Multiple Positive Solutions for Semilinear Elliptic Equations Involving Subcritical Nonlinearities in $\mathbb{R}^{\mathbb{N}}$

KHADEMLOO Somayeh* and MOHSENHI Rahelh

Department of Basic Sciences, Babol Noushirvani University of Technology, Babol, Iran.

Received 30 May 2013; Accepted 22 November 2013

Abstract. In this paper, we study how the shape of the graph of a(z) affects on the number of positive solutions of

$$-\Delta v + \mu b(z)v = a(z)v^{p-1} + \lambda h(z)v^{q-1}, \quad \text{in } \mathbb{R}^N.$$

$$(0.1)$$

We prove for large enough $\lambda, \mu > 0$, there exist at least k+1 positive solutions of the this semilinear elliptic equations where $1 \le q < 2 < p < 2^* = 2N/(N-2)$ for $N \ge 3$.

AMS Subject Classifications: 35J20, 35J25, 35J65

Chinese Library Classifications: O175.8, O175.25

Key Words: Sobolev spaces; semilinear elliptic equations; critical exponent; Nehari manifold; Palais-Smale condition.

1 Introduction

For $N \ge 3$, $1 \le q < 2 < p < 2^* = 2N/(N-2)$, we suppose the semilinear elliptic equations

$$\begin{cases} -\Delta v + \mu b(z)v = a(z)v^{p-1} + \lambda h(z)v^{q-1}, & \text{ in } \mathbb{R}^N; \\ v \in H^1(\mathbb{R}^N), \end{cases}$$
(E_{\lambda,\mu)}

where $\lambda, \mu > 0$. Suppose *a*, *b* and *h* satisfy the following conditions:

(*a*₁) *a* is a positive continuous function in \mathbb{R}^N and $\lim_{|z|\to\infty} a(z) = a_{\infty} > 0$.

(*a*₂) There are *k* points a^1, a^2, \dots, a^k in \mathbb{R}^N such that $a(a^i) = a_{\max} = \max_{z \in \mathbb{R}^N} a(z)$; for $1 \le i \le k$ and $a_{\infty} < a_{\max}$.

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* s.khademloo@nit.ac.ir (S. Khademloo), rm_omran78@yahoo.com (R. Mohsenhi)

 $(h_1) h \in L^{\frac{p}{p-q}}(\mathbb{R}^{\mathbb{N}}) \cap L^{\infty}(\mathbb{R}^{\mathbb{N}}) \text{ and } h \geqq 0.$

 (b_1) *b* is a bounded and positive continuous function in \mathbb{R}^N .

For $\mu = 1$, $\lambda = 0$, a(z) = b(z) = 1 for all $z \in \mathbb{R}^N$, we assume the semilinear elliptic equation

$$\begin{cases} -\Delta u + u = u^{p-1}, & \text{ in } \mathbb{R}^{\mathbb{N}}; \\ u \in H^1(\mathbb{R}^N), \end{cases}$$
(E₀)

where

$$\|u\|_{H}^{2} = \int_{\mathbb{R}^{N}} (|\nabla u|^{2} + u^{2}) dz$$
 is the norm in $H^{1}(\mathbb{R}^{N})$,

and the energy functional

$$J_0^{\infty}(u) = \frac{1}{2} \| u \|_{H}^2 - \frac{1}{p} \| u_+ \|_{L^p}^p, \quad \text{where } u_+ = \max\{u, 0\} \ge 0.$$

We consider the semilinear elliptic equation

$$\begin{cases} -\Delta u + u = a(z)u^{p-1} + \lambda h(z)u^{q-1}, & \text{ in } \mathbb{R}^{\mathbb{N}}; \\ u \in H^1(\mathbb{R}^{\mathbb{N}}), \end{cases}$$

have been studied by Huei-li Lin [1] (b(z) = 1, $\mu = 1$ and for $N \ge 3$, $1 \le q < 2 < p < 2^* = 2N/(N-2)$) and she studied the effect of the coefficient a(z) of the subcritical nonlinearity in $\mathbb{R}^{\mathbb{N}}$, Ambrosetti [2] ($a \equiv 1$ and $1 < q < 2 < p \le 2^* = 2N/(N-2)$ and Wu [3] ($a \in C(\overline{\Omega})$ and changes sign, $1 < q < 2 < p < 2^*$). They showed that this equation has at least two positive solutions for small enough $\lambda > 0$. In [4], Hsu and Lin have studied that there are four positive solutions of the general cases

$$-\Delta v + v = a(z)v^{p-1} + \lambda h(z)v^{q-1}, \quad \text{in } \mathbb{R}^N;$$

for small enough $\lambda > 0$.

In this paper, we study the existence and multiplicity of positive solutions of the equation $(E_{\lambda,\mu})$ in $\mathbb{R}^{\mathbb{N}}$. By the change of variables

$$\mu = \frac{1}{\varepsilon^2}$$
 and $u(z) = \varepsilon^{\frac{2}{p-2}} v(\varepsilon z),$

Eq. $(E_{\lambda,\mu})$ is converted to

$$\begin{cases} -\Delta u + b(\varepsilon z)u = a(\varepsilon z)u^{p-1} + \lambda h(\varepsilon z)u^{q-1}, & \text{ in } \mathbb{R}^{\mathbb{N}}; \\ u \in H^1(\mathbb{R}^N). \end{cases}$$
(*E*_{*\varepsilon,\lambda*) (*E*_{\varepsilon,\lambda})}

Based on Eq. $(E_{\varepsilon,\lambda})$, we consider the C^1 -functional $J_{\varepsilon,\lambda}$, for $u \in H^1(\mathbb{R}^{\mathbb{N}})$.

$$J_{\varepsilon,\lambda}(u) = \frac{1}{2} \int_{\mathbb{R}^{\mathbb{N}}} (|\nabla u|^2 + b(\varepsilon z)u^2) dz - \frac{1}{p} \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z)u_+^p dz - \frac{1}{q} \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)u_+^q dz,$$

where

$$\|u\|_b^2 = \int_{\mathbb{R}^N} (|\nabla u|^2 + b(\varepsilon z)u^2) dz$$

is the norm in $H^1(\mathbb{R}^N)$. In fact that $d = \max\{1, b(\varepsilon z)\}$ then $||u||_H \le ||u||_b \le d ||u||_H$, i.e., $||u||_b$ is an equivalent norm by $||u||_H$. We know that the nonnegative weak solutions of Eq. $(E_{\varepsilon,\lambda})$ are equivalent to the critical points of $J_{\varepsilon,\lambda}$. Here we study the existence and multiplicity of positive solutions of Eq. $(E_{\varepsilon,\lambda})$ in \mathbb{R}^N .

We organize this paper in this way. In Section 2, we apply the argument of Tarantello [5] to divide the Nehari manifold $M_{\varepsilon,\lambda}$ into two parts $M_{\varepsilon,\lambda}^+$ and $M_{\varepsilon,\lambda}^-$. In Section 3, we show that the existence of a positive ground state solution $u_0 \in M_{\varepsilon,\lambda}^+$ of Eq. $(E_{\varepsilon,\lambda})$. In Section 4, there are at least *k* critical points $u_1, \dots, u_k \in M_{\varepsilon,\lambda}^-$ of $J_{\varepsilon,\lambda}$ such that $J_{\varepsilon,\lambda}(u_i) = \beta_{\varepsilon,\lambda}^i((PS))$ -value) for $1 \le i \le k$. Let

$$S = \sup_{u \in H^1(\mathbb{R}^N), ||u||_H = 1} ||u||_{L^p},$$

then $||u||_{L^p} \leq S ||u||_H$ for every $u \in H^1(\mathbb{R}^N) \setminus \{0\}$.

2 Main results

Theorem 2.1. Under assumptions a_1 and h_1 , if

(a)

$$0 < \lambda < \Lambda = (p-2) \left(\frac{2-q}{a_{\max}}\right)^{\frac{2-q}{p-2}} \left((p-q)S^2\right)^{\frac{q-p}{p-2}} \|h\|_{\#}^{-1},$$

where $||h||_{\#}$ is the norm in $L^{\frac{p}{p-q}}(\mathbb{R}^N)$, then Eq. $(E_{\varepsilon,\lambda})$ accepts at least a positive ground state solution, (see Theorem 3.4).

(b) Under assumptions a_1, a_2 and h_1 , if λ is large enough, then Eq. $(E_{\lambda,\mu})$ archives at least k+1 positive solutions, (see Theorem 4.10).

For the semilinear elliptic equations

$$\begin{cases} -\Delta u + u = a(\varepsilon z)u^{p-1}, & \text{in } \mathbb{R}^{\mathbb{N}}; \\ u \in H^1(\mathbb{R}^{\mathbb{N}}), \end{cases}$$

if $a = a_{\max}$ and $\Omega = \{u \in H^1(\mathbb{R}^N) \setminus \{0\} | u_+ \neq 0 \text{ and } \langle I'_{max}(u), u \rangle = 0\}$. We define the energy functional

$$I_{\max} = \frac{1}{2} \| u \|_{H}^{2} - \frac{1}{p} \int_{\mathbb{R}^{N}} a_{\max}(\varepsilon z) u_{+}^{p} dz,$$

then $\gamma_{\max} = \inf_{u \in \Omega} I_{\max}(u)$.

