\|u_{k}\right\|=S_{p} \tag{2.16}
\end{equation*}
$$

Since $u_{k} \rightharpoonup u_{p}$ weakly in E, we know $\nabla u_{k} \rightharpoonup \nabla u_{p}$ weakly in $L^{n}\left(\mathbb{R}^{n}\right)$. According to the definition of weak convergence and the Hölder inequality, we get

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|\nabla u_{p}\right|^{n} \mathrm{~d} x \leqslant \liminf _{k \rightarrow \infty} \int_{\mathbb{R}^{n}}\left|\nabla u_{k}\right|^{n} \mathrm{~d} x . \tag{2.17}
\end{equation*}
$$

Similarly to the proof of (2.15), we know

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} V(x)\left|u_{k}\right|^{n} \mathrm{~d} x \rightarrow \int_{\mathbb{R}^{n}} V(x)\left|u_{p}\right|^{n} \mathrm{~d} x . \tag{2.18}
\end{equation*}
$$

Thanks to (2.17) and (2.18), (2.16) holds. Meanwhile, by the definition of S_{p}, we know $S_{p} \leqslant\left\|u_{p}\right\|$. Therefore, we know $\left\|u_{p}\right\|=S_{p}$. According to $\left(H_{5}\right)$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{F\left(x, t u_{p}\right)}{|x|^{\beta}} \mathrm{d} x \geqslant C_{p} \frac{t^{p}}{p} . \tag{2.19}
\end{equation*}
$$

Due to the definition of $J\left(t u_{p}\right)$ and (2.19), we have

$$
J\left(t u_{p}\right) \leqslant \frac{t^{n}}{n} S_{p}^{n}-C_{p} \frac{t^{p}}{p} .
$$

Let

$$
f(t)=\frac{t^{n}}{n} S_{p}^{n}-C_{p} \frac{t^{p}}{p},
$$

and by calculation we know for any real number t,

$$
f(t) \leqslant f\left(\left(\frac{S_{p}^{n}}{C_{p}}\right)^{\frac{1}{p-n}}\right)
$$

This means

$$
\frac{t^{n}}{n} S_{p}^{n}-C_{p} \cdot \frac{t^{p}}{p} \leqslant \frac{p-n}{n p} \cdot \frac{S_{p}^{\frac{n p}{p-n}}}{C_{p}^{\frac{n}{p-n}}} .
$$

If we set

$$
C_{p}>\left(\frac{p-n}{p}\right)^{\frac{p-n}{n}}\left(\frac{n \alpha_{0}}{(n-\beta) \alpha_{n}}\right)^{\frac{(n-1)(p-n)}{n}} S_{p}^{p},
$$

then we have

$$
\frac{p-n}{n p} \cdot \frac{S_{p}^{\frac{n p}{p-n}}}{C_{p}^{\frac{n}{p-n}}}<\frac{1}{n}\left(\frac{n-\beta}{n} \frac{\alpha_{n}}{\alpha_{0}}\right)^{n-1} .
$$

In view of $\left(H_{5}\right)$, we get (2.14) immediately.

Lemma 2.5. Assume that $\left(\mathrm{V}_{1}\right),\left(\mathrm{V}_{2}\right),\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$ hold and $\left\{u_{k}\right\} \subset E$ be an arbitrary Palais-Smale sequence of J, i.e.,

$$
J\left(u_{k}\right) \rightarrow c, \quad J^{\prime}\left(u_{k}\right) \rightarrow 0
$$

in E^{*} as $k \rightarrow \infty$, where E^{*} denotes the dual space of E. Then there exists a subsequence of $\left\{u_{k}\right\}$ (still denoted by $\left\{u_{k}\right\}$) and $u \in E$ such that $u_{k} \rightharpoonup u$ weakly in $E, u_{k} \rightarrow u$ strongly in $L^{q}\left(\mathbb{R}^{n}\right)$ for all $q \geqslant 1$, and

$$
\begin{cases}\nabla u_{k}(x) \rightarrow \nabla u(x), & \text { a. e.in } \mathbb{R}^{n}, \\ \frac{f\left(x, u_{k}\right)}{|x|^{\beta}} \rightarrow \frac{f(x, u)}{|x|^{\beta}}, & \text { stronglyin } L^{1}\left(\mathbb{R}^{n}\right), \\ \frac{F\left(x, u_{k}\right)}{|x|^{\beta}} \rightarrow \frac{F(x, u)}{|x|^{\beta}}, & \text { stronglyin } L^{1}\left(\mathbb{R}^{n}\right) .\end{cases}
$$

