Multiple Positive Solutions for Semilinear Elliptic Equations Involving Subcritical Nonlinearities in $\mathbb{R}^{\mathbb{N}}$

KHADEMLOO Somayeh* and MOHSENHI Rahelh
Department of Basic Sciences, Babol Noushirvani University of Technology, Babol, Iran.

Received 30 May 2013; Accepted 22 November 2013

Abstract

In this paper, we study how the shape of the graph of $a(z)$ affects on the number of positive solutions of $$
\begin{equation*} -\Delta v+\mu b(z) v=a(z) v^{p-1}+\lambda h(z) v^{q-1}, \quad \text { in } \mathbb{R}^{N} \tag{0.1} \end{equation*}
$$

We prove for large enough $\lambda, \mu>0$, there exist at least $k+1$ positive solutions of the this semilinear elliptic equations where $1 \leq q<2<p<2^{*}=2 N /(N-2)$ for $N \geq 3$.

AMS Subject Classifications: 35J20, 35J25, 35J65
Chinese Library Classifications: O175.8, O175.25
Key Words: Sobolev spaces; semilinear elliptic equations; critical exponent; Nehari manifold; Palais-Smale condition.

1 Introduction

For $N \geq 3,1 \leqslant q<2<p<2^{*}=2 N /(N-2)$, we suppose the semilinear elliptic equations

$$
\left\{\begin{array}{l}
-\Delta v+\mu b(z) v=a(z) v^{p-1}+\lambda h(z) v^{q-1}, \quad \text { in } \mathbb{R}^{N} ; \\
v \in H^{1}\left(\mathbb{R}^{N}\right),
\end{array}\right.
$$

where $\lambda, \mu>0$. Suppose a, b and h satisfy the following conditions:
$\left(a_{1}\right) a$ is a positive continuous function in \mathbb{R}^{N} and $\lim _{|z| \rightarrow \infty} a(z)=a_{\infty}>0$.
$\left(a_{2}\right)$ There are k points $a^{1}, a^{2}, \cdots, a^{k}$ in \mathbb{R}^{N} such that $a\left(a^{i}\right)=a_{\max }=\max _{z \in \mathbb{R}^{N}} a(z)$; for $1 \leq i \leq k$ and $a_{\infty}<a_{\max }$.

[^0]$\left(h_{1}\right) h \in L^{\frac{p}{p-q}}\left(\mathbb{R}^{\mathbb{N}}\right) \cap L^{\infty}\left(\mathbb{R}^{\mathbb{N}}\right)$ and $h \nsupseteq 0$.
$\left(b_{1}\right) b$ is a bounded and positive continuous function in \mathbb{R}^{N}.
For $\mu=1, \lambda=0, a(z)=b(z)=1$ for all $z \in \mathbb{R}^{N}$, we assume the semilinear elliptic equation
\[

\left\{$$
\begin{array}{l}
-\Delta u+u=u^{p-1}, \quad \text { in } \mathbb{R}^{\mathbb{N}} ; \tag{0}\\
u \in H^{1}\left(\mathbb{R}^{N}\right),
\end{array}
$$\right.
\]

where

$$
\|u\|_{H}^{2}=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) \mathrm{d} z \quad \text { is the norm in } H^{1}\left(\mathbb{R}^{N}\right),
$$

and the energy functional

$$
J_{0}^{\infty}(u)=\frac{1}{2}\|u\|_{H}^{2}-\frac{1}{p}\left\|u_{+}\right\|_{L^{p}}^{p} \quad \text { where } u_{+}=\max \{u, 0\} \geqslant 0
$$

We consider the semilinear elliptic equation

$$
\left\{\begin{array}{l}
-\Delta u+u=a(z) u^{p-1}+\lambda h(z) u^{q-1}, \quad \text { in } \mathbb{R}^{\mathbb{N}} ; \\
u \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right),
\end{array}\right.
$$

have been studied by Huei-li Lin [1] $\left(b(z)=1, \mu=1\right.$ and for $N \geq 3,1 \leqslant q<2<p<2^{*}=$ $2 N /(N-2)$) and she studied the effect of the coefficient a(z) of the subcritical nonlinearity in $\mathbb{R}^{\mathbb{N}}$, Ambrosetti [2] ($a \equiv 1$ and $1<q<2<p \leq 2^{*}=2 N /(N-2)$ and $\mathrm{Wu}[3](a \in C(\bar{\Omega})$ and changes sign, $\left.1<q<2<p<2^{*}\right)$. They showed that this equation has at least two positive solutions for small enough $\lambda>0$. In [4], Hsu and Lin have studied that there are four positive solutions of the general cases

$$
-\Delta v+v=a(z) v^{p-1}+\lambda h(z) v^{q-1}, \quad \text { in } \mathbb{R}^{N} ;
$$

for small enough $\lambda>0$.
In this paper, we study the existence and multiplicity of positive solutions of the equation $\left(E_{\lambda, \mu}\right)$ in $\mathbb{R}^{\mathbb{N}}$. By the change of variables

$$
\mu=\frac{1}{\varepsilon^{2}} \quad \text { and } \quad u(z)=\varepsilon^{\frac{2}{p-2}} v(\varepsilon z),
$$

Eq. $\left(E_{\lambda, \mu}\right)$ is converted to

$$
\left\{\begin{array}{l}
-\Delta u+b(\varepsilon z) u=a(\varepsilon z) u^{p-1}+\lambda h(\varepsilon z) u^{q-1}, \quad \text { in } \mathbb{R}^{\mathbb{N}} ; \\
u \in H^{1}\left(\mathbb{R}^{N}\right) .
\end{array}\right.
$$

Based on Eq. ($E_{\varepsilon, \lambda}$), we consider the C^{1}-functional $J_{\varepsilon, \lambda}$, for $u \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$.

$$
J_{\varepsilon, \lambda}(u)=\frac{1}{2} \int_{\mathbb{R}^{\mathbb{N}}}\left(|\nabla u|^{2}+b(\varepsilon z) u^{2}\right) \mathrm{d} z-\frac{1}{p} \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z-\frac{1}{q} \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z) u_{+}^{q} \mathrm{~d} z,
$$

where

$$
\|u\|_{b}^{2}=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+b(\varepsilon z) u^{2}\right) \mathrm{d} z
$$

is the norm in $H^{1}\left(\mathbb{R}^{N}\right)$. In fact that $d=\max \{1, b(\varepsilon z)\}$ then $\|u\|_{H} \leq\|u\|_{b} \leq d\|u\|_{H}$, i.e., $\|u\|_{b}$ is an equivalent norm by $\|u\|_{H}$. We know that the nonnegative weak solutions of Eq. ($E_{\varepsilon, \lambda}$) are equivalent to the critical points of $J_{\varepsilon, \lambda}$. Here we study the existence and multiplicity of positive solutions of Eq. $\left(E_{\varepsilon, \lambda}\right)$ in $\mathbb{R}^{\mathbb{N}}$.

We organize this paper in this way. In Section 2, we apply the argument of Tarantello [5] to divide the Nehari manifold $M_{\varepsilon, \lambda}$ into two parts $M_{\varepsilon, \lambda}^{+}$and $M_{\varepsilon, \lambda}^{-}$. In Section 3, we show that the existence of a positive ground state solution $u_{0} \in M_{\varepsilon, \lambda}^{+}$of Eq. ($E_{\varepsilon, \lambda}$). In Section 4, there are at least k critical points $u_{1}, \cdots, u_{k} \in M_{\varepsilon, \lambda}^{-}$of $J_{\varepsilon, \lambda}$ such that $J_{\varepsilon, \lambda}\left(u_{i}\right)=\beta_{\varepsilon, \lambda}^{i}((P S)$-value) for $1 \leq i \leq k$. Let

$$
S=\sup _{u \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right),\|u\|_{H}=1}\|u\|_{L^{P}},
$$

then $\|u\|_{L^{p}} \leq S\|u\|_{H}$ for every $u \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right) \backslash\{0\}$.

2 Main results

Theorem 2.1. Under assumptions a_{1} and h_{1}, if
(a)

$$
0<\lambda<\Lambda=(p-2)\left(\frac{2-q}{a_{\max }}\right)^{\frac{2-q}{p-2}}\left((p-q) S^{2}\right)^{\frac{q-p}{p-2}}\|h\|_{\#}^{-1}
$$

where $\|h\|_{\#}$ is the norm in $L^{\frac{p}{p-q}}\left(\mathbb{R}^{N}\right)$, then Eq. $\left(E_{\varepsilon, \lambda}\right)$ accepts at least a positive ground state solution, (see Theorem 3.4).
(b) Under assumptions a_{1}, a_{2} and h_{1}, if λ is large enough, then Eq. ($E_{\lambda, \mu}$) archives at least $k+1$ positive solutions, (see Theorem 4.10).

For the semilinear elliptic equations

$$
\left\{\begin{array}{l}
-\Delta u+u=a(\varepsilon z) u^{p-1}, \quad \text { in } \mathbb{R}^{\mathbb{N}} \\
u \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right),
\end{array}\right.
$$

if $a=a_{\text {max }}$ and $\Omega=\left\{u \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right) \backslash\{0\} \mid u_{+} \not \equiv 0\right.$ and $\left.\left\langle I_{\text {max }}^{\prime}(u), u\right\rangle=0\right\}$. We define the energy functional

$$
I_{\max }=\frac{1}{2}\|u\|_{H}^{2}-\frac{1}{p} \int_{\mathbb{R}^{\mathbb{N}}} a_{\max }(\varepsilon z) u_{+}^{p} \mathrm{~d} z,
$$

then $\gamma_{\text {max }}=\inf _{u \in \Omega} I_{\text {max }}(u)$.