Lemma 2.1. We have

$$\gamma_{\max} = \frac{p-2}{2p} (a_{\max}S^p)^{\frac{-2}{(p-2)}} > 0.$$

Proof. If

$$I_{\max} = \frac{1}{2} \| u \|_{H}^{2} - \frac{1}{P} \int_{\mathbb{R}^{N}} a_{\max} u_{+}^{p} dz_{\mu}$$

then

$$\gamma_{\max} = \gamma_{\max}(\Omega) = \left(\frac{1}{2} - \frac{1}{p}\right) \gamma(\Omega)^{\frac{2p}{2-p}};$$

$$\gamma(\Omega) = \sup\left\{\int_{\mathbb{R}^N} a_{\max} u^p \middle| u \in H^1(\mathbb{R}^N) \text{ and } \|u\|_H = 1\right\} = a_{\max}^{\frac{1}{p}}.$$

Moreover $\gamma_{\max} = (\frac{1}{2} - \frac{1}{p})(a_{\max}^{\frac{1}{p}}S)^{\frac{2p}{p-2}} > 0.$

Definition 2.1. We define the Palais-Smale (denoted by (PS))-sequences, (PS)-value, and (PS)conditions in $H^1(\mathbb{R}^N)$ for $J_{\varepsilon,\lambda}$ as follows.

(i) For $\beta \in \mathbb{R}$, a sequence $\{u_n\}$ is a $(PS)_{\beta}$ -sequence in $H^1(\mathbb{R}^N)$ for $J_{\varepsilon,\lambda}$ if $J_{\varepsilon,\lambda}(u_n) = \beta + o_n(1)$ and $J'_{\varepsilon,\lambda}(u_n) = o_n(1)$ strongly in $H^{-1}(\mathbb{R}^N)$ as $n \longrightarrow \infty$, where $H^{-1}(\mathbb{R})^N$ is the dual space of $H^1(\mathbb{R}^N)$;

(ii) $\beta \in \mathbb{R}$ is a (PS)-value in $H^1(\mathbb{R}^{\mathbb{N}})$ for $J_{\varepsilon,\lambda}$ if there is a (PS)_{β}-sequence in $H^1(\mathbb{R})$ for $J_{\varepsilon,\lambda}$;

(iii) $J_{\varepsilon,\lambda}$ satisfy the $(PS)_{\beta}$ -condition in $H^1(\mathbb{R}^N)$ if every $(PS)_{\beta}$ -sequence in $H^1(\mathbb{R}^N)$ for $J_{\varepsilon,\lambda}$ includes a convergent subsequence.

Next, since $J_{\varepsilon,\lambda}$ is not bounded form below in $H^1(\mathbb{R}^N)$, we consider the Nehari manifold

$$M_{\varepsilon,\lambda} = \{ u \in H^1(\mathbb{R}^N) \setminus 0 | u_+ \neq 0, \quad \text{and} \quad \langle J'_{\varepsilon,\lambda}(u), u \rangle = 0 \},$$
(2.1)

where

$$\langle J_{\varepsilon,\lambda}'(u), u \rangle = \|u\|_{H}^{2} - \int_{\mathbb{R}^{N}} a(\varepsilon z) u_{+}^{p} dz - \lambda \int_{\mathbb{R}^{N}} h(\varepsilon z) u_{+}^{q} dz.$$

Notice $M_{\varepsilon,\lambda}$ includes all nonnegative solutions of Eq. $(E_{\lambda,\mu})$.

Lemma 2.2. The energy functional $J_{\varepsilon,\lambda}$ is coercive and bounded from below on $M_{\varepsilon,\lambda}$.

Proof. For $u \in M_{\varepsilon,\lambda}$, the Holder inequality $(p_1 = p/(p-q), p_2 = p/q)$ and the Sobolev embedding we get

$$\begin{split} J_{\varepsilon,\lambda}(u) &= \left(\frac{1}{2} - \frac{1}{p}\right) \| u \|_{H}^{2} - \left(\frac{1}{q} - \frac{1}{p}\right) \int_{\mathbb{R}^{N}} \lambda h(\varepsilon z) u_{+}^{q} dz \\ &\geq \left(\frac{1}{2} - \frac{1}{p}\right) \| u \|_{H}^{2} - \left(\frac{1}{q} - \frac{1}{p}\right) \lambda \| h \|_{\#} S^{q} \| u \|_{H}^{q} \\ &\geq \frac{\| u \|_{H}^{q}}{p} \left[\frac{p - 2}{2} \| u \|_{H}^{2 - q} - \left(\frac{p - q}{q}\right) \lambda \| h \|_{\#} S^{q} \right] \geq 0, \end{split}$$

77

where

$$C_1 = (p-2)/2 > 0$$
 and $C_2 = ((p-q)/q)\lambda ||h||_{\#} S^q > 0$,

i.e, we have that $J_{\varepsilon,\lambda}$ is coercive and bounded from below on $M_{\varepsilon,\lambda}$.

Definition 2.2. *Define* $\psi_{\varepsilon,\lambda}(u) = \langle J'_{\varepsilon,\lambda}(u), u \rangle$.

Under assumptions for $u \in M_{\varepsilon,\lambda}$, we get

$$\langle \psi_{\varepsilon,\lambda}'(u), u \rangle = 2 \|u\|_{H}^{2} - p \int_{\mathbb{R}^{N}} a(\varepsilon z) u_{+}^{p} dz - \lambda q \int_{\mathbb{R}^{N}} h(\varepsilon z) u_{+}^{q} dz$$

$$= (2-p) \|u\|_{H}^{2} + (p-q)\lambda \int_{\mathbb{R}^{N}} h(\varepsilon z) u_{+}^{q} dz$$

$$= (2-q) \|u\|_{H}^{2} + (q-p) \int_{\mathbb{R}^{N}} a(\varepsilon z) u_{+}^{p} dz.$$

$$(2.2)$$

We apply the method in Tarantello [5], suppose

$$\begin{split} M^+_{\varepsilon,\lambda} &= \{ u \in M_{\varepsilon,\lambda} \mid \langle \psi'_{\varepsilon,\lambda}(u), u \rangle > 0 \}; \\ M^0_{\varepsilon,\lambda} &= \{ u \in M_{\varepsilon,\lambda} \mid \langle \psi'_{\varepsilon,\lambda}(u), u \rangle = 0 \}; \\ M^-_{\varepsilon,\lambda} &= \{ u \in M_{\varepsilon,\lambda} \mid \langle \psi'_{\varepsilon,\lambda}(u), u \rangle < 0 \}. \end{split}$$

Lemma 2.3. Under assumptions a_1, a_2 and h_1 , if $0 < \lambda < \Lambda$, then $M^0_{\varepsilon, \lambda} = \emptyset$.

Proof. On the contrary, there is a number $\lambda_0 \in \mathbb{R}$ and $0 < \lambda_0 < \Lambda$ such that $M^0_{\lambda_0} = \emptyset$. Then for $u \in M^0_{\lambda_0}$, by (2.2), we have

$$\|u\|_{H}^{2} = \frac{p-q}{p-2}\lambda_{0}\int_{\mathbb{R}^{N}}h(\varepsilon z)u_{+}^{q}dz = \frac{p-q}{2-q}\int_{\mathbb{R}^{N}}a(\varepsilon z)u_{+}^{p}dz.$$

By the Holder and the Sobolev embedding theorem, we obtain

$$\|u\|_{H} \ge \left[\frac{(2-q)}{(p-q)a_{\max}}S^{-p}\right]^{\frac{1}{(p-2)}}$$
 and $\|u\|_{H} \le \left(\frac{p-q}{p-2}\lambda_{0}\|h\|_{\#}S^{q}\right)^{\frac{1}{2-q}}.$

Thus,

$$\lambda_0 \ge (p-2) \left(\frac{2-q}{a_{\max}}\right)^{\frac{2-q}{p-2}} \left((p-q)S^2 \right)^{\frac{q-p}{p-2}} \|h\|_{\#}^{-1} = \Lambda.$$

This makes a contradiction.

Lemma 2.4. Suppose that u is a local minimizer for $J_{\varepsilon,\lambda}$ on $M_{\varepsilon,\lambda}$ and $u \in M^0_{\varepsilon,\lambda}$. Then $J'_{\varepsilon,\lambda}(u) = 0$ in $H^{-1}(\mathbb{R}^{\mathbb{N}})$.

Proof. See [6, Theorem 2.3].

78

Lemma 2.5. For each $u \in M^+_{\varepsilon,\lambda}$, we have

$$\int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) u_{+}^{q} \mathrm{d} z > 0, \quad \text{and} \quad \| u \|_{H} < \left(\frac{p-q}{p-2} \lambda \| h \|_{\neq} S^{q} \right)^{\frac{1}{(2-q)}}.$$

Proof. For $u \in M^+_{\varepsilon,\lambda}$, we get

$$\begin{split} &(2-p) \, \| \, u \, \|_{H}^{2} + (p-q)\lambda \int_{\mathbb{R}^{N}} h(\varepsilon z) u_{+}^{q} \mathrm{d}z \! > \! 0, \\ &(p-q)\lambda \int_{\mathbb{R}^{N}} h(\varepsilon z) u_{+}^{q} \mathrm{d}z \! > \! (2\!-\!p) \, \| \, u \, \|_{H}^{2}, \\ &\int_{\mathbb{R}^{N}} h(\varepsilon z) u_{+}^{q} \mathrm{d}z \! > \! \frac{(2\!-\!p)}{\lambda(p\!-\!q)} \, \| \, u \, \|_{H}^{2} \! > \! 0. \end{split}$$

For every $u \in M_{\varepsilon,\lambda}^+ \subset M_{\varepsilon,\lambda}$, by (2.2), we apply the Holder inequality $(p_1 = p/(p-q), p_2 = p/q)$ to obtain that

$$\begin{split} & 0 < (p-q) \int_{\mathbb{R}^{N}} \lambda h(\varepsilon z) \, \| \, u_{+}^{q} \, \mathrm{d}z - (p-2) \, \| \, u \, \|_{H}^{2} \leq (p-q) \lambda \, \| \, h \, \|_{\#} \, S^{q} \, \| \, u \, \|_{H}^{q} - (p-2) \, \| \, u \, \|_{H}^{2}, \\ & \| u \, \|_{H} \leq \left(\frac{p-q}{p-2} \lambda \, \| \, h \, \|_{\#} \, S^{q} \right)^{\frac{1}{2-q}}. \end{split}$$

This completes the proof.