Furthermore, u is a weak solution of (1.2).
Proof. Assume $\left\{u_{k}\right\}$ is a Palais-Smale sequence of J. Since $J\left(u_{k}\right) \rightarrow c$, we obtain

$$
\begin{equation*}
\frac{1}{n}\left\|u_{k}\right\|^{n}-\int_{\mathbb{R}^{n}} \frac{F\left(x, u_{k}\right)}{|x|^{\beta}} \mathrm{d} x \rightarrow c, \text { as } k \rightarrow \infty \tag{2.20}
\end{equation*}
$$

According to (2.13), we know

$$
\begin{align*}
\left|J^{\prime}\left(u_{k}\right) \cdot \varphi\right| & =\left|\int_{\mathbb{R}^{n}}\left(\left|\nabla u_{k}\right|^{n-2} \cdot \nabla u_{k} \cdot \nabla \varphi+V(x)\left|u_{k}\right|^{n-2} u_{k} \varphi\right) \mathrm{d} x-\int_{\mathbb{R}^{n}} \frac{f\left(x, u_{k}\right)}{|x|^{\beta}} \cdot \varphi \mathrm{d} x\right| \\
& \leqslant \tau_{k}\|\varphi\|, \tag{2.21}
\end{align*}
$$

for all $\varphi \in E$, where $\tau_{k}=\left\|J^{\prime}\left(u_{k}\right)\right\|$, and $\tau_{k} \rightarrow 0$ as $k \rightarrow \infty$. Taking $\varphi=u_{k}$ in (2.21), we have

$$
\begin{equation*}
\left|\left\|u_{k}\right\|^{n}-\int_{\mathbb{R}^{n}} \frac{f\left(x, u_{k}\right)}{|x|^{\beta}} \cdot u_{k} \mathrm{~d} x\right| \leqslant \tau_{k}\left\|u_{k}\right\| . \tag{2.22}
\end{equation*}
$$

By $\left(\mathrm{H}_{2}\right)$, we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{\mu F\left(x, u_{k}\right)}{|x|^{\beta}} \mathrm{d} x \leqslant \int_{\mathbb{R}^{n}} \frac{u_{k} f\left(x, u_{k}\right)}{|x|^{\beta}} \mathrm{d} x . \tag{2.23}
\end{equation*}
$$

Then considering $\left(\frac{\mu}{n}-1\right)\left\|u_{k}\right\|^{n}$, according to (2.23), we have

$$
\begin{align*}
\left(\frac{\mu}{n}-1\right)\left\|u_{k}\right\|^{n} & \leqslant\left(\frac{\mu}{n}-1\right)\left\|u_{k}\right\|^{n}-\int_{\mathbb{R}^{n}} \frac{\mu F\left(x, u_{k}\right)-u_{k} f\left(x, u_{k}\right)}{|x|^{\beta}} \mathrm{d} x \\
& =\mu J\left(u_{k}\right)+\left(\int_{\mathbb{R}^{n}} \frac{u_{k} f\left(x, u_{k}\right)}{|x|^{\beta}} \mathrm{d} x-\left\|u_{k}\right\|^{n}\right) \\
& \leqslant \mu \cdot 2|c|+\tau_{k}\left\|u_{k}\right\| . \tag{2.24}
\end{align*}
$$

According to (2.24), it's easy to prove that $\left\|u_{k}\right\|$ is bounded. Due to (2.20) and (2.22), we get