Lemma 2.1. We have

$$
\gamma_{\max }=\frac{p-2}{2 p}\left(a_{\max } S^{p}\right)^{\frac{-2}{(p-2)}}>0
$$

Proof. If

$$
I_{\max }=\frac{1}{2}\|u\|_{H}^{2}-\frac{1}{P} \int_{\mathbb{R}^{N}} a_{\max } u_{+}^{p} \mathrm{~d} z,
$$

then

$$
\begin{aligned}
& \gamma_{\max }=\gamma_{\max }(\Omega)=\left(\frac{1}{2}-\frac{1}{p}\right) \gamma(\Omega)^{\frac{2 p}{2-p}} ; \\
& \gamma(\Omega)=\sup \left\{\int_{\mathbb{R}^{\mathbb{N}}} a_{\max } u^{p} \mid u \in H^{1}\left(\mathbb{R}^{N}\right) \text { and }\|u\|_{H}=1\right\}=a_{\max }^{\frac{1}{p}} .
\end{aligned}
$$

Moreover $\gamma_{\text {max }}=\left(\frac{1}{2}-\frac{1}{p}\right)\left(a_{\max }^{\frac{1}{p}} S\right)^{\frac{2 p}{p-2}}>0$.
Definition 2.1. We define the Palais-Smale (denoted by (PS))-sequences, (PS)-value, and (PS)conditions in $H^{1}\left(\mathbb{R}^{N}\right)$ for $J_{\varepsilon, \lambda}$ as follows.
(i) For $\beta \in \mathbb{R}$, a sequence $\left\{u_{n}\right\}$ is a $(P S)_{\beta \text {-sequence in }} H^{1}\left(\mathbb{R}^{N}\right)$ for $J_{\varepsilon, \lambda}$ if $J_{\varepsilon, \lambda}\left(u_{n}\right)=\beta+o_{n}(1)$ and $J_{\varepsilon, \lambda}^{\prime}\left(u_{n}\right)=o_{n}(1)$ strongly in $H^{-1}\left(\mathbb{R}^{N}\right)$ as $n \longrightarrow \infty$, where $H^{-1}(\mathbb{R})^{N}$ is the dual space of $H^{1}\left(\mathbb{R}^{N}\right)$;
(ii) $\beta \in \mathbb{R}$ is a (PS)-value in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$ for $J_{\varepsilon, \lambda}$ if there is a $(P S)_{\beta}$-sequence in $H^{1}(\mathbb{R})$ for $J_{\varepsilon, \lambda}$;
(iii) $J_{\varepsilon, \lambda}$ satisfy the $(P S)_{\beta}$-condition in $H^{1}\left(\mathbb{R}^{N}\right)$ if every $(P S)_{\beta}$-sequence in $H^{1}\left(\mathbb{R}^{N}\right)$ for $J_{\varepsilon, \lambda}$ includes a convergent subsequence.

Next, since $J_{\varepsilon, \lambda}$ is not bounded form below in $H^{1}\left(\mathbb{R}^{N}\right)$, we consider the Nehari manifold

$$
\begin{equation*}
M_{\varepsilon, \lambda}=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash 0 \mid u_{+} \not \equiv 0, \quad \text { and } \quad\left\langle J_{\varepsilon, \lambda}^{\prime}(u), u\right\rangle=0\right\}, \tag{2.1}
\end{equation*}
$$

where

$$
\left\langle J_{\varepsilon, \lambda}^{\prime}(u), u\right\rangle=\|u\|_{H}^{2}-\int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z-\lambda \int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) u_{+}^{q} \mathrm{~d} z .
$$

Notice $M_{\varepsilon, \lambda}$ includes all nonnegative solutions of Eq. $\left(E_{\lambda, \mu}\right)$.
Lemma 2.2. The energy functional $J_{\varepsilon, \lambda}$ is coercive and bounded from below on $M_{\varepsilon, \lambda}$.
Proof. For $u \in M_{\varepsilon, \lambda}$, the Holder inequality $\left(p_{1}=p /(p-q), p_{2}=p / q\right)$ and the Sobolev embedding we get

$$
\begin{aligned}
J_{\varepsilon, \lambda}(u) & =\left(\frac{1}{2}-\frac{1}{p}\right)\|u\|_{H}^{2}-\left(\frac{1}{q}-\frac{1}{p}\right) \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z) u_{+}^{q} \mathrm{~d} z \\
& \geq\left(\frac{1}{2}-\frac{1}{p}\right)\|u\|_{H}^{2}-\left(\frac{1}{q}-\frac{1}{p}\right) \lambda\|h\|_{\#} S^{q}\|u\|_{H}^{q} \\
& \geq \frac{\|u\|_{H}^{q}}{p}\left[\frac{p-2}{2}\|u\|_{H}^{2-q}-\left(\frac{p-q}{q}\right) \lambda\|h\|_{\#} S^{q}\right] \geq 0,
\end{aligned}
$$

where

$$
C_{1}=(p-2) / 2>0 \quad \text { and } \quad C_{2}=((p-q) / q) \lambda\|h\|_{\#} S^{q}>0,
$$

i.e, we have that $J_{\varepsilon, \lambda}$ is coercive and bounded from below on $M_{\varepsilon, \lambda}$.

Definition 2.2. Define $\psi_{\varepsilon, \lambda}(u)=\left\langle J_{\varepsilon, \lambda}^{\prime}(u), u\right\rangle$.
Under assumptions for $u \in M_{\varepsilon, \lambda}$, we get

$$
\begin{align*}
\left\langle\psi_{\varepsilon, \lambda}^{\prime}(u), u\right\rangle & =2\|u\|_{H}^{2}-p \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z-\lambda q \int_{\mathbb{R}^{\mathrm{N}}} h(\varepsilon z) u_{+}^{q} \mathrm{~d} z \\
& =(2-p)\|u\|_{H}^{2}+(p-q) \lambda \int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) u_{+}^{q} \mathrm{~d} z \\
& =(2-q)\|u\|_{H}^{2}+(q-p) \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z . \tag{2.2}
\end{align*}
$$

We apply the method in Tarantello [5], suppose

$$
\begin{aligned}
& M_{\varepsilon, \lambda}^{+}=\left\{u \in M_{\varepsilon, \lambda} \mid\left\langle\psi_{\varepsilon, \lambda}^{\prime}(u), u\right\rangle>0\right\} ; \\
& M_{\varepsilon, \lambda}^{0}=\left\{u \in M_{\varepsilon, \lambda} \mid\left\langle\psi_{\varepsilon, \lambda}^{\prime}(u), u\right\rangle=0\right\} ; \\
& M_{\varepsilon, \lambda}^{-}=\left\{u \in M_{\varepsilon, \lambda} \mid\left\langle\psi_{\varepsilon, \lambda}^{\prime}(u), u\right\rangle<0\right\} .
\end{aligned}
$$

Lemma 2.3. Under assumptions a_{1}, a_{2} and h_{1}, if $0<\lambda<\Lambda$, then $M_{\varepsilon, \lambda}^{0}=\varnothing$.
Proof. On the contrary, there is a number $\lambda_{0} \in \mathbb{R}$ and $0<\lambda_{0}<\Lambda$ such that $M_{\lambda_{0}}^{0}=\varnothing$. Then for $u \in M_{\lambda_{0}}^{0}$, by (2.2), we have

$$
\|u\|_{H}^{2}=\frac{p-q}{p-2} \lambda_{0} \int_{\mathbb{R}^{\mathrm{N}}} h(\varepsilon z) u_{+}^{q} \mathrm{~d} z=\frac{p-q}{2-q} \int_{\mathbb{R}^{\mathrm{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z .
$$

By the Holder and the Sobolev embedding theorem, we obtain

$$
\|u\|_{H} \geq\left[\frac{(2-q)}{(p-q) a_{\max }} S^{-p}\right]^{\frac{1}{(p-2)}} \quad \text { and } \quad\|u\|_{H} \leq\left(\frac{p-q}{p-2} \lambda_{0}\|h\|_{\#} S^{q}\right)^{\frac{1}{2-q}} \text {. }
$$

Thus,

$$
\lambda_{0} \geq(p-2)\left(\frac{2-q}{a_{\max }}\right)^{\frac{2-q}{p-2}}\left((p-q) S^{2}\right)^{\frac{q-p}{p-2}}\|h\|_{\#}^{-1}=\Lambda .
$$

This makes a contradiction.
Lemma 2.4. Suppose that u is a local minimizer for $J_{\varepsilon, \lambda}$ on $M_{\varepsilon, \lambda}$ and $u \in M_{\varepsilon, \lambda}^{0}$. Then $J_{\varepsilon, \lambda}^{\prime}(u)=0$ in $H^{-1}\left(\mathbb{R}^{\mathbb{N}}\right)$.

Proof. See [6, Theorem 2.3].