Lemma 2.6. For each $u \in M^-_{\varepsilon,\lambda}$, we have

$$||u||_{H} > \left[\frac{2-q}{(p-q)a_{\max}}S^{p}\right]^{\frac{1}{p-2}}$$

Proof. For every $u \in M^-_{\varepsilon,\lambda}$, by (2.2), we have that

$$\| u \|_{H}^{2} < \frac{p-q}{2-q} \int_{\mathbb{R}^{N}} a(\varepsilon z) u_{+}^{p} dz \le \frac{p-q}{2-q} S^{p} \| u \|_{H}^{p} a_{\max}, \qquad \| u \|_{H} \ge \left[\frac{(2-q)}{(p-q)a_{\max}} S^{-p} \right]^{\frac{1}{(p-2)}}.$$

nis completes the proof.

This completes the proof.

Lemma 2.7. If $0 < \lambda < \frac{q\Lambda}{2}$ and $u \in M^-_{\varepsilon,\lambda}$, then $J_{\varepsilon,\lambda}(u) > 0$. *Proof.* For $u \in M^-_{\varepsilon,\lambda}$, we have

$$\begin{split} J_{\varepsilon,\lambda}(u) &= \left(\frac{1}{2} - \frac{1}{p}\right) \| u \|_{H}^{2} - \left(\frac{1}{q} - \frac{1}{p}\right) \int_{\mathbb{R}^{N}} \lambda h(\varepsilon z) u_{+}^{q} dz \\ &\geq \frac{\| u \|_{H}^{q}}{p} \left[\frac{P - 2}{2} \| u \|_{H}^{2 - q} - \frac{p - q}{q} \lambda \| h \|_{\#} S^{q} \right] \\ &> \frac{1}{p} \left(\frac{2 - p}{(p - q) a_{\max} S^{p}} \right)^{\frac{q}{p - 2}} \left(\frac{p - 2}{2} \left(\frac{2 - q}{(p - q) a_{\max} S^{p}} \right)^{\frac{2 - q}{p - 2}} - \frac{p - q}{q} \lambda \| h \|_{\#} S^{q} \right). \\ \lambda(u) \geq d_{0} > 0 \text{ for some } d_{0} = d_{0}(\varepsilon, p, q, S, \lambda_{\ell} \| h \|_{\#} a_{\max}). \end{split}$$

So $J_{\varepsilon,\lambda}(u) \ge d_0 > 0$ for some $d_0 = d_0(\varepsilon, p, q, S, \lambda, ||h||_{\#, a_{\max}})$.

For $u \in H^1(\mathbb{R}^N) \setminus \{0\}$ and $u_+ \not\equiv 0$, let

$$\overline{l} = \overline{l}(u) = \left[\frac{(2-q) \|u\|_{H}^{2}}{(p-q)\int_{\mathbb{R}^{N}} a(\varepsilon z) u_{+}^{p} \mathrm{d}z}\right]^{\frac{1}{p-2}} > 0.$$

Lemma 2.8. For every $u \in H^1(\mathbb{R}^N) \setminus \{0\}$ and $u_+ \not\equiv 0$, we have that, if

$$\int_{\mathbb{R}^N} \lambda h(z) u_+^q \mathrm{d} z = 0,$$

then there is a unique positive number $l^- = l^-(u) > \overline{l}$ such that $l^-u \in M^-_{\varepsilon,\lambda}$ and $J_{\varepsilon,\lambda}(l^-u) = \sup_{l \ge 0} J_{\varepsilon,\lambda}(lu)$.

Proof. For every $u \in H^1(\mathbb{R}^{\mathbb{N}}) \setminus \{0\}$ and $u_+ \not\equiv 0$, define

$$k(l) = k_u(l) = l^{2-q} ||u||_H^2 - l^{p-q} \int_{\mathbb{R}^N} a(\varepsilon z) u_+^p dz, \quad \text{for } l \ge 0.$$

Clearly, we get that k(0) = 0 and $k(l) \rightarrow -\infty$ as $l \rightarrow \infty$ since

$$k'(l) = \frac{1}{l^{q+1}} \left[(2-q) \| lu \|_{H}^{2} - (p-q) \int_{\mathbb{R}^{N}} a(\varepsilon z) (lu_{+})^{p} dz \right], \quad \text{for } l \ge 0,$$

then $k'(\overline{l}) = 0$, k'(l) > 0 for $0 < l < \overline{l}$, and k'(l) < 0 for $l > \overline{l}$. Thus, k(l) get its maximum at \overline{l} . Furthermore, by the Sobolev embedding theorem, we have that

$$k(\overline{l}) = \left(\frac{(2-q) \|u\|_{H}^{2}}{(p-q) \int_{\mathbb{R}^{N}} a(\varepsilon z) u_{+}^{p} dz}\right)^{\frac{(2-q)}{(p-2)}} \|u\|_{H}^{2} - \left(\frac{(2-q) \|u\|_{H}^{2}}{(p-q) \int_{\mathbb{R}^{N}} a(\varepsilon z) u_{+}^{p} dz}\right)^{\frac{(p-q)}{(p-2)}} \int_{\mathbb{R}^{N}} a(\varepsilon z) u_{+}^{p} dz \ge (p-2)(2-q)^{\frac{2-q}{p-2}} (p-q)^{\frac{q-p}{p-2}} S^{\frac{p(q-2)}{p-2}} \|u\|_{H}^{q},$$
(2.3)
$$\int_{\mathbb{R}^{N}} \lambda h(z) u_{+}^{q} dz = 0.$$

There is a unique positive number $l^- = l^-(u) > \overline{l}$ such that

$$k(l^{-}) = \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(z) u_{+}^{q} \mathrm{d}z = 0,$$

and $k'(l^{-}) > 0$. Then

$$\frac{\mathrm{d}}{\mathrm{d}l}J_{\varepsilon,\lambda}(lu) = \frac{1}{l} \left(\| lu \|_{H}^{2} - \int_{\mathbb{R}^{N}} a(\varepsilon z)(lu_{+})^{p} \mathrm{d}z - \int_{\mathbb{R}^{N}} \lambda h(\varepsilon z)(lu_{+})^{q} \mathrm{d}z \right)|_{l=l^{-}} = 0,$$

$$\frac{\mathrm{d}^{2}}{\mathrm{d}l^{2}}J_{\varepsilon,\lambda}(lu) = \frac{1}{l^{2}} \left[\| lu \|_{H}^{2} - (p-1)\int_{\mathbb{R}^{N}} a(\varepsilon z)(lu_{+})^{p} \mathrm{d}z - (q-1)\int_{\mathbb{R}^{N}} \lambda h(\varepsilon z)(lu_{+})^{q} \mathrm{d}z \right]|_{l=l^{-}} < 0,$$

and

$$J_{\varepsilon,\lambda}(lu) \to -\infty$$
, as $l \to \infty$.

Furthermore, it is not difficult to find that $l^- u \in M^-_{\varepsilon,\lambda}$ and $J_{\varepsilon,\lambda}(l^- u) = \sup_{l \ge 0} J_{\varepsilon,\lambda}(lu)$. \Box

Lemma 2.9. If $0 < \lambda < \Lambda$ and $\int_{\mathbb{R}^N} \lambda h(\varepsilon z) u_+^q dz > 0$, then there is unique positive number $l^+ = l^+(u) < \overline{l} < l^- = l^-(u)$ such that $l^+u \in M_{\varepsilon,\lambda}^-$, and

$$J_{\varepsilon,\lambda}(l^+u) = \inf_{0 \le l \le \overline{l}} J_{\varepsilon,\lambda}(lu), \qquad J_{\varepsilon,\lambda}(l^-u) = \sup_{l \ge \overline{l}} J_{\varepsilon,\lambda}(lu).$$

Proof. Since $0 < \lambda < \Lambda$ and $\int_{\mathbb{R}^N} \lambda h(\varepsilon z) u_+^q dz > 0$, by (2.3), then

$$k(0) = 0 < \lambda \int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) u_{+}^{q} dz \le \lambda \| h \|_{\#} S^{q} \| u \|_{H}^{q} < (P-2)(2-q)^{\frac{2-q}{p-2}} (p-q)^{\frac{q-p}{p-2}} S^{\frac{p(q-2)}{p-2}} \| u \|_{H}^{q} \le k(\overline{l}).$$

It follows that there are unique positive number $l^+ = l^+(u)$ and $l^- = l^-(u)$ such that

$$l^+ < \overline{l} < l^-, \quad k(l^+) = \int_{\mathbb{R}^N} \lambda h(\varepsilon z) u_+^q dz = k(l^-) \quad \text{and} \quad k'(l^-) < 0 < k'(l^+).$$

We also have that

$$l^+ u \in M^+_{\varepsilon,\lambda}, \quad l^- u \in M^-_{\varepsilon,\lambda}, \quad J_{\varepsilon,\lambda}(l^+ u) \le J_{\varepsilon,\lambda}(l u) \le J_{\varepsilon,\lambda}(l^- u)$$

for every $l \in [l^+, l^-]$, and $J_{\varepsilon,\lambda}(l^+u) \leq J_{\varepsilon,\lambda}(lu)$ for every $l \in [0,\overline{l}]$. Hence,

$$J_{\varepsilon,\lambda}(l^+u) = \inf_{0 \le l \le \overline{l}} J_{\varepsilon,\lambda}(lu), \qquad J_{\varepsilon,\lambda}(l^-u) = \sup_{l \ge \overline{l}} J_{\varepsilon,\lambda}(lu).$$

This completes the proof.