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{u_{k} f\left(x, u_{k}\right)}{|x|^{\beta}} \mathrm{d} x \leqslant C, \quad \int_{\mathbb{R}^{n}} \frac{F\left(x, u_{k}\right)}{|x|^{\beta}} \mathrm{d} x \leqslant C, \tag{2.25}
\end{equation*}
$$

where C is a constant which depends only on μ and n. According to (2.5) we obtain that for some $u \in E$ and any $q \geqslant 1$, up to a subsequence, $u_{k} \rightarrow u$ strongly in $L^{q}\left(\mathbb{R}^{n}\right)$. Then we know $u_{k} \rightarrow u$ almost everywhere in \mathbb{R}^{n}. Next we will prove that up to a subsequence

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} \frac{\left|f\left(x, u_{k}\right)-f(x, u)\right|}{|x|^{\beta}} \mathrm{d} x=0 . \tag{2.26}
\end{equation*}
$$

Due to $f(x, \cdot) \geqslant 0$, it is sufficient for us to prove that up to a subsequence

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} \frac{f\left(x, u_{k}\right)}{|x|^{\beta}} \mathrm{d} x=\int_{\mathbb{R}^{n}} \frac{f(x, u)}{|x|^{\beta}} \mathrm{d} x . \tag{2.27}
\end{equation*}
$$

Due to

$$
\frac{f(x, u)}{|x|^{\beta}} \in L^{1}\left(\mathbb{R}^{n}\right)
$$

we know

$$
\lim _{\eta \rightarrow+\infty} \int_{|u| \geqslant \eta} \frac{f(x, u)}{|x|^{\beta}} \mathrm{d} x=0 .
$$

For any $\delta>0$, there exists $M>\frac{C}{\delta}$ such that

$$
\begin{equation*}
\int_{|u| \geqslant M} \frac{f(x, u)}{|x|^{\beta}} \mathrm{d} x<\delta, \tag{2.28}
\end{equation*}
$$

where C is the constant in (2.25). According to (2.25), we know

$$
\begin{equation*}
\int_{\left|u_{k}\right| \geqslant M} \frac{f\left(x, u_{k}\right)}{|x|^{\beta}} \mathrm{d} x \leqslant \frac{1}{M} \int_{\left|u_{k}\right| \geqslant M} \frac{f\left(x, u_{k}\right) u_{k}}{|x|^{\beta}} \mathrm{d} x<\delta . \tag{2.29}
\end{equation*}
$$

For all $x \in\left\{x \in \mathbb{R}^{n}:\left|u_{k}\right|<M\right\}$, by our assumption $\left(H_{1}\right)$, we can deduce that

$$
\begin{equation*}
|f(x, s)| \leqslant\left(b_{1}+b_{2} e^{\alpha_{0} M^{\frac{n}{n-1}}}\right)|s|^{n-1} \tag{2.30}
\end{equation*}
$$

Let $C_{1}=b_{1}+b_{2} e^{\alpha_{0} M^{\frac{n}{n-1}}}$, according to (2.30), we know

$$
\left|f\left(x, u_{k}(x)\right)\right| \leqslant C_{1}\left|u_{k}(x)\right|^{n-1}
$$

Since

$$
\frac{\left|u_{k}\right|^{n-1}}{|x|^{\beta}} \rightarrow \frac{|u|^{n-1}}{|x|^{\beta}} \text { strongly in } L^{1}\left(\mathbb{R}^{n}\right), \text { and } u_{k} \rightarrow u \text { almost everywhere in } \mathbb{R}^{n}
$$

according to the generalized Lebesgue's dominated convergence theorem, we know

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\left|u_{k}\right|<M} \frac{f\left(x, u_{k}\right)}{|x|^{\beta}} \mathrm{d} x=\int_{|u|<M} \frac{f(x, u)}{|x|^{\beta}} \mathrm{d} x . \tag{2.31}
\end{equation*}
$$