Lemma 2.5. For each $u \in M_{\varepsilon, \lambda}^{+}$, we have

$$
\int_{\mathbb{R}^{\mathrm{N}}} h(\varepsilon z) u_{+}^{q} \mathrm{~d} z>0, \quad \text { and } \quad\|u\|_{H}<\left(\frac{p-q}{p-2} \lambda\|h\|_{\neq} S^{q}\right)^{\frac{1}{(2-q)}} .
$$

Proof. For $u \in M_{\varepsilon, \lambda}^{+}$, we get

$$
\begin{aligned}
& (2-p)\|u\|_{H}^{2}+(p-q) \lambda \int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) u_{+}^{q} \mathrm{~d} z>0, \\
& (p-q) \lambda \int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) u_{+}^{q} \mathrm{~d} z>(2-p)\|u\|_{H}^{2} \\
& \int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) u_{+}^{q} \mathrm{~d} z>\frac{(2-p)}{\lambda(p-q)}\|u\|_{H}^{2}>0 .
\end{aligned}
$$

For every $u \in M_{\varepsilon, \lambda}^{+} \subset M_{\varepsilon, \lambda}$, by (2.2), we apply the Holder inequality $\left(p_{1}=p /(p-q), p_{2}=\right.$ p / q) to obtain that

$$
\begin{aligned}
& 0<(p-q) \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)\left\|u_{+}^{q} \mathrm{~d} z-(p-2)\right\| u\left\|_{H}^{2} \leq(p-q) \lambda\right\| h\left\|_{\#} S^{q}\right\| u\left\|_{H}^{q}-(p-2)\right\| u \|_{H}^{2} \\
& \|u\|_{H} \leq\left(\frac{p-q}{p-2} \lambda\|h\|_{\#} S^{q}\right)^{\frac{1}{2-q}} .
\end{aligned}
$$

This completes the proof.
Lemma 2.6. For each $u \in M_{\varepsilon, \lambda}^{-}$, we have

$$
\|u\|_{H}>\left[\frac{2-q}{(p-q) a_{\max }} S^{p}\right]^{\frac{1}{p-2}} .
$$

Proof. For every $u \in M_{\varepsilon, \lambda}^{-}$, by (2.2), we have that

$$
\|u\|_{H}^{2}<\frac{p-q}{2-q} \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z \leq \frac{p-q}{2-q} S^{p}\|u\|_{H}^{p} a_{\max }, \quad\|u\|_{H} \geq\left[\frac{(2-q)}{(p-q) a_{\max }} S^{-p}\right]^{\frac{1}{(p-2)}}
$$

This completes the proof.
Lemma 2.7. If $0<\lambda<\frac{q \Lambda}{2}$ and $u \in M_{\varepsilon, \lambda}^{-}$, then $J_{\varepsilon, \lambda}(u)>0$.
Proof. For $u \in M_{\varepsilon, \lambda}^{-}$, we have

$$
\begin{aligned}
J_{\varepsilon, \lambda}(u) & =\left(\frac{1}{2}-\frac{1}{p}\right)\|u\|_{H}^{2}-\left(\frac{1}{q}-\frac{1}{p}\right) \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z) u_{+}^{q} \mathrm{~d} z \\
& \geq \frac{\|u\|_{H}^{q}}{p}\left[\frac{p-2}{2}\|u\|_{H}^{2-q}-\frac{p-q}{q} \lambda\|h\|_{\#} S^{q}\right] \\
& >\frac{1}{p}\left(\frac{2-p}{(p-q) a_{\max } S^{p}}\right)^{\frac{q}{p-2}}\left(\frac{p-2}{2}\left(\frac{2-q}{(p-q) a_{\max } S^{p}}\right)^{\frac{2-q}{p-2}}-\frac{p-q}{q} \lambda\|h\|_{\#} S^{q}\right) .
\end{aligned}
$$

So $J_{\varepsilon, \lambda}(u) \geqslant d_{0}>0$ for some $d_{0}=d_{0}\left(\varepsilon, p, q, S, \lambda,\|h\|_{\#}, a_{\max }\right)$.

For $u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ and $u_{+} \not \equiv 0$, let

$$
\bar{l}=\bar{l}(u)=\left[\frac{(2-q)\|u\|_{H}^{2}}{(p-q) \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z}\right]^{\frac{1}{p-2}}>0 .
$$

Lemma 2.8. For every $u \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right) \backslash\{0\}$ and $u_{+} \not \equiv 0$, we have that, if

$$
\int_{\mathbb{R}^{\mathbb{N}}} \lambda h(z) u_{+}^{q} \mathrm{~d} z=0,
$$

then there is a unique positive number $l^{-}=l^{-}(u)>\bar{l}$ such that $l^{-} u \in M_{\varepsilon, \lambda}^{-}$and $J_{\varepsilon, \lambda}\left(l^{-} u\right)=$ $\sup _{l \geqslant 0} J_{\varepsilon, \lambda}(l u)$.
Proof. For every $u \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right) \backslash\{0\}$ and $u_{+} \not \equiv 0$, define

$$
k(l)=k_{u}(l)=l^{2-q}\|u\|_{H}^{2}-l^{p-q} \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z, \quad \text { for } l \geqslant 0 .
$$

Clearly, we get that $k(0)=0$ and $k(l) \rightarrow-\infty$ as $l \rightarrow \infty$ since

$$
k^{\prime}(l)=\frac{1}{l^{q+1}}\left[(2-q)\|l u\|_{H}^{2}-(p-q) \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z)\left(l u_{+}\right)^{p} \mathrm{~d} z\right], \quad \text { for } l \geqslant 0,
$$

then $k^{\prime}(\bar{l})=0, k^{\prime}(l)>0$ for $0<l<\bar{l}$, and $k^{\prime}(l)<0$ for $l>\bar{l}$. Thus, $k(l)$ get its maximum at \bar{l}. Furthermore, by the Sobolev embedding theorem, we have that

$$
\begin{align*}
& k(\bar{l})=\left(\frac{(2-q)\|u\|_{H}^{2}}{(p-q) \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z}\right)^{\frac{(2-q)}{(p-2)}}\|u\|_{H}^{2} \\
&-\left(\frac{(2-q)\|u\|_{H}^{2}}{(p-q) \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z}\right)^{\left.\frac{(p-q)}{(} p-2\right)} \int_{\mathbb{R}^{\mathrm{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z \\
& \geq(p-2)(2-q)^{\frac{-q}{p-2}}(p-q)^{\frac{q-p}{p-2}} S^{\frac{p(q-2)}{p-2}}\|u\|_{H^{\prime}}^{q} \tag{2.3}\\
& \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(z) u_{+}^{q} \mathrm{~d} z=0 .
\end{align*}
$$

There is a unique positive number $l^{-}=l^{-}(u)>\bar{l}$ such that

$$
k\left(l^{-}\right)=\int_{\mathbb{R}^{\mathbb{N}}} \lambda h(z) u_{+}^{q} \mathrm{~d} z=0,
$$

and $k^{\prime}\left(l^{-}\right)>0$. Then

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} l} J_{\varepsilon, \lambda}(l u)=\left.\frac{1}{l}\left(\|l u\|_{H}^{2}-\int_{\mathbb{R}^{\mathrm{N}}} a(\varepsilon z)\left(l u_{+}\right)^{p} \mathrm{~d} z-\int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)\left(l u_{+}\right)^{q} \mathrm{~d} z\right)\right|_{l=l^{-}}=0, \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} l^{2}} \delta_{\varepsilon, \lambda}(l u)=\left.\frac{1}{l^{2}}\left[\|l u\|_{H}^{2}-(p-1) \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z)\left(l u_{+}\right)^{p} \mathrm{~d} z-(q-1) \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)\left(l u_{+}\right)^{q} \mathrm{~d} z\right]\right|_{l=l^{-}}<0,
\end{aligned}
$$

and

$$
J_{\varepsilon, \lambda}(l u) \rightarrow-\infty, \quad \text { as } l \rightarrow \infty
$$

Furthermore, it is not difficult to find that $l^{-} u \in M_{\varepsilon, \lambda}^{-}$and $J_{\varepsilon, \lambda}\left(l^{-} u\right)=\sup _{l \geq 0} J_{\varepsilon, \lambda}(l u)$.
Lemma 2.9. If $0<\lambda<\Lambda$ and $\int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z) u_{+}^{q} \mathrm{~d} z>0$, then there is unique positive number $l^{+}=$ $l^{+}(u)<\bar{l}<l^{-}=l^{-}(u)$ such that $l^{+} u \in M_{\varepsilon, \lambda^{\prime}}^{-}$and

$$
J_{\varepsilon, \lambda}\left(l^{+} u\right)=\inf _{0 \leq l \leq \bar{l}} J_{\varepsilon, \lambda}(l u), \quad J_{\varepsilon, \lambda}\left(l^{-} u\right)=\sup _{l \geq \bar{l}} J_{\varepsilon, \lambda}(l u)
$$

Proof. Since $0<\lambda<\Lambda$ and $\int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z) u_{+}^{q} \mathrm{~d} z>0$, by (2.3), then

$$
\begin{aligned}
k(0) & =0<\lambda \int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) u_{+}^{q} \mathrm{~d} z \leq \lambda\|h\|_{\#} S^{q}\|u\|_{H}^{q} \\
& <(P-2)(2-q)^{\frac{2-q}{p-2}}(p-q)^{\frac{q-p}{p-2}} S^{\frac{p(q-2)}{p-2}}\|u\|_{H}^{q} \leq k(\bar{l}) .
\end{aligned}
$$

It follows that there are unique positive number $l^{+}=l^{+}(u)$ and $l^{-}=l^{-}(u)$ such that

$$
l^{+}<\bar{l}<l^{-}, \quad k\left(l^{+}\right)=\int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z) u_{+}^{q} \mathrm{~d} z=k\left(l^{-}\right) \quad \text { and } \quad k^{\prime}\left(l^{-}\right)<0<k^{\prime}\left(l^{+}\right)
$$

We also have that

$$
l^{+} u \in M_{\varepsilon, \lambda^{\prime}}^{+} \quad l^{-} u \in M_{\varepsilon, \lambda^{\prime}}^{-} \quad J_{\varepsilon, \lambda}\left(l^{+} u\right) \leq J_{\varepsilon, \lambda}(l u) \leq J_{\varepsilon, \lambda}\left(l^{-} u\right)
$$

for every $l \in\left[l^{+}, l^{-}\right]$, and $J_{\varepsilon, \lambda}\left(l^{+} u\right) \leq J_{\varepsilon, \lambda}(l u)$ for every $l \in[0, \bar{l}]$. Hence,

$$
J_{\varepsilon, \lambda}\left(l^{+} u\right)=\inf _{0 \leq l \leq \bar{l}} J_{\varepsilon, \lambda}(l u), \quad J_{\varepsilon, \lambda}\left(l^{-} u\right)=\sup _{l \geq \bar{l}} J_{\varepsilon, \lambda}(l u)
$$