Applying Lemma 2.6 $(M^0_{\varepsilon,\lambda} = \emptyset$ for $0 < \lambda < \Lambda)$. We have $M_{\varepsilon,\lambda} = M^+_{\varepsilon,\lambda} \cup M^-_{\varepsilon,\lambda}$, where

$$M_{\varepsilon,\lambda}^{+} = \left\{ u \in M_{\varepsilon,\lambda} \left| (2-q) \| u \|_{H}^{2} - (p-q) \int_{\mathbb{R}^{N}} a(\varepsilon z) u_{+}^{p} dz > 0 \right\}, \\ M_{\varepsilon,\lambda}^{-} = \left\{ u \in M_{\varepsilon,\lambda} \left| (2-q) \| u \|_{H}^{2} - (p-q) \int_{\mathbb{R}^{N}} a(\varepsilon z) u_{+}^{p} dz < 0 \right\}.$$

Define

$$\alpha_{\varepsilon,\lambda} = \inf_{u \in M_{\varepsilon,\lambda}} J_{\varepsilon,\lambda}(u); \quad \alpha_{\varepsilon,\lambda}^+ = \inf_{u \in M_{\varepsilon,\lambda}^+} J_{\varepsilon,\lambda}(u); \quad \alpha_{\varepsilon,\lambda}^- = \inf_{u \in M_{\varepsilon,\lambda}^-} J_{\varepsilon,\lambda}(u).$$

Lemma 2.10. If $0 < \lambda < \Lambda$, then $\alpha_{\varepsilon,\lambda} \leq \alpha_{\varepsilon,\lambda}^+ < 0$.

Proof. Suppose $u \in M^+_{\varepsilon,\lambda}$, by (2.2) we get that

$$(p-2) \| u \|_{H}^{2} < (p-q)\lambda \int_{\mathbb{R}^{N}} h(z) u_{+}^{q} dz$$

Then

$$\begin{split} J_{\varepsilon,\lambda}(u) = & \left(\frac{1}{2} - \frac{1}{p}\right) \| u \|_{H}^{2} - \left(\frac{1}{q} - \frac{1}{p}\right) \lambda \int h(\varepsilon z) u_{+}^{q} dz \\ < & \left[\left(\frac{1}{2} - \frac{1}{p}\right) - \left(\frac{1}{q} - \frac{1}{p}\right) \frac{p - 2}{p - q} \right] \| u \|_{H}^{2} \\ = & - \frac{(2 - q)(p - 2)}{2pq} \| u \|_{H}^{2} < 0. \end{split}$$

By the definition $\alpha_{\varepsilon,\lambda}$ and $\alpha_{\varepsilon,\lambda}^+$, we conclude that $\alpha_{\varepsilon,\lambda} \leq \alpha_{\varepsilon,\lambda}^+ < 0$.

Lemma 2.11. If $0 < \lambda < q\Lambda/2$, then $\alpha_{\varepsilon,\lambda}^{-} \ge d_0 > 0$ for some $d_0 = d_0(\varepsilon,\lambda,p,q,S, ||h||_{\#})$.

Proof. See [4, Lemma 2.5].

Lemma 2.12. We conclude

- (a) There is a $(PS)_{\alpha_{\varepsilon,\lambda}}$ -sequence $\{u_n\}$ in $M_{\varepsilon,\lambda}$ for $J_{\varepsilon,\lambda}$;
- (b) There is a $(PS)_{\alpha_{\varepsilon,\lambda}^+}$ -sequence $\{u_n\}$ in $M_{\varepsilon,\lambda}^+$ for $J_{\varepsilon,\lambda}$;
- (c) There is a $(PS)_{\alpha_{\varepsilon,\lambda}^{-}}$ -sequence $\{u_n\}$ in $M_{\varepsilon,\lambda}^{-}$ for $J_{\varepsilon,\lambda}$.

3 Existence of a ground state solution

At first, we show that $J_{\varepsilon,\lambda}$ satisfy the $(PS)_{\beta}$ -condition in $H^1(\mathbb{R}^{\mathbb{N}})$ for $\beta \in (-\infty, \gamma_{\max} - C_0\lambda^{\frac{2}{2-q}})$, where

$$C_0 = (2-q) \left[(p-q) \| h \|_{\#} S^q \right]^{\frac{2}{2-q}} / \left[2pq(p-2)^{\frac{q}{2-q}} \right].$$

Lemma 3.1. Under some assumptions a_1, a_2, h_1 and $0 < \lambda < \Lambda$. If $\{u_n\}$ is a $(PS)_{\beta}$ - sequence in $H^1(\mathbb{R}^N)$ for $J_{\varepsilon,\lambda}$ with $u_n \rightharpoonup u$ weakly in $H^1(\mathbb{R}^N)$, then $J'_{\varepsilon,\lambda}(u) = 0$ in $H^{-1}(\mathbb{R}^N)$.

Proof. Suppose $\{u_n\}$ be a $(PS)_{\beta}$ -sequence in $H^1(\mathbb{R}^N)$ for $J_{\varepsilon,\lambda}$ such that $J_{\varepsilon,\lambda}(u_n) = \beta + o_n(1)$

and $J'_{\varepsilon,\lambda}(u_n) = o_n(1)$ in $H^{-1}(\mathbb{R}^N)$. Then

$$\begin{split} |\beta| + o_n(1) + \frac{d_n ||u_n||_H}{p} \ge J_{\varepsilon,\lambda}(u_n) - \frac{1}{p} \langle J'_{\varepsilon,\lambda}(u_n), u_n \rangle \\ = \left(\frac{1}{2} - \frac{1}{p}\right) ||u_n||_H^2 - \left(\frac{1}{q} - \frac{1}{p}\right) \int_{\mathbb{R}^N} \lambda h(\varepsilon z)(u_n)_+^q dz \\ \ge \frac{p-2}{2p} ||u_n||_H^2 - \frac{p-q}{pq} \lambda ||h||_\# S^q ||u_n||_H^q \\ \ge \frac{p-2}{2p} ||u_n||_{H'}^2, \end{split}$$

then

$$||u_n|| \ge 2p(|\beta|+o_n(1))/(2d_n-(p-2)),$$

where $d_n = o_n(1)$ as $n \to \infty$. It follows that $\{u_n\}$ is bounded in $H^1(\mathbb{R}^N)$. Furthermore there are a subsequence $\{u_n\}$ and $u \in H^1(\mathbb{R}^N)$ such that $J'_{\varepsilon,\lambda}(u) = 0$ in $H^{-1}(\mathbb{R}^N)$.

Lemma 3.2. Under some assumptions a_1, a_2, h_1 and $0 < \lambda < \Lambda$. If $\{u_n\}$ is a $(PS)_{\beta}$ -sequence in $H^1(\mathbb{R}^N)$ for $J_{\varepsilon,\lambda}$ with $u_n \rightharpoonup u$ weakly in $H^1(\mathbb{R}^N)$, $J_{\varepsilon,\lambda}(u) \ge -C_0\lambda^{\frac{2}{2-q}} \ge -C'_0$, where

$$C_0' = \left((p-2)(2-q)^{\frac{p}{p-2}} \right) / \left(2pq(a_{\max}(p-q))^{\frac{2}{p-2}} S^{\frac{2p}{p-2}} \right).$$

Proof. we have $\langle J'_{\varepsilon,\lambda}(u), u \rangle = 0$, that is,

$$\int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{d}z = ||u||_{H}^{2} - \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z) u_{+}^{q} \mathrm{d}z.$$

Hence, by the Young inequality $(p_1 = \frac{2}{q} \text{ and } p_2 = \frac{2}{2-q})$.

$$\begin{split} J_{\varepsilon,\lambda}(u) &= \left(\frac{1}{2} - \frac{1}{p}\right) \| u \|_{H}^{2} - \left(\frac{1}{q} - \frac{1}{p}\right) \int_{\mathbb{R}^{N}} \lambda h(\varepsilon z) u^{q} dz \\ &\geq \frac{p-2}{2p} \| u \|_{H}^{2} - \frac{p-q}{pq} \lambda \| h \|_{\#} S^{q} \| u \|_{H}^{q} \\ &\geq \frac{p-2}{2p} \| u \|_{H}^{2} - \frac{p-2}{pq} \left[\frac{q \| u \|_{H}^{2}}{2} + \left(\frac{p-q}{p-2} \lambda \| h \|_{\#} S^{q} \right)^{\frac{2}{2-q}} \frac{2-q}{2} \right] \\ &= -\lambda^{\frac{2}{2-q}} (2-q) [(p-q) \| h \|_{\#} S^{q}]^{\frac{2}{2-q}} \swarrow \left[2pq(p-2)^{\frac{q}{2-q}} \right] \\ &\geq -\frac{(p-2)(2-q)^{\frac{p}{p-2}}}{2pq[a_{\max}(p-q)]^{\frac{2}{p-2}} S^{\frac{2p}{p-2}}} \\ &= -C_{0}^{\prime}. \end{split}$$

This completes the proof.

Lemma 3.3. Assume that *a*, *b* and *h* satisfy a_1 and h_1 . If $0 < \lambda < \Lambda$. Then $J_{\varepsilon,\lambda}$ satisfy the $(PS)_{\beta}$ condition in $H^1(\mathbb{R}^{\mathbb{N}})$ for $\beta \in (-\infty, \gamma_{\max} - C_0 \lambda^{\frac{2}{2-q}})$.