According to (2.28), (2.29) and (2.31), we can prove that (2.27) holds. Therefore we get (2.26). By $\left(H_{3}\right)$ and $\left(H_{1}\right)$, we obtain that

$$
F\left(x, u_{k}\right) \leqslant C_{1} \cdot\left|u_{k}\right|^{n}+C_{2} f\left(x, u_{k}\right),
$$

where $C_{1}=\left(b_{1} / n\right)+b_{2} e^{\alpha_{0} R_{0}^{\frac{n}{n-1}}}$ and $C_{2}=M_{0}$. According to (2.5), (2.26), and the generalized Lebesgue's Dominated Convergence Theorem, we know

$$
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} \frac{\left|F\left(x, u_{k}\right)-F(x, u)\right|}{|x|^{\beta}} \mathrm{d} x=0
$$

Using the knowledge of (4.26) in [15], we know $\nabla u_{k}(x) \rightarrow \nabla u(x)$ almost everywhere in \mathbb{R}^{n} and $\left|\nabla u_{k}\right|^{n-2} \nabla u_{k} \rightharpoonup|\nabla u|^{n-2} \nabla u$ weakly in $\left(L^{\frac{n}{n-1}}\left(\mathbb{R}^{n}\right)\right)^{n}$. Let $k \rightarrow \infty$ in (2.21), and then we obtain that

$$
\left|\int_{\mathbb{R}^{n}}\left(|\nabla u|^{n-2} \cdot \nabla u \cdot \nabla \varphi+V(x)|u|^{n-2} u \varphi\right) \mathrm{d} x-\int_{\mathbb{R}^{n}} \frac{f(x, u)}{|x|^{\beta}} \cdot \varphi \mathrm{d} x\right|=0,
$$

for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. This demonstrates that u is a weak solution of (1.2).

3 Proof of Theorem 1.1

Next we will prove Theorem 1.1. By Lemmas 2.1 and 2.2, we know J satisfies all the hypotheses of the Mountain-pass Theorem without the Palais-Smale condition:

$$
\left\{\begin{array}{l}
J \in C^{1}(E, \mathbb{R}) ; \\
J(0)=0 ; \\
J(u) \geqslant \delta>0, \text { when }\|u\|=r \\
J(e)<0, \text { for some } e \in E \text { with }\|e\|>r
\end{array}\right.
$$

According to the Mountain-pass Theorem except for the Palais-Smale Condition [21], there exists a sequence $\left\{u_{k}\right\} \subset E$ such that

$$
J\left(u_{k}\right) \rightarrow c>0, \quad J^{\prime}\left(u_{k}\right) \rightarrow 0
$$

in E^{*}, where

$$
c=\min _{\gamma \in \Gamma} \max _{u \in \gamma} J(u) \geqslant \delta \quad \text { and } \quad \Gamma=\{\gamma \in C([0,1], E): \gamma(0)=0, \gamma(1)=e\} .
$$

According to Lemma 2.5, we know that up to a subsequence

$$
\left\{\begin{array}{l}
u_{k} \rightharpoonup u \text { weakly in } E, \\
u_{k} \rightarrow u \text { strongly in } L^{q}\left(\mathbb{R}^{n}\right), \text { for any } q \geqslant 1, \\
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} \frac{F\left(x, u_{k}\right)}{|x|^{\beta}} \mathrm{d} x=\int_{\mathbb{R}^{n}} \frac{F(x, u)}{|x|^{\beta}} \mathrm{d} x, \\
u \text { is a weak solution of }(1.2) .
\end{array}\right.
$$

Next we will prove that the solution u which we get in the above is nontrivial. Suppose $u \equiv 0$. Due to $F(x, u) \equiv 0$ for all $x \in \mathbb{R}^{n}$, we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} \frac{F\left(x, u_{k}\right)}{|x|^{\beta}} \mathrm{d} x=\int_{\mathbb{R}^{n}} \frac{F(x, u)}{|x|^{\beta}} \mathrm{d} x=0 . \tag{3.1}
\end{equation*}
$$