This completes the proof.
Applying Lemma $2.6\left(M_{\varepsilon, \lambda}^{0}=\varnothing\right.$ for $\left.0<\lambda<\Lambda\right)$. We have $M_{\varepsilon, \lambda}=M_{\varepsilon, \lambda}^{+} \cup M_{\varepsilon, \lambda}^{-}$, where

$$
\begin{aligned}
& M_{\varepsilon, \lambda}^{+}=\left\{u \in M_{\varepsilon, \lambda} \mid(2-q)\|u\|_{H}^{2}-(p-q) \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z>0\right\} \\
& M_{\varepsilon, \lambda}^{-}=\left\{u \in M_{\varepsilon, \lambda} \mid(2-q)\|u\|_{H}^{2}-(p-q) \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z<0\right\}
\end{aligned}
$$

Define

$$
\alpha_{\varepsilon, \lambda}=\inf _{u \in M_{\varepsilon, \lambda}} J_{\varepsilon, \lambda}(u) ; \quad \alpha_{\varepsilon, \lambda}^{+}=\inf _{u \in M_{\varepsilon, \lambda}^{+}} J_{\varepsilon, \lambda}(u) ; \quad \alpha_{\varepsilon, \lambda}^{-}=\inf _{u \in M_{\varepsilon, \lambda}^{-}} J_{\varepsilon, \lambda}(u)
$$

Lemma 2.10. If $0<\lambda<\Lambda$, then $\alpha_{\varepsilon, \lambda} \leq \alpha_{\varepsilon, \lambda}^{+}<0$.

Proof. Suppose $u \in M_{\varepsilon, \lambda}^{+}$, by (2.2) we get that

$$
(p-2)\|u\|_{H}^{2}<(p-q) \lambda \int_{\mathbb{R}^{\mathbb{N}}} h(z) u_{+}^{q} \mathrm{~d} z .
$$

Then

$$
\begin{aligned}
J_{\varepsilon, \lambda}(u) & =\left(\frac{1}{2}-\frac{1}{p}\right)\|u\|_{H}^{2}-\left(\frac{1}{q}-\frac{1}{p}\right) \lambda \int h(\varepsilon z) u_{+}^{q} \mathrm{~d} z \\
& <\left[\left(\frac{1}{2}-\frac{1}{p}\right)-\left(\frac{1}{q}-\frac{1}{p}\right) \frac{p-2}{p-q}\right]\|u\|_{H}^{2} \\
& =-\frac{(2-q)(p-2)}{2 p q}\|u\|_{H}^{2}<0 .
\end{aligned}
$$

By the definition $\alpha_{\varepsilon, \lambda}$ and $\alpha_{\varepsilon, \lambda}^{+}$, we conclude that $\alpha_{\varepsilon, \lambda} \leq \alpha_{\varepsilon, \lambda}^{+}<0$.

Lemma 2.11. If $0<\lambda<q \Lambda / 2$, then $\alpha_{\varepsilon, \lambda}^{-} \geq d_{0}>0$ for some $d_{0}=d_{0}\left(\varepsilon, \lambda, p, q, S,\|h\|_{\#}\right)$.
Proof. See [4, Lemma 2.5].

Lemma 2.12. We conclude
(a) There is a $(P S)_{\alpha_{\varepsilon, \lambda}}$-sequence $\left\{u_{n}\right\}$ in $M_{\varepsilon, \lambda}$ for $J_{\varepsilon, \lambda}$;
(b) There is a $(P S)_{\alpha_{\varepsilon, \lambda}^{+}}$-sequence $\left\{u_{n}\right\}$ in $M_{\varepsilon, \lambda}^{+}$for $J_{\varepsilon, \lambda}$;
(c) There is a $(P S)_{\alpha_{\varepsilon, \lambda}^{-}}$-sequence $\left\{u_{n}\right\}$ in $M_{\varepsilon, \lambda}^{-}$for $J_{\varepsilon, \lambda}$.

3 Existence of a ground state solution

At first, we show that $J_{\varepsilon, \lambda}$ satisfy the $(P S)_{\beta}$-condition in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$ for $\beta \in\left(-\infty, \gamma_{\max }-\right.$ $C_{0} \lambda^{\frac{2}{2-q}}$), where

$$
C_{0}=(2-q)\left[(p-q)\|h\|_{\#} S^{q}\right]^{\frac{2}{2-q}} /\left[2 p q(p-2)^{\frac{q}{2-q}}\right] .
$$

Lemma 3.1. Under some assumptions a_{1}, a_{2}, h_{1} and $0<\lambda<\Lambda$. If $\left\{u_{n}\right\}$ is a $(P S)_{\beta^{-}}$sequence in $H^{1}\left(\mathbb{R}^{N}\right)$ for $J_{\varepsilon, \lambda}$ with $u_{n} \rightharpoonup u$ weakly in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$, then $J_{\varepsilon, \lambda}^{\prime}(u)=0$ in $H^{-1}\left(\mathbb{R}^{\mathbb{N}}\right)$.

Proof. Suppose $\left\{u_{n}\right\}$ be a $(P S)_{\beta \text {-sequence in }} H^{1}\left(\mathbb{R}^{N}\right)$ for $J_{\varepsilon, \lambda}$ such that $J_{\varepsilon, \lambda}\left(u_{n}\right)=\beta+o_{n}(1)$
and $J_{\varepsilon, \lambda}^{\prime}\left(u_{n}\right)=o_{n}(1)$ in $H^{-1}\left(\mathbb{R}^{N}\right)$. Then

$$
\begin{aligned}
|\beta|+o_{n}(1)+\frac{d_{n}\left\|u_{n}\right\|_{H}}{p} & \geq J_{\varepsilon, \lambda}\left(u_{n}\right)-\frac{1}{p}\left\langle J_{\varepsilon, \lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& =\left(\frac{1}{2}-\frac{1}{p}\right)\left\|u_{n}\right\|_{H}^{2}-\left(\frac{1}{q}-\frac{1}{p}\right) \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)\left(u_{n}\right)_{+}^{q} \mathrm{~d} z \\
& \geq \frac{p-2}{2 p}\left\|u_{n}\right\|_{H}^{2}-\frac{p-q}{p q} \lambda\|h\|_{\#} S^{q}\left\|u_{n}\right\|_{H}^{q} \\
& \geq \frac{p-2}{2 p}\left\|u_{n}\right\|_{H}^{2}
\end{aligned}
$$

then

$$
\left\|u_{n}\right\| \geq 2 p\left(|\beta|+o_{n}(1)\right) /\left(2 d_{n}-(p-2)\right)
$$

where $d_{n}=o_{n}(1)$ as $n \rightarrow \infty$. It follows that $\left\{u_{n}\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$. Furthermore there are a subsequence $\left\{u_{n}\right\}$ and $u \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$ such that $J_{\varepsilon, \lambda}^{\prime}(u)=0$ in $H^{-1}\left(\mathbb{R}^{\mathbb{N}}\right)$.
Lemma 3.2. Under some assumptions a_{1}, a_{2}, h_{1} and $0<\lambda<\Lambda$. If $\left\{u_{n}\right\}$ is a $(P S)_{\beta \text {-sequence in }}$ $H^{1}\left(\mathbb{R}^{N}\right)$ for $J_{\varepsilon, \lambda}$ with $u_{n} \rightharpoonup u$ weakly in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right), J_{\varepsilon, \lambda}(u) \geqslant-C_{0} \lambda^{\frac{2}{2-q}} \geqslant-C_{0}^{\prime}$, where

$$
C_{0}^{\prime}=\left((p-2)(2-q)^{\frac{p}{p-2}}\right) /\left(2 p q\left(a_{\max }(p-q)\right)^{\frac{2}{p-2}} S^{\frac{2 p}{p-2}}\right) .
$$

Proof. we have $\left\langle J_{\varepsilon, \lambda}^{\prime}(u), u\right\rangle=0$, that is,

$$
\int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z=\|u\|_{H}^{2}-\int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z) u_{+}^{q} \mathrm{~d} z
$$

Hence, by the Young inequality ($p_{1}=\frac{2}{q}$ and $\left.p_{2}=\frac{2}{2-q}\right)$.

$$
\begin{aligned}
J_{\varepsilon, \lambda}(u) & =\left(\frac{1}{2}-\frac{1}{p}\right)\|u\|_{H}^{2}-\left(\frac{1}{q}-\frac{1}{p}\right) \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z) u^{q} \mathrm{~d} z \\
& \geq \frac{p-2}{2 p}\|u\|_{H}^{2}-\frac{p-q}{p q} \lambda\|h\|_{\#} S^{q}\|u\|_{H}^{q} \\
& \geq \frac{p-2}{2 p}\|u\|_{H}^{2}-\frac{p-2}{p q}\left[\frac{q\|u\|_{H}^{2}}{2}+\left(\frac{p-q}{p-2} \lambda\|h\|_{\#} S^{q}\right)^{\frac{2}{2-q}} \frac{2-q}{2}\right] \\
& =-\lambda^{\frac{2}{2-q}}(2-q)\left[(p-q)\|h\|_{\#} S^{q}\right]^{\frac{2}{2-q}} /\left[2 p q(p-2)^{\frac{q}{2-q}}\right] \\
& \geq-\frac{(p-2)(2-q)^{\frac{p}{p-2}}}{2 p q\left[a_{\max }(p-q)\right]^{\frac{2}{p-2}} S^{\frac{2 p}{p-2}}} \\
& =-C_{0}^{\prime} .
\end{aligned}
$$

This completes the proof.