Proof. Suppose $\{u_n\}$ be a $(PS)_\beta$ -sequence in $H^1(\mathbb{R}^N)$ for $J_{\varepsilon,\lambda}$ such that

$$J_{\varepsilon,\lambda}(u_n) = \beta + o_n(1),$$

and $J'_{\varepsilon,\lambda}(u_n) = o_n(1)$ in $H^{-1}(\mathbb{R}^N)$. Then it follows that $\{u_n\}$ is bounded in $H^1(\mathbb{R}^N)$. Moreover, there are a subsequence $\{u_n\}$ and $u \in H^1(\mathbb{R}^N)$ such that $J'_{\varepsilon,\lambda}(u) = 0$ in $H^{-1}(\mathbb{R}^N)$. $u_n \rightarrow u$ weakly in $H^1(\mathbb{R}^N)$, $u_n \rightarrow u$ a.e. in \mathbb{R}^N , $u_n \rightarrow u$ strongly in $L^s_{loc}(\mathbb{R}^N)$ for every $1 \le s < 2^*$. Next, claim that

$$\int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) |u_n - u|^q dz \to 0, \quad \text{as } n \to \infty.$$
(3.1)

Using the Brezis-Lieb lemma to get

$$\int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) (u_n - u)_+^q \mathrm{d}z = \int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) (u_n)_+^q \mathrm{d}z - \int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) u^q \mathrm{d}z + o_n(1).$$

For every $\sigma > 0$, there is r > 0 so that

$$\int_{\left[B^{N}(0;r)\right]^{c}}h(\varepsilon z)^{\frac{p}{p-q}}\mathrm{d}z < \sigma.$$

By the Holder inequality and the Sobolev embedding theorem, we get

$$\begin{aligned} \left| \int_{\mathbb{R}^{N}} h(\varepsilon z) |u_{n} - u|^{q} dz \right| \\ \leq \int_{B^{N}(0;r)} h(\varepsilon z) |u_{n} - u|^{q} dz + \int_{[B^{N}(0;r)]^{c}} h(\varepsilon z) |u_{n} - u|^{q} dz \\ \leq \|h\|_{\#} \left(\int_{\mathbb{R}^{N}} |u_{n} - u|^{p} dz \right)^{\frac{q}{p}} + s^{q} \left(\int_{\mathbb{R}^{N}} h(\varepsilon z)^{\frac{p}{p-q}} dz \right)^{\frac{p-q}{p}} \|u_{n} - u\|_{H}^{q} \\ \leq o_{n}(1) + \sigma C'. \end{aligned}$$

 $\{u_n\}$ is bounded in $H^1(\mathbb{R}^N)$ and $u_n \rightarrow u$ in $L^q_{loc}(\mathbb{R}^N)$. Applying a_1 and $u_n \rightarrow u$ in $L^q_{loc}(\mathbb{R}^N)$, we get that

$$\int_{\mathbb{R}^{N}} a(\varepsilon z) (u_{n} - u)_{+}^{p} dz = \int_{\mathbb{R}^{N}} a_{\max} (u_{n} - u)_{+}^{p} dz + o_{n}(1).$$
(3.2)

Let $p_n = u_n - u$. Suppose $p_n \not\rightarrow 0$ strongly in $H^1(\mathbb{R}^N)$. By (3.1), (3.2), we conclude that

$$\begin{split} \| p_n \|_{H}^{2} &= \| u_n \|_{H}^{2} - \| u \|_{H}^{2} + o_n(1) \\ &= \int_{\mathbb{R}^{N}} a(\varepsilon z)(u_n)_{+}^{p} dz - \int_{\mathbb{R}^{N}} \lambda h(\varepsilon z)(u_n)_{+}^{q} dz \\ &- \int_{\mathbb{R}^{N}} a(\varepsilon z)u^{p} dz + \int_{\mathbb{R}^{N}} \lambda h(\varepsilon z)u^{q} dz + o_n(1) \\ &= \int_{\mathbb{R}^{N}} a(\varepsilon z)(u_n - u)_{+}^{p} dz + o_n(1) \\ &= \int_{\mathbb{R}^{N}} a_{\max}(p_n)_{+}^{p} dz + o_n(1), \end{split}$$

also

$$I_{\max}(u) = \frac{1}{2} \| u_n \|_{H}^2 - \frac{1}{p} \int_{\mathbb{R}^N} a_{\max} u_+^p dz,$$

then

$$I_{\max}(p_n) = \frac{1}{2} \| p_n \|_{H}^2 - \frac{1}{p} \int_{\mathbb{R}^N} a_{\max}(p_n)_{+}^p dz = \left(\frac{1}{2} - \frac{1}{p}\right) \| p_n \|_{H}^2 + o_n(1) > 0.$$

By Theorem 4.3 in Wang [7], there is a sequence $\{s_n\} \subset \mathbb{R}^+$ such that

$$s_n = 1 + o_n(1), \quad \{s_n p_n\} \subset \Omega, \quad \text{and } I_{\max}(s_n p_n) = I_{\max}(p_n) + o_n(1).$$

It follows that

$$\begin{split} \gamma_{\max} \leq & I_{\max}(s_n p_n) = I_{\max}(p_n) + o_n(1) = J_{\varepsilon,\lambda}(u_n) - J_{\varepsilon,\lambda}(u) + o_n(1) \\ = & \beta - J_{\varepsilon,\lambda}(u) + o_n(1) = J_{\varepsilon,\lambda}(u_n) - J_{\varepsilon,\lambda}(u) \\ = & J_{\varepsilon,\lambda}(p_n) \to o_n(1) < \gamma_{\max}, \end{split}$$

which is a contradiction. Hence, $u_n \rightarrow u$ strongly in $H^1(\mathbb{R}^{\mathbb{N}})$.

Theorem 3.1. Under some assumptions
$$a_1$$
, a_2 , h_1 and $0 < \lambda < \Lambda$, then there is at least one positive ground state solution u_0 of Eq. $(E_{\varepsilon,\lambda})$ in \mathbb{R}^N . Moreover, we have that $u_0 \in M_{\varepsilon,\lambda}^+$ and

$$J_{\varepsilon,\lambda}(u_0) = \alpha_{\varepsilon,\lambda} = \alpha_{\varepsilon,\lambda}^+ \ge -C_0 \lambda^{\frac{2}{2-q}}$$

Proof. There is a minimizing sequence $\{u_n\} \subset M_{\varepsilon,\lambda}$ for $J_{\varepsilon,\lambda}$ such that

$$J_{\varepsilon,\lambda}(u_n) = \alpha_{\varepsilon,\lambda} + o_n(1), \quad \text{and } J'_{\varepsilon,\lambda}(u_n) = o_n(1) \quad \text{in } H^{-1}(\mathbb{R}^{\mathbb{N}}).$$

By Lemma 3.2 (i), there is a subsequence $\{u_n\}$ and $u_0 \in H^1(\mathbb{R}^N)$. We claim that

$$u_0 \in M^+_{\varepsilon,\lambda} (M^0_{\varepsilon,\lambda} = \emptyset \text{ for } 0 < \lambda < \Lambda) \quad \text{and} \quad J_{\varepsilon,\lambda}(u_0) = \alpha_{\varepsilon,\lambda}.$$

On the contrary that $u_0 \in M^-_{\varepsilon,\lambda}$, we get that

$$\int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z) (u_0)_+^q \mathrm{d}z > 0.$$

Otherwise,

$$\|u_n\|_H^2 - \int_{\mathbb{R}^N} a(\varepsilon z) (u_n)_+^p dz = \int_{\mathbb{R}^N} \lambda h(\varepsilon z) (u_n)_+^q dz$$
$$= \int_{\mathbb{R}^N} \lambda h(\varepsilon z) (u_0)_+^q dz + o_n(1) = o_n(1).$$

It follows that

$$\lim_{n\to\infty}\left(\frac{1}{2}-\frac{1}{p}\right)\|u_n\|_H^2=\alpha_{\varepsilon,\lambda};$$

that contradicts to $\alpha_{\varepsilon,\lambda} < 0$. By Lemma 2.11 (ii), then there are positive numbers $l^+ < \overline{l} < l^- = 1$ such that $l^+ u_0 \in M^+_{\varepsilon,\lambda}$, $l^- u_0 \in M^-_{\varepsilon,\lambda}$ and that is a contradiction. Hence,

$$u_0 \in M^+_{\varepsilon,\lambda}, \quad -C_0 \lambda^{\frac{2}{2-q}} \leq J_{\varepsilon,\lambda}(u_0) = \alpha_{\varepsilon,\lambda} = \alpha^+_{\varepsilon,\lambda}.$$

This completes the proof.

4 Existence of multiple solutions

From this time, we assume that *a* and *h* satisfy a_1 , a_2 and h_1 . Suppose $w \in H^1(\mathbb{R}^N)$ be the positive ground state solution of Eq. (E_0) in \mathbb{R}^N for $a \equiv a_{\max}$.

(i) $w \in L^{\infty}(\mathbb{R}^{\mathbb{N}}) \cap C^{2,\theta}_{loc}(\mathbb{R}^{\mathbb{N}})$ for some $0 < \theta < 1$ and $\lim_{|z| \to \infty} w(z) = 0$.

(ii) For every $\varepsilon > 0$, there are positive numbers C_1 , C_2^{ε} and C_3^{ε} such that for all

$$z \in \mathbb{R}^{\mathbb{N}} C_2^{\varepsilon} \exp(-(1+\varepsilon)|z|) \leq w(z) \leq C_1 \exp(-|z|),$$

and

$$|\nabla w(z)| \leq C_3^{\varepsilon} \exp(-(1-\varepsilon)|z|).$$

For $1 \le i \le k$, we define

$$w^i_{\varepsilon}(z) = w\left(z - \frac{a^i}{\varepsilon}\right), \quad \text{where } a(a^i) = a_{\max}.$$

Clearly, $w_{\varepsilon}^{i}(z) \in H^{1}(\mathbb{R}^{\mathbb{N}})$. By Lemma 2.11 (ii) there is a unique number $(l_{\varepsilon}^{i})^{-} > 0$ so that $(l_{\varepsilon}^{i})^{-}w_{\varepsilon}^{i} \in M_{\varepsilon,\lambda}^{-} \subset M_{\varepsilon,\lambda}$, where $1 \leq i \leq k$.