According to (2.20), we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\frac{1}{n}\left\|u_{k}\right\|^{n}-\int_{\mathbb{R}^{n}} \frac{F\left(x, u_{k}\right)}{|x|^{\beta}} \mathrm{d} x\right)=c>0 . \tag{3.2}
\end{equation*}
$$

Combining (3.1) and (3.2), we can obtain that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|u_{k}\right\|^{n}=n \cdot c>0 \tag{3.3}
\end{equation*}
$$

By Lemma 2.4, we get

$$
\begin{equation*}
0<n \cdot c<\left(\frac{n-\beta}{n} \frac{\alpha_{n}}{\alpha_{0}}\right)^{n-1} \tag{3.4}
\end{equation*}
$$

According to (3.3) and (3.4), we know there exists some $\eta_{0}>0$ and $K>0$, such that

$$
\begin{equation*}
\left\|u_{k}\right\|^{n} \leqslant\left(\frac{n-\beta}{n} \frac{\alpha_{n}}{\alpha_{0}}-\eta_{0}\right)^{n-1} \tag{3.5}
\end{equation*}
$$

for all $k>K$. According to (3.5), we can choose $q>1$ sufficiently close to 1 such that

$$
\begin{equation*}
q \alpha_{0}\left\|u_{k}\right\| \frac{n}{n-1} \leqslant\left(1-\frac{\beta}{n}\right) \alpha_{n}-\frac{\alpha_{0} \eta_{0}}{2}, \tag{3.6}
\end{equation*}
$$

for all $k>K$. By $\left(H_{1}\right)$ and (2.1), we have

$$
\left|f\left(x, u_{k}\right) u_{k}\right| \leqslant b_{1}\left|u_{k}\right|^{n}+b_{2}\left|u_{k}\right| \zeta\left(n, \alpha_{0}\left|u_{k}\right|^{\frac{n}{n-1}}\right) .
$$

It follows that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{\left|f\left(x, u_{k}\right) u_{k}\right|}{|x|^{\beta}} \mathrm{d} x \leqslant b_{1} \int_{\mathbb{R}^{n}} \frac{\left|u_{k}\right|^{n}}{|x|^{\beta}} \mathrm{d} x+b_{2} \int_{\mathbb{R}^{n}} \frac{\left|u_{k}\right| \zeta\left(n, \alpha_{0}\left|u_{k}\right|^{n} \frac{n}{n-1}\right)}{|x|^{\beta}} \mathrm{d} x . \tag{3.7}
\end{equation*}
$$

Letting $1 / q^{\prime}+1 / q=1$, and according to (3.6), (3.7), the Hölder Inequality, (2.2), and (2.4), we have

$$
\begin{align*}
\int_{\mathbb{R}^{n}} \frac{\left|f\left(x, u_{k}\right) u_{k}\right|}{|x|^{\beta}} \mathrm{d} x & \leqslant b_{1} \int_{\mathbb{R}^{n}} \frac{\left|u_{k}\right|^{n}}{|x|^{\beta}} \mathrm{d} x+b_{2}\left(\int_{\mathbb{R}^{n}} \frac{\left|u_{k}\right|^{q^{\prime}}}{|x|^{\beta}} \mathrm{d} x\right)^{\frac{1}{q}} \cdot\left(\int_{\mathbb{R}^{n}} \frac{\zeta\left(n, q \alpha_{0}\left|u_{k}\right|^{\frac{n}{n-1}}\right)}{|x|^{\beta}} \mathrm{d} x\right)^{\frac{1}{q}} \\
& \leqslant b_{1} \int_{\mathbb{R}^{n}} \frac{\left|u_{k}\right|^{n}}{|x|^{\beta}} \mathrm{d} x+C\left(\int_{\mathbb{R}^{n}} \frac{\left|u_{k}\right|^{q^{\prime}}}{|x|^{\beta}} \mathrm{d} x\right)^{\frac{1}{q^{\prime}}} \rightarrow 0, \text { as } k \rightarrow \infty . \tag{3.8}
\end{align*}
$$

According to (2.22) and (3.8), we have

$$
\left\|u_{k}\right\| \rightarrow 0, \quad \text { as } \quad k \rightarrow \infty
$$

This is in contradiction with (3.3). Thus the solution u of (1.2) is nontrivial.
Testing Eq. (1.2) with u^{-}, the negative part of u, we conclude that $u^{-} \equiv 0$. Hence $u \geq 0$.