Lemma 3.3. Assume that a, b and h satisfy a_{1} and h_{1}. If $0<\lambda<\Lambda$. Then $J_{\varepsilon, \lambda}$ satisfy the $(P S)_{\beta^{-}}$ condition in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$ for $\beta \in\left(-\infty, \gamma_{\max }-C_{0} \lambda^{\frac{2}{2-q}}\right)$.

Proof. Suppose $\left\{u_{n}\right\}$ be a $(P S)_{\beta^{-}}$-sequence in $H^{1}\left(\mathbb{R}^{N}\right)$ for $J_{\varepsilon, \lambda}$ such that

$$
J_{\varepsilon, \lambda}\left(u_{n}\right)=\beta+o_{n}(1),
$$

and $J_{\varepsilon, \lambda}^{\prime}\left(u_{n}\right)=o_{n}(1)$ in $H^{-1}\left(\mathbb{R}^{N}\right)$. Then it follows that $\left\{u_{n}\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$. Moreover, there are a subsequence $\left\{u_{n}\right\}$ and $u \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$ such that $J_{\varepsilon, \lambda}^{\prime}(u)=0$ in $H^{-1}\left(\mathbb{R}^{\mathbb{N}}\right)$. $u_{n} \rightharpoonup u$ weakly in $H^{1}\left(\mathbb{R}^{N}\right), u_{n} \rightarrow u$ a.e. in $\mathbb{R}^{N}, u_{n} \rightharpoonup u$ strongly in $L_{\text {loc }}^{s}\left(\mathbb{R}^{\mathbb{N}}\right)$ for every $1 \leq s<2^{*}$. Next, claim that

$$
\begin{equation*}
\int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z)\left|u_{n}-u\right|^{q} \mathrm{~d} z \rightarrow 0, \quad \text { as } n \rightarrow \infty . \tag{3.1}
\end{equation*}
$$

Using the Brezis-Lieb lemma to get

$$
\int_{\mathbb{R}^{\mathrm{N}}} h(\varepsilon z)\left(u_{n}-u\right)_{+}^{q} \mathrm{~d} z=\int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z)\left(u_{n}\right)_{+}^{q} \mathrm{~d} z-\int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) u^{q} d z+o_{n}(1) .
$$

For every $\sigma>0$, there is $r>0$ so that

$$
\int_{\left[B^{N}(0 ; r)\right]^{c}} h(\varepsilon z)^{\frac{p}{p-q}} \mathrm{~d} z<\sigma
$$

By the Holder inequality and the Sobolev embedding theorem, we get

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z)\right| u_{n}-\left.u\right|^{q} \mathrm{~d} z \mid \\
\leq & \int_{B^{N}(0 ; r)} h(\varepsilon z)\left|u_{n}-u\right|^{q} \mathrm{~d} z+\int_{\left[B^{N}(0 ; r)\right]^{c}} h(\varepsilon z)\left|u_{n}-u\right|^{q} \mathrm{~d} z \\
\leq & \|h\|_{\#}\left(\int_{\mathbb{R}^{\mathbb{N}}}\left|u_{n}-u\right|^{p} \mathrm{~d} z\right)^{\frac{q}{p}}+s^{q}\left(\int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z)^{\frac{p}{p-q}} \mathrm{~d} z\right)^{\frac{p-q}{p}}\left\|u_{n}-u\right\|_{H}^{q} \\
\leq & o_{n}(1)+\sigma C^{\prime} .
\end{aligned}
$$

$\left\{u_{n}\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{N}\right)$ and $u_{n} \rightarrow u$ in $L_{\text {loc }}^{q}\left(\mathbb{R}^{N}\right)$. Applying a_{1} and $u_{n} \rightarrow u$ in $\left.L_{\text {loc }}^{q}\left(\mathbb{R}^{N}\right)\right)$, we get that

$$
\begin{equation*}
\int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z)\left(u_{n}-u\right)_{+}^{p} \mathrm{~d} z=\int_{\mathbb{R}^{\mathbb{N}}} a_{\max }\left(u_{n}-u\right)_{+}^{p} \mathrm{~d} z+o_{n}(1) . \tag{3.2}
\end{equation*}
$$

Let $p_{n}=u_{n}-u$. Suppose $p_{n} \rightarrow 0$ strongly in $H^{1}\left(\mathbb{R}^{N}\right)$. By (3.1), (3.2), we conclude that

$$
\begin{aligned}
\left\|p_{n}\right\|_{H}^{2}= & \left\|u_{n}\right\|_{H}^{2}-\|u\|_{H}^{2}+o_{n}(1) \\
= & \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z)\left(u_{n}\right)_{+}^{p} \mathrm{~d} z-\int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)\left(u_{n}\right)_{+}^{q} \mathrm{~d} z \\
& \quad-\int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u^{p} \mathrm{~d} z+\int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z) u^{q} \mathrm{~d} z+o_{n}(1) \\
= & \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z)\left(u_{n}-u\right)_{+}^{p} \mathrm{~d} z+o_{n}(1) \\
= & \int_{\mathbb{R}^{\mathbb{N}}} a_{\max }\left(p_{n}\right)_{+}^{p} \mathrm{~d} z+o_{n}(1),
\end{aligned}
$$

also

$$
I_{\max }(u)=\frac{1}{2}\left\|u_{n}\right\|_{H}^{2}-\frac{1}{p} \int_{\mathbb{R}^{\mathrm{N}}} a_{\max } u_{+}^{p} \mathrm{~d} z,
$$

then

$$
I_{\max }\left(p_{n}\right)=\frac{1}{2}\left\|p_{n}\right\|_{H}^{2}-\frac{1}{p} \int_{\mathbb{R}^{\mathbb{N}}} a_{\max }\left(p_{n}\right)_{+}^{p} \mathrm{~d} z=\left(\frac{1}{2}-\frac{1}{p}\right)\left\|p_{n}\right\|_{H}^{2}+o_{n}(1)>0 .
$$

By Theorem 4.3 in Wang [7], there is a sequence $\left\{s_{n}\right\} \subset \mathbb{R}^{+}$such that

$$
s_{n}=1+o_{n}(1), \quad\left\{s_{n} p_{n}\right\} \subset \Omega, \quad \text { and } I_{\max }\left(s_{n} p_{n}\right)=I_{\max }\left(p_{n}\right)+o_{n}(1) .
$$

It follows that

$$
\begin{aligned}
\gamma_{\max } & \leq I_{\max }\left(s_{n} p_{n}\right)=I_{\max }\left(p_{n}\right)+o_{n}(1)=J_{\varepsilon, \lambda}\left(u_{n}\right)-J_{\varepsilon, \lambda}(u)+o_{n}(1) \\
& =\beta-J_{\varepsilon, \lambda}(u)+o_{n}(1)=J_{\varepsilon, \lambda}\left(u_{n}\right)-J_{\varepsilon, \lambda}(u) \\
& =J_{\varepsilon, \lambda}\left(p_{n}\right) \rightarrow o_{n}(1)<\gamma_{\max }
\end{aligned}
$$

which is a contradiction. Hence, $u_{n} \rightarrow u$ strongly in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$.
Theorem 3.1. Under some assumptions a_{1}, a_{2}, h_{1} and $0<\lambda<\Lambda$, then there is at least one positive ground state solution u_{0} of $E q$. $\left(E_{\varepsilon, \lambda}\right)$ in \mathbb{R}^{N}. Moreover, we have that $u_{0} \in M_{\varepsilon, \lambda}^{+}$and

$$
J_{\varepsilon, \lambda}\left(u_{0}\right)=\alpha_{\varepsilon, \lambda}=\alpha_{\varepsilon, \lambda}^{+} \geq-C_{0} \lambda^{\frac{2}{2-q}} .
$$

Proof. There is a minimizing sequence $\left\{u_{n}\right\} \subset M_{\varepsilon, \lambda}$ for $J_{\varepsilon, \lambda}$ such that

$$
J_{\varepsilon, \lambda}\left(u_{n}\right)=\alpha_{\varepsilon, \lambda}+o_{n}(1), \quad \text { and } J_{\varepsilon, \lambda}^{\prime}\left(u_{n}\right)=o_{n}(1) \quad \text { in } H^{-1}\left(\mathbb{R}^{\mathbb{N}}\right) .
$$

By Lemma 3.2 (i), there is a subsequence $\left\{u_{n}\right\}$ and $u_{0} \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$. We claim that

$$
u_{0} \in M_{\varepsilon, \lambda}^{+}\left(M_{\varepsilon, \lambda}^{0}=\varnothing \text { for } 0<\lambda<\Lambda\right) \quad \text { and } \quad J_{\varepsilon, \lambda}\left(u_{0}\right)=\alpha_{\varepsilon, \lambda} .
$$

On the contrary that $u_{0} \in M_{\varepsilon, \lambda}^{-}$, we get that

$$
\int_{\mathbb{R}^{\mathrm{N}}} \lambda h(\varepsilon z)\left(u_{0}\right)_{+}^{q} \mathrm{~d} z>0 .
$$

Otherwise,

$$
\begin{aligned}
\left\|u_{n}\right\|_{H}^{2}-\int_{\mathbb{R}^{\mathrm{N}}} a(\varepsilon z)\left(u_{n}\right)_{+}^{p} \mathrm{~d} z & =\int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)\left(u_{n}\right)_{+}^{q} \mathrm{~d} z \\
& =\int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)\left(u_{0}\right)_{+}^{q} \mathrm{~d} z+o_{n}(1)=o_{n}(1) .
\end{aligned}
$$

It follows that

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{p}\right)\left\|u_{n}\right\|_{H}^{2}=\alpha_{\varepsilon, \lambda} ;
$$

that contradicts to $\alpha_{\varepsilon, \lambda}<0$. By Lemma 2.11 (ii), then there are positive numbers $l^{+}<\bar{l}<$ $l^{-}=1$ such that $l^{+} u_{0} \in M_{\varepsilon, \lambda}^{+}, l^{-} u_{0} \in M_{\varepsilon, \lambda}^{-}$and that is a contradiction. Hence,

$$
u_{0} \in M_{\varepsilon, \lambda}^{+}, \quad-C_{0} \lambda^{\frac{2}{2-\varphi}} \leq J_{\varepsilon, \lambda}\left(u_{0}\right)=\alpha_{\varepsilon, \lambda}=\alpha_{\varepsilon, \lambda}^{+} .
$$

This completes the proof.