Lemma 4.1. There is a number $t_0 > 0$ such that for $0 \le t < t_0$ and every $\varepsilon > 0$, we have that

 $J_{\varepsilon,\lambda}(tw_{\varepsilon}^{i}) < \gamma_{\max}$, uniformly in *i*

Proof. For every $\varepsilon > 0$, we have

$$J_{\varepsilon,\lambda}(tw_{\varepsilon}^{i}) = \frac{t^{2}}{2} \|w_{\varepsilon}^{i}\|_{H}^{2} - \frac{t^{p}}{p} \int_{\mathbb{R}^{N}} a(\varepsilon z) (w_{\varepsilon}^{i})^{p} \mathrm{d}z - \frac{t^{q}}{q} \int_{\mathbb{R}^{N}} \lambda h(\varepsilon z) (w_{\varepsilon}^{i})^{q} \mathrm{d}z.$$

Since $J_{\varepsilon,\lambda}$ is continuous in $H^1(\mathbb{R}^N)$, $\{w^i_\varepsilon\}$ is uniformly bounded in $H^1(\mathbb{R}^N)$ for every $\varepsilon > 0$ and $\gamma_{\max} > 0$ there is $t_0 > 0$ such that for $0 \le t \le t_0$ and every $\varepsilon > 0$

$$J_{\varepsilon,\lambda}(tw_{\varepsilon}^{\iota}) < \gamma_{\max}.$$

This completes the proof.

Lemma 4.2. There are positive numbers t_1 and ε_1 such that for every $t > t_1$ and $\varepsilon < \varepsilon_1$, we have that

$$J_{\varepsilon,\lambda}(tw_{\varepsilon}^{i}) < 0,$$
 uniformly in *i*.

Proof. There is an $r_0 > 0$ such that $a(z) \ge a_{\max}/2$ for $z \in B^N(a^i : r_0)$ uniformly in *i*. Then is $\varepsilon_1 > 0$ such that for $\varepsilon < \varepsilon_1$

$$J_{\varepsilon,\lambda}(tw_{\varepsilon}^{i}) = \frac{t^{2}}{2} \|w_{\varepsilon}^{i}\|_{H}^{2} - \frac{t^{p}}{p} \int_{\mathbb{R}^{N}} a(\varepsilon z)(w_{\varepsilon}^{i})^{p} dz - \frac{t^{q}}{q} \int_{\mathbb{R}^{N}} \lambda h(\varepsilon z)(w_{\varepsilon}^{i})^{q} dz$$
$$\leq \frac{t^{2}}{2} \int_{\mathbb{R}^{N}} \left[|\bigtriangledown w|^{2} + w^{2} \right] - \frac{t^{p}}{2p} \left[|\bigtriangledown w|^{2} + w^{2} \right] - \frac{t^{p}}{2p} \int_{\mathbb{R}^{N}} a_{\max} w^{p} dz.$$

Thus, there is $t_1 > 0$ such that for every $t > t_1$ and $\varepsilon < \varepsilon_1$

$$J_{\varepsilon,\lambda}(tw_{\varepsilon}^{i}) < 0,$$
 uniformly in *i*.

This completes the proof.

Lemma 4.3. Suppose that a_1, a_2 , and h_1 hold. If $0 < \lambda < q\Lambda/2$, then

$$\lim_{\varepsilon \to 0^+} \sup_{t \ge 0} J_{\varepsilon,\lambda}(tw^i_{\varepsilon}) \le <\gamma_{\max}, \quad \text{uniformly in } i.$$

Proof. By Lemma 4.1 we just try to indicate

 $\lim_{\varepsilon \to 0^+} \sup_{t_0 \le t \le t_1} J_{\varepsilon,\lambda}(tw^i_{\varepsilon}) \le \gamma_{\max}$

uniformly in *i*; we learn that $\sup_{t \ge 0} I_{\max}(tw) = \gamma_{\max}$. For $t_0 \le t \le t_1$, we get

$$\begin{split} J_{\varepsilon,\lambda}(tw_{\varepsilon}^{i}) &= \frac{1}{2} \| tw_{\varepsilon}^{i} \|_{H}^{2} - \frac{1}{p} \int_{\mathbb{R}^{N}} a(\varepsilon z) (tw_{\varepsilon}^{i})^{p} dz - \frac{1}{q} \int_{\mathbb{R}^{N}} \lambda h(\varepsilon z) (tw_{\varepsilon}^{i})^{q} dz \\ &= \frac{t^{2}}{2} \int_{\mathbb{R}^{N}} \left[\left| \bigtriangledown w \left(z - \frac{a^{i}}{\varepsilon} \right) \right|^{2} + w \left(z - \frac{a^{i}}{\varepsilon} \right)^{2} \right] dz \\ &\quad - \frac{t^{p}}{p} \int_{\mathbb{R}^{N}} a(\varepsilon z) w \left(z - \frac{a^{i}}{\varepsilon} \right)^{p} dz - \frac{t^{q}}{q} \int_{\mathbb{R}^{N}} \lambda h(\varepsilon z) w \left(z - \frac{a^{i}}{\varepsilon} \right)^{q} dz \\ &= \left\{ \frac{t^{2}}{2} \int_{\mathbb{R}^{N}} \left[|\bigtriangledown w|^{2} + w^{2} \right] dz - \frac{t^{p}}{p} \right\} \\ &\quad + \frac{t^{p}}{p} \int_{\mathbb{R}^{N}} (a_{\max} - a(\varepsilon z) w \left(z - \frac{a^{i}}{\varepsilon} \right)^{p} dz - \frac{t^{q}}{q} \lambda \int_{\mathbb{R}^{N}} h(\varepsilon z) w \left(z - \frac{a^{i}}{\varepsilon} \right)^{q} dz \\ &\leq \gamma_{\max} \frac{t_{1}^{p}}{p} \int_{\mathbb{R}^{N}} (a_{\max} - a(\varepsilon z)) w \left(z - \frac{a^{i}}{\varepsilon} \right)^{p} dz - \frac{t_{0}^{q}}{q} \lambda \int_{\mathbb{R}^{N}} h(\varepsilon z) w \left(z - \frac{a^{i}}{\varepsilon} \right)^{q} dz. \end{split}$$

Since

$$\int_{\mathbb{R}^{\mathbb{N}}} (a_{\max} - a(\varepsilon z)) w \left(z - \frac{a^{i}}{\varepsilon}\right)^{p} dz = \int_{\mathbb{R}^{\mathbb{N}}} \left[a_{\max} - a(\varepsilon z + a^{i})\right] w^{p} dz = o(1)$$

as $\varepsilon \rightarrow 0^+$ uniformly in *i*. And

$$\lambda \int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) w \left(z - \frac{a^{i}}{\varepsilon} \right)^{q} \mathrm{d} z \leq \lambda \| h \|_{\#} S^{q} \| w \|_{H}^{q} = o(1) \quad \text{as} \ \varepsilon \to 0^{+}.$$

then

$$\lim_{\varepsilon \to 0^+} \sup_{t_0 \le t \le t_1} J_{\varepsilon,\lambda}(tw^i_{\varepsilon}) \le \gamma_{\max}, \qquad \lim_{\varepsilon \to 0^+} \sup_{t \ge 0} J_{\varepsilon,\lambda}(tw^i_{\varepsilon}) \le \gamma_{\max},$$

uniformly in *i*.

Remark 4.1. Applying the results of Lemma 4.3, we can conclude that

.

$$0 < d_0 \le \alpha_{\varepsilon,\lambda}^- \le \gamma_{\max} + 0(1), \quad \text{as } \varepsilon \to 0^+.$$

Since there is $\varepsilon_0 > 0$ such that

$$\begin{cases}
0 < \gamma_{\max} - C_0 \lambda^{\frac{2}{2-q}}, & \text{for any } \varepsilon < \varepsilon_0, \\
\overline{B_{\rho_0}^N(a^i)} \cap \overline{B_{\rho_0}^N(a^j)} = \emptyset, & \text{for } 1 \le i \ne j \le k;
\end{cases}$$
(4.1)

where

$$\overline{B_{\rho_0}^N(a^i)} = \{ z \in \mathbb{R} \mid \mid z - a^i \mid \leq \rho_0 \} \quad \text{and} \quad a(a^i) = a_{\max}.$$

Define

$$\mathbf{k} = \{a^i \mid 1 \le i \le k\} \quad \text{and} \quad \mathbf{K}_{\frac{\rho_0}{2}} = \bigcup_{i=1}^k \overline{B_{\frac{\rho_0}{2}}^N(a^i)},$$

choosing $0 \le \rho_0 < 1$. Suppose $\bigcup_{i=1}^k \overline{B^N_{\rho_0}(a^i)} \subset B^N_{r_0}(0)$ for some $r_0 > 0$. Let $Q_{\varepsilon}: H^1(\mathbb{R}^{\mathbb{N}}) \setminus \{0\} \to \mathbb{R}^{\mathbb{N}}$ be given by

$$Q_{\varepsilon}(u) = \frac{\int_{\mathbb{R}^{N}} \chi(\varepsilon z) |u|^{p} dz}{\int_{\mathbb{R}^{N}} |u|^{p} dz},$$

where $\chi : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}, \chi(z) = z$ for $|z| \leq r_0$, and $\chi(z) = r_0 z/|z|$ for $|z| > r_0$. For every $1 \leq i \leq k$, define

$$O_{\varepsilon}^{i} = \{ u \in M_{\varepsilon,\lambda}^{-} | | Q_{\varepsilon}(u) - a^{i} | < \rho_{0} \};$$

$$\partial O_{\varepsilon}^{i} = \{ u \in M_{\varepsilon,\lambda}^{-} | | Q_{\varepsilon}(u) - a^{i} | = \rho_{0} \};$$

$$\beta_{\varepsilon,\lambda}^{i} = \inf_{u \in O_{\varepsilon}^{i}} J_{\varepsilon,\lambda}(u) \quad \text{and} \quad \overline{\beta}_{\varepsilon,\lambda}^{i} = \inf_{u \in \partial O_{\varepsilon}^{i}} J_{\varepsilon,\lambda}(u)$$

By Lemma 4.3, there is $t_{\varepsilon}^i > 0$ such that $t_{\varepsilon}^i w_{\varepsilon}^i > 0 \in M_{\varepsilon,\lambda}$ for every $1 \le i \le k$.