Acknowledgments

The author is supported by the China Scholarship Council.

References

[1] Bréis H., Elliptic equations with limiting Sobolev exponents. Comm. Pure Appl. Math., 39 (1986), 517-539.
[2] Bréis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math., 36 (1983), 437-477.
[3] Bartsh T., Willem M., On an elliptic equation with concave and convex nonlinearities. Proc. Amer. Math. Soc., 123 (1995), 3555-3561.
[4] Garcia A., Alonso P., Existence and non-uniqueness for the p-Laplacian. Commun. Partial Differential Equations, 12 (1987), 1389-1430.
[5] Kryszewski W., Szulkin A., Generalized linking theorem with an application to semilinear Schrödinger equation. Adv. Diff. Equ., 3 (1998), 441-472.
[6] Alama S., Li Y., Existence of solutions for semilinear elliptic equations with indefinite linear part. J. Diff. Equ., 96 (1992), 89-115.
[7] Ding W., Ni W., On the existence of positive entire solutions of a semilinear elliptic equation. Arch. Rat. Math. Anal., 31 (1986), 283-308.
[8] Jeanjean L., Solutions in spectral gaps for a nonlinear equation of Schrödinger type. J. Diff. Equ., 112 (1994), 53-80.
[9] Cao D., Nontrivial solution of semilinear elliptic equations with critical exponent in \mathbb{R}^{2}. Commun. Partial Differential Equations, 17 (1992), 407-435.
[10] Cao D., Zhang Z., Eigenfunctions of the nonlinear elliptic equation with critical exponent in \mathbb{R}^{2}. Acta Math. Sci., (English Ed.) 13 (1993), 74-88.
[11] Panda R., Nontrivial solution of a quasilinear elliptic equation with critical growth in \mathbb{R}^{n}. Proc. Indian Acad. Sci. (Math. Sci.), 105 (1995), 425-444.
[12] do Ó J. M., n-Laplacian equations in \mathbb{R}^{n} with critical growth. Abstr. Appl. Anal., 2 (1997), 301-315.
[13] do Ó J. M., Medeiros E. and U. Severo, On a quasilinear nonhomogeneous elliptic equation with critical growth in \mathbb{R}^{n}. J. Diff. Equ., 246 (2009), 1363-1386.
[14] Alves C. O., Figueiredo G. M., On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in \mathbb{R}^{n}. J. Diff. Equ., 246 (2009), 1288-1311.
[15] Adimurthi, Yang Y., An interpolation of Hardy inequality and Trudinger-Moser inequaltiy in \mathbb{R}^{n} and its applicaitons. International Mathematics Research Notices, 13 (2010), 2394-2426.
[16] do Ó J. M., Souza M. de, On a class of singular Trudinger-Moser type inequalities and its applications. Math. Narchr., 284 (2011), 1754-1776.
[17] Yang Y., Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space. Journal of Functional Analysis, 262 (2012), 1679-1704.
[18] Zhao L., A multiplicity result for a singular and nonhomogeneous elliptic problem in \mathbb{R}^{n}. Journal of Partial Diff. Equ., 25 (2012), 90-102.
[19] Yang Y., Adams type inequalities and related elliptic partial differential equations in dimension four. J. Diff. Equ., 252 (2012), 2266-2295.
[20] Yang Y., Trudinger-Moser inequalities on complete noncompact Riemannian manifolds. Journal of Functional Analysis, 263 (2012), 1894-1938.
[21] Rabinowitz P. H., On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys., 43 (1992), 270-291.

[^0]: *Corresponding author. Email address: chongwang@gwu.edu (C. Wang)