4 Existence of multiple solutions

From this time, we assume that a and h satisfy a_{1}, a_{2} and h_{1}. Suppose $w \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$ be the positive ground state solution of Eq. $\left(E_{0}\right)$ in $\mathbb{R}^{\mathbb{N}}$ for $a \equiv a_{\text {max }}$.
(i) $w \in L^{\infty}\left(\mathbb{R}^{\mathbb{N}}\right) \cap C_{l o c}^{2, \theta}\left(\mathbb{R}^{\mathbb{N}}\right)$ for some $0<\theta<1$ and $\lim _{|z| \rightarrow \infty} w(z)=0$.
(ii) For every $\varepsilon>0$, there are positive numbers $C_{1}, C_{2}^{\varepsilon}$ and C_{3}^{ε} such that for all

$$
z \in \mathbb{R}^{\mathbb{N}} C_{2}^{\varepsilon} \exp (-(1+\varepsilon)|z|) \leq w(z) \leq C_{1} \exp (-|z|)
$$

and

$$
|\nabla w(z)| \leq C_{3}^{\varepsilon} \exp (-(1-\varepsilon)|z|) .
$$

For $1 \leq i \leq k$, we define

$$
w_{\varepsilon}^{i}(z)=w\left(z-\frac{a^{i}}{\varepsilon}\right), \quad \text { where } a\left(a^{i}\right)=a_{\max } .
$$

Clearly, $w_{\varepsilon}^{i}(z) \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$. By Lemma 2.11 (ii) there is a unique number $\left(l_{\varepsilon}^{i}\right)^{-}>0$ so that $\left(l_{\varepsilon}^{i}\right)^{-} w_{\varepsilon}^{i} \in M_{\varepsilon, \lambda}^{-} \subset M_{\varepsilon, \lambda}$, where $1 \leq i \leq k$.
Lemma 4.1. There is a number $t_{0}>0$ such that for $0 \leq t<t_{0}$ and every $\varepsilon>0$, we have that

$$
J_{\varepsilon, \lambda}\left(t w_{\varepsilon}^{i}\right)<\gamma_{\max }, \quad \text { uniformly in } i
$$

Proof. For every $\varepsilon>0$, we have

$$
J_{\varepsilon, \lambda}\left(t w_{\varepsilon}^{i}\right)=\frac{t^{2}}{2}\left\|w_{\varepsilon}^{i}\right\|_{H}^{2}-\frac{t^{p}}{p} \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z)\left(w_{\varepsilon}^{i}\right)^{p} \mathrm{~d} z-\frac{t^{q}}{q} \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)\left(w_{\varepsilon}^{i}\right)^{q} \mathrm{~d} z .
$$

Since $J_{\varepsilon, \lambda}$ is continuous in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right),\left\{w_{\varepsilon}^{i}\right\}$ is uniformly bounded in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$ for every $\varepsilon>0$ and $\gamma_{\max }>0$ there is $t_{0}>0$ such that for $0 \leq t \leq t_{0}$ and every $\varepsilon>0$

$$
J_{\varepsilon, \lambda}\left(t w_{\varepsilon}^{i}\right)<\gamma_{\max } .
$$

This completes the proof.

Lemma 4.2. There are positive numbers t_{1} and ε_{1} such that for every $t>t_{1}$ and $\varepsilon<\varepsilon_{1}$, we have that

$$
J_{\varepsilon, \lambda}\left(t w_{\varepsilon}^{i}\right)<0, \quad \text { uniformly in } i .
$$

Proof. There is an $r_{0}>0$ such that $a(z) \geq a_{\max } / 2$ for $z \in B^{N}\left(a^{i}: r_{0}\right)$ uniformly in i. Then is $\varepsilon_{1}>0$ such that for $\varepsilon<\varepsilon_{1}$

$$
\begin{aligned}
J_{\varepsilon, \lambda}\left(t w_{\varepsilon}^{i}\right) & =\frac{t^{2}}{2}\left\|w_{\varepsilon}^{i}\right\|_{H}^{2}-\frac{t^{p}}{p} \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z)\left(w_{\varepsilon}^{i}\right)^{p} \mathrm{~d} z-\frac{t^{q}}{q} \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)\left(w_{\varepsilon}^{i}\right)^{q} \mathrm{~d} z \\
& \leq \frac{t^{2}}{2} \int_{\mathbb{R}^{\mathrm{N}}}\left[|\nabla w|^{2}+w^{2}\right]-\frac{t^{p}}{2 p}\left[|\nabla w|^{2}+w^{2}\right]-\frac{t^{p}}{2 p} \int_{\mathbb{R}^{\mathrm{N}}} a_{\max } w^{p} \mathrm{~d} z .
\end{aligned}
$$

Thus, there is $t_{1}>0$ such that for every $t>t_{1}$ and $\varepsilon<\varepsilon_{1}$

$$
J_{\varepsilon, \lambda}\left(t w_{\varepsilon}^{i}\right)<0, \quad \text { uniformly in } i .
$$

This completes the proof.

Lemma 4.3. Suppose that a_{1}, a_{2}, and h_{1} hold. If $0<\lambda<q \Lambda / 2$, then

$$
\lim _{\varepsilon \rightarrow 0^{+}} \sup _{t \geq 0} J_{\varepsilon, \lambda}\left(t w_{\varepsilon}^{i}\right) \leq<\gamma_{\max }, \quad \text { uniformly in } i .
$$

Proof. By Lemma 4.1 we just try to indicate

$$
\lim _{\varepsilon \rightarrow 0^{+}} \sup _{t_{0} \leq t \leq t_{1}} J_{\varepsilon, \lambda}\left(t w_{\varepsilon}^{i}\right) \leq \gamma_{\max }
$$

uniformly in i; we learn that $\sup _{t \geq 0} I_{\max }(t w)=\gamma_{\text {max }}$. For $t_{0} \leq t \leq t_{1}$, we get

$$
\begin{aligned}
J_{\varepsilon, \lambda}\left(t w_{\varepsilon}^{i}\right)= & \frac{1}{2}\left\|t w_{\varepsilon}^{i}\right\|_{H}^{2}-\frac{1}{p} \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z)\left(t w_{\varepsilon}^{i}\right)^{p} \mathrm{~d} z-\frac{1}{q} \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)\left(t w_{\varepsilon}^{i}\right)^{q} \mathrm{~d} z \\
= & \frac{t^{2}}{2} \int_{\mathbb{R}^{\mathbb{N}}}\left[\left|\nabla w\left(z-\frac{a^{i}}{\varepsilon}\right)\right|^{2}+w\left(z-\frac{a^{i}}{\varepsilon}\right)^{2}\right] \mathrm{d} z \\
& \quad-\frac{t^{p}}{p} \int_{\mathbb{R}^{\mathrm{N}}} a(\varepsilon z) w\left(z-\frac{a^{i}}{\varepsilon}\right)^{p} \mathrm{~d} z-\frac{t^{q}}{q} \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z) w\left(z-\frac{a^{i}}{\varepsilon}\right)^{q} \mathrm{~d} z \\
= & \left\{\frac{t^{2}}{2} \int_{\mathbb{R}^{\mathbb{N}}}\left[|\nabla w|^{2}+w^{2}\right] \mathrm{d} z-\frac{t^{p}}{p}\right\} \\
& \quad+\frac{t^{p}}{p} \int_{\mathbb{R}^{\mathbb{N}}}\left(a_{\max }-a(\varepsilon z) w\left(z-\frac{a^{i}}{\varepsilon}\right)^{p} \mathrm{~d} z-\frac{t^{q}}{q} \lambda \int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) w\left(z-\frac{a^{i}}{\varepsilon}\right)^{q} \mathrm{~d} z\right. \\
\leq & \gamma_{\max } \frac{t_{1}^{p}}{p} \int_{\mathbb{R}^{\mathbb{N}}}\left(a_{\max }-a(\varepsilon z)\right) w\left(z-\frac{a^{i}}{\varepsilon}\right)^{p} \mathrm{~d} z-\frac{t_{0}^{q}}{q} \lambda \int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) w\left(z-\frac{a^{i}}{\varepsilon}\right)^{q} \mathrm{~d} z .
\end{aligned}
$$

Since

$$
\int_{\mathbb{R}^{\mathbb{N}}}\left(a_{\max }-a(\varepsilon z)\right) w\left(z-\frac{a^{i}}{\varepsilon}\right)^{p} \mathrm{~d} z=\int_{\mathbb{R}^{\mathbb{N}}}\left[a_{\max }-a\left(\varepsilon z+a^{i}\right)\right] w^{p} \mathrm{~d} z=o(1)
$$

as $\varepsilon \rightarrow 0^{+}$uniformly in i. And

$$
\lambda \int_{\mathbb{R}^{\mathbb{N}}} h(\varepsilon z) w\left(z-\frac{a^{i}}{\varepsilon}\right)^{q} \mathrm{~d} z \leq \lambda\|h\|_{\#} S^{q}\|w\|_{H}^{q}=o(1) \quad \text { as } \varepsilon \rightarrow 0^{+} .
$$

then

$$
\lim _{\varepsilon \rightarrow 0^{+}} \sup _{t_{0} \leq t \leq t_{1}} J_{\varepsilon, \lambda}\left(t w_{\varepsilon}^{i}\right) \leq \gamma_{\max }, \quad \lim _{\varepsilon \rightarrow 0^{+}} \sup _{t \geq 0} J_{\varepsilon, \lambda}\left(t w_{\varepsilon}^{i}\right) \leq \gamma_{\max }
$$

uniformly in i.
Remark 4.1. Applying the results of Lemma 4.3, we can conclude that

$$
0<d_{0} \leq \alpha_{\varepsilon, \lambda}^{-} \leq \gamma_{\max }+0(1), \quad \text { as } \varepsilon \rightarrow 0^{+} .
$$