Lemma 4.4. There is $0 < \varepsilon^0 \le \varepsilon_0$ such that if $\varepsilon < \varepsilon^0$, then $Q_{\varepsilon}((t_{\varepsilon}^i)^- w_{\varepsilon}^i) \in \mathbf{K}_{\frac{\rho_0}{2}}$ for every $1 \le i \le k$.

Proof. Since

$$\begin{aligned} Q_{\varepsilon}((t_{\varepsilon}^{i})^{-}w_{\varepsilon}^{i}) &= \frac{\int_{\mathbb{R}^{N}} \chi(\varepsilon z) |w(z - \frac{a^{i}}{\varepsilon})|^{p} dz}{\int_{\mathbb{R}^{N}} |w(z - \frac{a^{i}}{\varepsilon})|^{p} dz} \\ &= \frac{\int_{\mathbb{R}^{N}} \chi(\varepsilon Z + a^{i}) |w(z)|^{p} dz}{\int_{\mathbb{R}^{N}} |w(z)|^{p} dz \to a^{i}} \quad \text{as } \varepsilon \to 0^{+}. \end{aligned}$$

There is $\varepsilon^0 > 0$ such that

$$Q_{\varepsilon}((t_{\varepsilon}^{i})^{-}w_{\varepsilon}^{i}) \in \mathbf{K}_{\frac{\rho_{0}}{2}}, \text{ for every } \varepsilon < \varepsilon^{0} \text{ and every } 1 \le i \le k.$$

This completes the proof.

Lemma 4.5. There is a number $\delta > 0$ such that if $u \in \Omega$ and $I_{\max}(u) \leq \gamma_{\max} + \delta$ then $Q_{\varepsilon}(u) \in \mathbf{K}_{\frac{\rho_0}{2}}$ for every $0 < \varepsilon < \varepsilon^0$.

Proof. On the contrary, there exist the sequences $\{\varepsilon_n\} \subset \mathbb{R}^+$ and $\{u_n\} \in \Omega$ such that $\varepsilon_n \to 0^+$. $I_{\varepsilon_n}(u_n) = \gamma_{\max}(>0) + o_n(1)$ as $n \to \infty$ and $Q_{\varepsilon_n}(u_n) \notin \mathbf{K}_{\frac{\rho_0}{2}}$ for all $n \in \mathbb{N}$. It is not difficult to find that $\{u_n\}$ is bounded in $H^1(\mathbb{R}^{\mathbb{N}})$. Suppose that

$$\int_{\mathbb{R}^{\mathbb{N}}} |u_n|^p \, \mathrm{d} z \!\rightarrow\! 0, \quad \text{as } n \!\rightarrow\! \infty, \qquad u_n \!\rightarrow\! 0,$$

strongly in $L^p(\mathbb{R}^{\mathbb{N}})$. Since

$$|u_n||_H^2 = \int_{\mathbb{R}} a(\varepsilon_n z)(u_n)_+^p dz$$
, for every $n \in \mathbb{N}$,

then

$$I_{\varepsilon_n}(u_n) = \left(\frac{1}{2} - \frac{1}{p}\right) \int_{\mathbb{R}^N} a(\varepsilon_n z)(u_n)^p \mathrm{d}z = \gamma_{\max}(>0) + o_n(1) \le o_n(1).$$

That is a contradiction. Then

$$\int_{\mathbb{R}^{\mathbb{N}}} |u|^p \, \mathrm{d} z \not\to 0, \qquad \text{as } n \to \infty.$$

Thus $u_n \rightarrow 0$ strongly in $L^p(\mathbb{R}^N)$. Also the concentration - compactness principle (see Wang [7, Lemma 2.16], then there is a fixed $d_0 > 0$ and a sequence $\{\overline{z_n}\} \subset \mathbb{R}^N$ such that

$$\int_{B^{N}(\overline{z}_{n}:1)} |u_{n}(z)|^{2} dz \ge d_{0} > 0.$$
(4.2)

Suppose $\nu_n(z) = u_n(z + \overline{z_n})$ then there a subsequence $\{\nu_n\}$ and $\nu \in H^1(\mathbb{R}^{\mathbb{N}})$ such that $\nu_n \rightharpoonup \nu$ weakly in $H^1(\mathbb{R}^{\mathbb{N}})$. Using the same computation in Lemma 2.11. There is a sequence $\{s_{\max}^n\} \subset \mathbb{R}^+$ such that $\overline{\nu_n} = s_{\max}^n \nu_n \in \Omega$ and

$$0 < \gamma_{\max} \leq I_{\max}(\overline{\nu_n}) \leq I_{\varepsilon_n}(s_{\max}^n u_n) \leq I_{\varepsilon_n}(u_n) = \gamma_{\max}(>0) + o_n(1)$$

as $n \rightarrow \infty$.

We conclude that a convergent subsequence $\{s_{\max}^n\}$ satisfy $s_{\max}^n \to s_0 > 0$. Then there are subsequences $\{\overline{\nu_n}\}$ and $\overline{\nu} \in H^1(\mathbb{R}^{\mathbb{N}})$ such that $\overline{\nu_n} \to \overline{\nu}(=s_0\nu)$ weakly in $H^1(\mathbb{R}^{\mathbb{N}})$. By (4.2), then $\overline{\nu} \neq 0$. Furthermore, we can obtain that $\overline{\nu_n} \to \overline{\nu}$ strongly in $H^1(\mathbb{R}^{\mathbb{N}})$, and $I_{\max}(\overline{\nu}) = \gamma_{\max}$. Now, we try to indicate that there is a subsequence $\{z_n\} = \{\varepsilon_n \overline{z_n}\}$ such that $z_n \to z_0 \in \mathbf{K}$.

(i) Claim that the sequence $\{z_n\}$ is bounded in \mathbb{R}^N . On the contrary, assume that $|z_n| \rightarrow \infty$, then

$$\begin{split} \gamma_{\max} &= I_{\max}(\overline{\nu}) < I_{\infty}(\overline{\nu}) \\ \leq & \liminf_{n \to \infty} \left[\frac{1}{2} \| \overline{\nu_n} \|_{H}^{2} - \frac{1}{p} \int_{\mathbb{R}^{N}} a(\varepsilon_n z + z_n) (\overline{\nu_n})_{+}^{p} dz \right] \\ &= & \liminf_{n \to \infty} \left[\frac{(s_{\max}^{n})^{2}}{2} \| u_n \|_{H}^{2} - \frac{(s_{\max}^{n})^{p}}{p} \int_{\mathbb{R}^{N}} a(\varepsilon_n z) (u_n)_{+}^{p} dz \right] \\ &= & \liminf_{n \to \infty} I_{\varepsilon_n}(s_{\max}^{n} u_n) \leq & \liminf_{n \to \infty} I_{\varepsilon_n}(u_n) = \gamma_{\max}, \end{split}$$

that is a contradiction.

(ii) Claim that $z_0 \in \mathbf{K}$. On the contrary, assume that $z_0 \notin \mathbf{K}$, that is $a(z_0) < a_{\text{max}}$. Then using the above argument to obtain that

$$\gamma_{\max} = I_{\max}(\overline{\nu}) < \frac{1}{2} \|\overline{\nu_n}\|_H^2 - \frac{1}{P} \int_{\mathbb{R}^N} a(z)(\overline{\nu_n})_+^p dz$$
$$\leq \liminf \left[\frac{1}{2} \|\overline{\nu_n}\|_H^2 - \frac{1}{P} \int_{\mathbb{R}^N} a(\varepsilon_n z + z_n)(\overline{\nu_n})_+^p dz \right]$$
$$= \gamma_{\max},$$

that is a contradiction. Since $\nu_n \rightarrow \nu \neq 0$ in $H^1(\mathbb{R}^{\mathbb{N}})$, we have that

$$Q_{\varepsilon_n}(u_n) = \frac{\int_{\mathbb{R}^N} \chi(\varepsilon_n z) |v_n(z - \overline{z_n})|^p dz}{\int_{\mathbb{R}^N} |v_n(z - \overline{z_n})|^p dz} = \frac{\int_{\mathbb{R}^N} \chi(\varepsilon_n z + \varepsilon_n \overline{z_n}) |v_n|^p dz}{\int_{\mathbb{R}^N} |v_n|^p dz} \to z_0 \subset \mathbf{K}_{\frac{\mathbf{a}_0}{2}}$$

as $n \rightarrow \infty$, that is a contradiction.

Hence, there is a number $\delta > 0$ such that if $u \in \Omega$ and $I_{\max}(u) \leq \gamma_{\max} + \delta$. Then $Q_{\varepsilon}(u) \in \mathbf{K}_{\frac{\mathbf{w}_0}{2}}$ for every $c < \varepsilon^0$. Choosing $0 < \delta_0 < \delta$ such that

$$\gamma_{\max} + \delta_0 < \gamma_{\max} - C_0 \lambda^{\frac{2}{2-q}}, \quad \text{for every } 0 < \varepsilon \le \varepsilon^0.$$
(4.3)

This completes the proof.

Lemma 4.6. If $u \in M_{\varepsilon,\lambda}^-$ and $J_{\varepsilon,\lambda}(u) \leq \gamma_{\max} + \frac{\delta_0}{2}$, then there is a number $\Lambda^* > 0$ so that $Q_{\varepsilon}(u) \in \mathbf{K}_{\frac{w_0}{2}}$ for every $0 < \varepsilon < \Lambda^*$.