Since there is $\varepsilon_{0}>0$ such that

$$
\begin{cases}0<\gamma_{\max }-C_{0} \lambda^{\frac{2}{2-q}}, & \text { for any } \varepsilon<\varepsilon_{0} \tag{4.1}\\ \overline{B_{\rho_{0}}^{N}\left(a^{i}\right)} \cap \overline{B_{\rho_{0}}^{N}\left(a^{j}\right)}=\varnothing, & \text { for } 1 \leq i \neq j \leq k\end{cases}
$$

where

$$
\overline{B_{\rho_{0}}^{N}\left(a^{i}\right)}=\left\{z \in \mathbb{R} \| z-a^{i} \mid \leq \rho_{0}\right\} \quad \text { and } \quad a\left(a^{i}\right)=a_{\max }
$$

Define

$$
\mathbf{k}=\left\{a^{i} \mid 1 \leq i \leq k\right\} \quad \text { and } \quad \mathbf{K}_{\frac{\rho_{0}}{2}}=\cup_{i=1}^{k} \overline{B_{\frac{\rho_{0}^{2}}{2}}^{N}\left(a^{i}\right)},
$$

choosing $0 \leq \rho_{0}<1$. Suppose $\cup_{i=1}^{k} \overline{B_{\rho_{0}}^{N}\left(a^{i}\right)} \subset B_{r_{0}}^{N}(0)$ for some $r_{0}>0$. Let $Q_{\varepsilon}: H^{1}\left(\mathbb{R}^{\mathbb{N}}\right) \backslash\{0\} \rightarrow \mathbb{R}^{\mathbb{N}}$ be given by

$$
Q_{\varepsilon}(u)=\frac{\int_{\mathbb{R}^{\mathbb{N}}} \chi(\varepsilon z)|u|^{p} \mathrm{~d} z}{\int_{\mathbb{R}^{\mathbb{N}}}|u|^{p} \mathrm{~d} z}
$$

where $\chi: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}, \chi(z)=z$ for $|z| \leq r_{0}$, and $\chi(z)=r_{0} z /|z|$ for $|z|>r_{0}$. For every $1 \leq i \leq k$, define

$$
\begin{aligned}
& O_{\varepsilon}^{i}=\left\{u \in M_{\varepsilon, \lambda}^{-}| | Q_{\varepsilon}(u)-a^{i} \mid<\rho_{0}\right\} ; \\
& \partial O_{\varepsilon}^{i}=\left\{u \in M_{\varepsilon, \lambda}^{-}| | Q_{\varepsilon}(u)-a^{i} \mid=\rho_{0}\right\} ; \\
& \beta_{\varepsilon, \lambda}^{i}=\inf _{u \in O_{\varepsilon}^{e}} J_{\varepsilon, \lambda}(u) \quad \text { and } \quad \bar{\beta}_{\varepsilon, \lambda}^{i}=\inf _{u \in \partial O_{\varepsilon}^{i}} J_{\varepsilon, \lambda}(u) .
\end{aligned}
$$

By Lemma 4.3, there is $t_{\varepsilon}^{i}>0$ such that $t_{\varepsilon}^{i} w_{\varepsilon}^{i}>0 \in M_{\varepsilon, \lambda}$ for every $1 \leq i \leq k$.
Lemma 4.4. There is $0<\varepsilon^{0} \leq \varepsilon_{0}$ such that if $\varepsilon<\varepsilon^{0}$, then $Q_{\varepsilon}\left(\left(t_{\varepsilon}^{i}\right)^{-} w_{\varepsilon}^{i}\right) \in \mathbf{K}_{\frac{\rho_{0}}{2}}$ for every $1 \leq i \leq k$.
Proof. Since

$$
\begin{aligned}
Q_{\varepsilon}\left(\left(t_{\varepsilon}^{i}\right)^{-} w_{\varepsilon}^{i}\right) & =\frac{\int_{\mathbb{R}^{\mathbb{N}}} \chi(\varepsilon z)\left|w\left(z-\frac{a^{i}}{\varepsilon}\right)\right|^{p} \mathrm{~d} z}{\int_{\mathbb{R}^{\mathbb{N}}}\left|w\left(z-\frac{a^{i}}{\varepsilon}\right)\right|^{p} \mathrm{~d} z} \\
& =\frac{\int_{\mathbb{R}^{\mathbb{N}}} \chi\left(\varepsilon Z+a^{i}\right)|w(z)|^{p} \mathrm{~d} z}{\int}|w(z)|^{p} \mathrm{~d} z \rightarrow a^{i} \quad \text { as } \varepsilon \rightarrow 0^{+}
\end{aligned}
$$

There is $\varepsilon^{0}>0$ such that

$$
Q_{\varepsilon}\left(\left(t_{\varepsilon}^{i}\right)^{-} w_{\varepsilon}^{i}\right) \in \mathbf{K}_{\frac{\rho_{0}}{2}} \quad \text { for every } \varepsilon<\varepsilon^{0} \text { and every } 1 \leq i \leq k
$$

This completes the proof.
Lemma 4.5. There is a number $\delta>0$ such that if $u \in \Omega$ and $I_{\max }(u) \leq \gamma_{\max }+\delta$ then $Q_{\varepsilon}(u) \in \mathbf{K}_{\frac{\rho_{0}}{2}}$ for every $0<\varepsilon<\varepsilon^{0}$.

Proof. On the contrary, there exist the sequences $\left\{\varepsilon_{n}\right\} \subset \mathbb{R}^{+}$and $\left\{u_{n}\right\} \in \Omega$ such that $\varepsilon_{n} \rightarrow 0^{+}$. $I_{\varepsilon_{n}}\left(u_{n}\right)=\gamma_{\max }(>0)+o_{n}(1)$ as $n \rightarrow \infty$ and $Q_{\varepsilon_{n}}\left(u_{n}\right) \notin \mathbf{K}_{\frac{\rho_{0}}{2}}$ for all $n \in \mathbb{N}$. It is not difficult to find that $\left\{u_{n}\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$. Suppose that

$$
\int_{\mathbb{R}^{\mathbb{N}}}\left|u_{n}\right|^{p} \mathrm{~d} z \rightarrow 0, \quad \text { as } n \rightarrow \infty, \quad u_{n} \rightarrow 0
$$

strongly in $L^{p}\left(\mathbb{R}^{\mathbb{N}}\right)$. Since

$$
\left\|u_{n}\right\|_{H}^{2}=\int_{\mathbb{R}} a\left(\varepsilon_{n} z\right)\left(u_{n}\right)_{+}^{p} \mathrm{~d} z, \quad \text { for every } n \in \mathbb{N}
$$

then

$$
I_{\varepsilon_{n}}\left(u_{n}\right)=\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{\mathbb{N}}} a\left(\varepsilon_{n} z\right)\left(u_{n}\right)^{p} \mathrm{~d} z=\gamma_{\max }(>0)+o_{n}(1) \leq o_{n}(1) .
$$

That is a contradiction. Then

$$
\int_{\mathbb{R}^{\mathbb{N}}}|u|^{p} \mathrm{~d} z \nrightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Thus $u_{n} \nrightarrow 0$ strongly in $L^{p}\left(\mathbb{R}^{\mathbb{N}}\right)$. Also the concentration - compactness principle (see Wang [7, Lemma 2.16],then there is a fixed $d_{0}>0$ and a sequence $\left\{\overline{z_{n}}\right\} \subset \mathbb{R}^{\mathbb{N}}$ such that

$$
\begin{equation*}
\int_{B^{N}\left(\bar{z}_{n}: 1\right)}\left|u_{n}(z)\right|^{2} \mathrm{~d} z \geq d_{0}>0 \tag{4.2}
\end{equation*}
$$

Suppose $v_{n}(z)=u_{n}\left(z+\overline{z_{n}}\right)$ then there a subsequence $\left\{v_{n}\right\}$ and $v \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$ such that $v_{n} \rightharpoonup v$ weakly in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$. Using the same computation in Lemma 2.11. There is a sequence $\left\{s_{\text {max }}^{n}\right\} \subset \mathbb{R}^{+}$such that $\overline{v_{n}}=s_{\text {max }}^{n} v_{n} \in \Omega$ and

$$
0<\gamma_{\max } \leq I_{\max }\left(\overline{v_{n}}\right) \leq I_{\varepsilon_{n}}\left(s_{\max }^{n} u_{n}\right) \leq I_{\varepsilon_{n}}\left(u_{n}\right)=\gamma_{\max }(>0)+o_{n}(1)
$$

as $n \rightarrow \infty$.
We conclude that a convergent subsequence $\left\{s_{\max }^{n}\right\}$ satisfy $s_{\max }^{n} \rightarrow s_{0}>0$. Then there are subsequences $\left\{\overline{v_{n}}\right\}$ and $\bar{v} \in H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$ such that $\overline{v_{n}}-\bar{v}\left(=s_{0} v\right)$ weakly in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$. By (4.2), then $\bar{v} \neq 0$. Furthermore, we can obtain that $\overline{v_{n}} \rightarrow \bar{v}$ strongly in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$, and $I_{\max }(\bar{v})=\gamma_{\text {max }}$. Now, we try to indicate that there is a subsequence $\left\{z_{n}\right\}=\left\{\varepsilon_{n} \overline{z_{n}}\right\}$ such that $z_{n} \rightarrow z_{0} \in \mathbf{K}$.
(i) Claim that the sequence $\left\{z_{n}\right\}$ is bounded in \mathbb{R}^{N}. On the contrary, assume that $\left|z_{n}\right| \rightarrow \infty$, then