Proof. We apply the same computation in Lemma 2.11 to obtain that there is a unique positive number

$$s_{\varepsilon}^{u} = \left(\frac{\|u\|_{H}^{2}}{\int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{d}z}\right)^{\frac{1}{p-2}}$$

so that $s_{\varepsilon}^{u} u \in \Omega$ we want to show that $s_{\varepsilon}^{u} < C$ for some C > 0 (independent of u). First, since $u \in M_{\varepsilon,\lambda}$

$$0 < d_0 \leq \alpha_{\varepsilon,\lambda}^- \leq J_{\varepsilon,\lambda}(u) \leq \gamma_{\max} + \frac{\delta_0}{2},$$

since $\langle J'_{\varepsilon,\lambda}(u), u \rangle = 0$, then

$$\gamma_{\max} + \frac{\delta_0}{2} \ge J_{\varepsilon,\lambda}(u) = \left(\frac{1}{2} - \frac{1}{q}\right) \|u\|_H^2 + \left(\frac{1}{q} - \frac{1}{p}\right) \int_{\mathbb{R}^N} a(\varepsilon z) \|u\|^p \, \mathrm{d}z \ge \frac{q-2}{2q} \|u\|_H^2,$$

that is

$$||u||_{H}^{2} \ge C_{1} = \frac{2q}{q-2} \left(\gamma_{\max} + \frac{\delta_{0}}{2} \right)$$

and

$$d_0 \leq J_{\varepsilon,\lambda}(u) = \left(\frac{1}{2} - \frac{1}{p}\right) \| u \|_{H}^2 + \left(\frac{1}{q} - \frac{1}{p}\right) \int_{\mathbb{R}^N} a(\varepsilon z) \| u \|^p \, \mathrm{d}z \geq \frac{p-2}{2p} \| u \|_{H}^2,$$

that is

$$\|u\|_{H}^{2} \ge C_{2} = \frac{2P}{P-2}d_{0}.$$
 (4.4)

Moreover, we have that $J_{\varepsilon,\lambda}$ is coercive on $M_{\varepsilon,\lambda}$, then $0 < C_2 < ||u||_H^2 < C_1$ for some C_1 and C_2 (independent of u). Next, we claim that $||u||_{L^p}^p > C_3 > 0$ for some C_3 (independent of u). On the contrary, there is a sequence $\{u_n\} \subset M_{\varepsilon,\lambda}^-$ so that $||u_n||_{L^p}^p = o_n(1)$ as $n \to \infty$. By (2.3)

$$\frac{2-q}{p-q} < \frac{\int_{\mathbb{R}^{N}} a(\varepsilon z) \| u_{n} \|_{+}^{p} dz}{\| u \|_{H}^{2}} \leq \frac{a_{\max} \| u \|_{L^{p}}^{p}}{C_{2}} = o_{n}(1),$$

that is a contradiction. Thus, $s_{\varepsilon}^{u} < C$ for some C > 0 (independent of *u*). Now, we get that

$$\begin{split} \gamma_{\max} + &\frac{\delta_0}{2} \ge J_{\varepsilon,\lambda}(u) = \sup_{t \ge 0} J_{\varepsilon,\lambda}(tu) \ge J_{\varepsilon,\lambda}(s^u_{\varepsilon}u) \\ &= &\frac{1}{2} \| s^u_{\varepsilon} u \|^2_H - \frac{1}{p} \int_{\mathbb{R}^N} a(\varepsilon z) \| s^u_{\varepsilon} u \|^p_+ dz - \frac{1}{q} \int_{\mathbb{R}^N} \lambda h(\varepsilon z) (s^u_{\varepsilon} u)^q_+ dz \\ &\ge &I_{\max}(s^u_{\varepsilon} u) - \frac{1}{q} \int_{\mathbb{R}^N} \lambda h(\varepsilon z) (s^u_{\varepsilon} u)^q_+ dz. \end{split}$$

Form the above inequality, we conclude that

$$I_{\varepsilon}(s_{\varepsilon}^{u}u) \leq \gamma_{\max} + \frac{\delta_{0}}{2} + \frac{1}{q} \int_{\mathbb{R}^{N}} \lambda h(\varepsilon z) (s_{\varepsilon}^{u}u)_{+}^{q} dz$$
$$\leq \gamma_{\max} + \frac{\delta_{0}}{2} + \lambda \|h\|_{\#} S^{q} \|s_{\varepsilon}^{u}u\|_{H}^{q}$$
$$< \gamma_{\max} + \frac{\delta_{0}}{2} + \lambda C^{q} (C_{1})^{\frac{q}{2}} \|h\|_{\#} S^{q}.$$

Hence, there is $0 < \Lambda^* \le \varepsilon^0$ such that for $0 < \varepsilon \le \Lambda^*$

$$I_{\max}(s_{\varepsilon}^{u}u) \leq \gamma_{\max} + \delta_{0}, \quad \text{where } s_{\varepsilon}^{u}u \in \Omega.$$

By Lemma 4.6, we get

$$Q_{\varepsilon}(s_{\varepsilon}^{u}u) = \frac{\int_{\mathbb{R}^{N}} \chi(\varepsilon z) |s_{\varepsilon}^{u}u(z)|^{p} dz}{\int_{\mathbb{R}^{N}} |s_{\varepsilon}^{u}u(z)|^{p} dz} \in \mathbf{K}_{\frac{\mathbf{x}_{0}}{2}}, \quad \text{for every } 0 < \varepsilon < \Lambda^{*},$$

or $Q_{\varepsilon} \in \mathbf{K}_{\frac{\mathbf{x}_0}{2}}$.

Applying the above lemma, we get that

$$\overline{\beta_{\varepsilon,\lambda}^{i}} \ge \gamma_{\max} + \frac{\delta_{0}}{2}, \quad \text{for every } 0 < \varepsilon < \Lambda^{*}.$$
(4.5)

By Lemmas 4.3, 4.4, and Eq. (4.3), there every $0 < \varepsilon^* < \Lambda^*$. So that

$$\beta_{\varepsilon,\lambda}^{i} \leq J_{\varepsilon,\lambda}\left((t_{\varepsilon}^{i})^{-})w_{\varepsilon}^{i}\right) \leq \gamma_{\max} + \frac{\delta_{0}}{3} < \gamma_{\max} - C_{0}\lambda^{\frac{2}{2-q}}.$$
(4.6)

This completes the proof.

Lemma 4.7. Given $u \in O^i_{\varepsilon}$, then there is an $\eta > 0$ and differentiable functional $l : B(0;\eta) \subset H^1(\mathbb{R}^{\mathbb{N}}) \to \mathbb{R}^+$ such that

$$l(0) = 1, l(\nu)(u - \nu) \in O_{\varepsilon}^{i}, \quad \text{for every } \nu \in B(0;\eta),$$

and

$$\langle l'(\nu), \phi \rangle |_{(l,\nu)=(1,0)} = \frac{\langle \psi'_{\varepsilon,\lambda}(u), \phi \rangle}{\langle \psi'_{\varepsilon,\lambda}(u), u \rangle}, \quad \text{for every } \phi \in C_c^{\infty}(\mathbb{R}^{\mathbb{N}}), \quad (4.7)$$

where $\psi_{\varepsilon,\lambda}(u) = \langle J'_{\varepsilon,\lambda}(u), u \rangle$.

Proof. See Cao and Zhou [8].

Lemma 4.8. For each $1 \le i \le k$, there is a $(PS)_{\beta_{\varepsilon,\lambda}^i}$ -sequence $\{u_n\} \subset O_{\varepsilon}^i$ in $H^1(\mathbb{R}^{\mathbb{N}})$ for $J_{\varepsilon,\lambda}$.

Proof. See [1, Lemma 4.7].

Theorem 4.1. According to a_1 , a_2 , h_1 , there is a positive number $(\varepsilon^*)^{-2}$ such that for $\lambda, \mu > (\varepsilon^*)^{-2}$, Eq. $(E_{\lambda,\mu})$ has k+1 positive solution in $\mathbb{R}^{\mathbb{N}}$.

Proof. We know that there is a $(PS)_{\beta_{\varepsilon,\lambda}^i}$ -sequence $\{u_n\} \subset M_{\varepsilon,\lambda}^-$ in $H^1(\mathbb{R}^{\mathbb{N}})$ for $J_{\varepsilon,\lambda}$ for every $1 \leq i \leq k$, and (4.5). Since $J_{\varepsilon,\lambda}$ satisfy the $(PS)_{\beta}$ -condition for $\beta \in (-\infty, \gamma_{\max} - C_0 \lambda^{\frac{2}{2-q}})$, then $J_{\varepsilon,\lambda}$ has at least k critical points in $M_{\varepsilon,\lambda}^-$ for $0 < \varepsilon \leq \varepsilon^*$. It follows that Eq. $(E_{\lambda,\mu})$ has k nonnegative solution in $\mathbb{R}^{\mathbb{N}}$. Applying the maximum principle and Theorem 3.4, Eq. $(E_{\varepsilon,\lambda})$ has k+1 positive solution in $\mathbb{R}^{\mathbb{N}}$.

References

- [1] Lin H. L., Multiple positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in $\mathbb{R}^{\mathbb{N}}$. *Boundary value problems* **2012** (2012), 24.
- [2] Ambrosetti A., Brezis H., Cerami G., Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122 (1994), 519 -543.
- [3] Wu T. F., On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function. J. Math. Anal. Appl. **318** (2006), 253-270.

- [4] Hsu T. S., Lin H. L., Four positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in ℝ^ℕ. *J. Math. Anal. Appl.* **365** (2010), 758-775.
- [5] Tarantello G., On nonhomogeneous elliptic involving critical Sobolev exponent. *Ann. Inst. H. Poincare Anal. Non Lmeaire* **9** (1992), 281-304.
- [6] Brown K. J., Zhang Y., The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. *J. Diff. Equ.* **193** (2003), 481-499.
- [7] Wang H. C. Palais-Smale approaches to semilinear elliptic equations in unbounded. *Electron. J. Diff. Equ. Monograph* 0 **6** (2004), 142.
- [8] Cao D. M., Zhou H. S., Multiple positive solutions of nonhomogeneous semilinear elliptic equations in $\mathbb{R}^{\mathbb{N}}$. *Proc. Roy. Soc. Edinburgh* Sect. A **126** (1996), 443-463.
- [9] Miotto M. L., O. H, Multiple positive solutions for semilinear Dirchlet problems with signchanging weight function in infinite strip domains. *Nonlinear Anal.* **71** (2009), 3434-3447.