$$
\begin{aligned}
& \gamma_{\max }=I_{\max }(\bar{v})<I_{\infty}(\bar{v}) \\
\leq & \liminf _{n \rightarrow \infty}\left[\frac{1}{2}\left\|\overline{v_{n}}\right\|_{H}^{2}-\frac{1}{P} \int_{\mathbb{R}^{\mathbb{N}}} a\left(\varepsilon_{n} z+z_{n}\right)\left(\overline{v_{n}}\right)_{+}^{p} \mathrm{~d} z\right] \\
= & \liminf _{n \rightarrow \infty}\left[\frac{\left(s_{\max }^{n}\right)^{2}}{2}\left\|u_{n}\right\|_{H}^{2}-\frac{\left(s_{\max }^{n}\right)^{p}}{p} \int_{\mathbb{R}^{\mathbb{N}}} a\left(\varepsilon_{n} z\right)\left(u_{n}\right)_{+}^{p} \mathrm{~d} z\right] \\
= & \liminf _{n \rightarrow \infty} I_{\varepsilon_{n}}\left(s_{\max }^{n} u_{n}\right) \leq \liminf _{n \rightarrow \infty} I_{\varepsilon_{n}}\left(u_{n}\right)=\gamma_{\max },
\end{aligned}
$$

that is a contradiction.
(ii) Claim that $z_{0} \in \mathbf{K}$. On the contrary, assume that $z_{0} \notin \mathbf{K}$, that is $a\left(z_{0}\right)<a_{\text {max }}$. Then using the above argument to obtain that

$$
\begin{aligned}
\gamma_{\max } & =I_{\max }(\bar{v})<\frac{1}{2}\left\|\overline{v_{n}}\right\|_{H}^{2}-\frac{1}{P} \int_{\mathbb{R}^{\mathbb{N}}} a(z)\left(\overline{v_{n}}\right)_{+}^{p} \mathrm{~d} z \\
& \leq \liminf \left[\frac{1}{2}\left\|\overline{v_{n}}\right\|_{H}^{2}-\frac{1}{P} \int_{\mathbb{R}^{\mathbb{N}}} a\left(\varepsilon_{n} z+z_{n}\right)\left(\overline{v_{n}}\right)_{+}^{p} \mathrm{~d} z\right] \\
& =\gamma_{\max }
\end{aligned}
$$

that is a contradiction. Since $v_{n} \rightharpoonup v \neq 0$ in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$, we have that

$$
Q_{\varepsilon_{n}}\left(u_{n}\right)=\frac{\int_{\mathbb{R}^{\mathbb{N}}} \chi\left(\varepsilon_{n} z\right)\left|v_{n}\left(z-\overline{z_{n}}\right)\right|^{p} \mathrm{~d} z}{\int_{\mathbb{R}^{\mathbb{N}}}\left|v_{n}\left(z-\overline{z_{n}}\right)\right|^{p} \mathrm{~d} z}=\frac{\int_{\mathbb{R}^{\mathrm{N}}} \chi\left(\varepsilon_{n} z+\varepsilon_{n} \overline{\overline{z_{n}}}\right)\left|v_{n}\right|^{p} \mathrm{~d} z}{\int_{\mathbb{R}^{\mathbb{N}}}\left|v_{n}\right|^{p} \mathrm{~d} z} \rightarrow z_{0} \subset \mathbf{K}_{\frac{x_{0}}{2}}
$$

as $n \rightarrow \infty$, that is a contradiction.
Hence, there is a number $\delta>0$ such that if $u \in \Omega$ and $I_{\max }(u) \leq \gamma_{\max }+\delta$. Then $Q_{\varepsilon}(u) \in$ $\mathrm{K}_{\frac{x_{0}}{2}}$ for every $c<\varepsilon^{0}$. Choosing $0<\delta_{0}<\delta$ such that

$$
\begin{equation*}
\gamma_{\max }+\delta_{0}<\gamma_{\max }-C_{0} \lambda^{\frac{2}{2-q}}, \quad \text { for every } 0<\varepsilon \leq \varepsilon^{0} \tag{4.3}
\end{equation*}
$$

This completes the proof.
Lemma 4.6. If $u \in M_{\varepsilon, \lambda}^{-}$and $J_{\varepsilon, \lambda}(u) \leq \gamma_{\max }+\frac{\delta_{0}}{2}$, then there is a number $\Lambda^{*}>0$ so that $Q_{\varepsilon}(u) \in \mathbf{K}_{\frac{x_{0}}{2}}$ for every $0<\varepsilon<\Lambda^{*}$.

Proof. We apply the same computation in Lemma 2.11 to obtain that there is a unique positive number

$$
s_{\varepsilon}^{u}=\left(\frac{\|u\|_{H}^{2}}{\int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z) u_{+}^{p} \mathrm{~d} z}\right)^{\frac{1}{p-2}}
$$

so that $s_{\varepsilon}^{u} u \in \Omega$ we want to show that $s_{\varepsilon}^{u}<C$ for some $C>0$ (independent of u). First, since $u \in M_{\varepsilon, \lambda}$

$$
0<d_{0} \leq \alpha_{\varepsilon, \lambda}^{-} \leq J_{\varepsilon, \lambda}(u) \leq \gamma_{\max }+\frac{\delta_{0}}{2}
$$

since $\left\langle J_{\varepsilon, \lambda}^{\prime}(u), u\right\rangle=0$, then

$$
\gamma_{\max }+\frac{\delta_{0}}{2} \geq J_{\varepsilon, \lambda}(u)=\left(\frac{1}{2}-\frac{1}{q}\right)\|u\|_{H}^{2}+\left(\frac{1}{q}-\frac{1}{p}\right) \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z)\|u\|^{p} \mathrm{~d} z \geq \frac{q-2}{2 q}\|u\|_{H}^{2},
$$

that is

$$
\|u\|_{H}^{2} \geq C_{1}=\frac{2 q}{q-2}\left(\gamma_{\max }+\frac{\delta_{0}}{2}\right)
$$

and

$$
d_{0} \leq J_{\varepsilon, \lambda}(u)=\left(\frac{1}{2}-\frac{1}{p}\right)\|u\|_{H}^{2}+\left(\frac{1}{q}-\frac{1}{p}\right) \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z)\|u\|^{p} \mathrm{~d} z \geq \frac{p-2}{2 p}\|u\|_{H}^{2},
$$

that is

$$
\begin{equation*}
\|u\|_{H}^{2} \geq C_{2}=\frac{2 P}{P-2} d_{0} . \tag{4.4}
\end{equation*}
$$

Moreover, we have that $J_{\varepsilon, \lambda}$ is coercive on $M_{\varepsilon, \lambda}$, then $0<C_{2}<\|u\|_{H}^{2}<C_{1}$ for some C_{1} and C_{2} (independent of u). Next, we claim that $\|u\|_{L^{p}}^{p}>C_{3}>0$ for some C_{3} (independent of u). On the contrary, there is a sequence $\left\{u_{n}\right\} \subset M_{\varepsilon, \lambda}^{-}$so that $\left\|u_{n}\right\|_{L^{p}}^{p}=o_{n}(1)$ as $n \rightarrow \infty$. By (2.3)

$$
\frac{2-q}{p-q}<\frac{\int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z)\left\|u_{n}\right\|_{+}^{p} \mathrm{~d} z}{\|u\|_{H}^{2}} \leq \frac{a_{\max }\|u\|_{L^{p}}^{p}}{C_{2}}=o_{n}(1),
$$

that is a contradiction. Thus, $s_{\varepsilon}^{u}<C$ for some $C>0$ (independent of u). Now, we get that

$$
\begin{aligned}
\gamma_{\max }+\frac{\delta_{0}}{2} & \geq J_{\varepsilon, \lambda}(u)=\sup _{t \geq 0} J_{\varepsilon, \lambda}(t u) \geq J_{\varepsilon, \lambda}\left(s_{\varepsilon}^{u} u\right) \\
& =\frac{1}{2}\left\|s_{\varepsilon}^{u} u\right\|_{H}^{2}-\frac{1}{p} \int_{\mathbb{R}^{\mathbb{N}}} a(\varepsilon z)\left\|s_{\varepsilon}^{u} u\right\|_{+}^{p} \mathrm{~d} z-\frac{1}{q} \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)\left(s_{\varepsilon}^{u} u\right)_{+}^{q} \mathrm{~d} z \\
& \geq I_{\max }\left(s_{\varepsilon}^{u} u\right)-\frac{1}{q} \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)\left(s_{\varepsilon}^{u} u\right)_{+}^{q} \mathrm{~d} z .
\end{aligned}
$$

Form the above inequality, we conclude that

$$
\begin{aligned}
I_{\varepsilon}\left(s_{\varepsilon}^{u} u\right) & \leq \gamma_{\max }+\frac{\delta_{0}}{2}+\frac{1}{q} \int_{\mathbb{R}^{\mathbb{N}}} \lambda h(\varepsilon z)\left(s_{\varepsilon}^{u} u\right)_{+}^{q} \mathrm{~d} z \\
& \leq \gamma_{\max }+\frac{\delta_{0}}{2}+\lambda\|h\|_{\#} S^{q}\left\|s_{\varepsilon}^{u} u\right\|_{H}^{q} \\
& <\gamma_{\max }+\frac{\delta_{0}}{2}+\lambda C^{q}\left(C_{1}\right)^{\frac{q}{2}}\|h\|_{\#} S^{q} .
\end{aligned}
$$

Hence, there is $0<\Lambda^{*} \leq \varepsilon^{0}$ such that for $0<\varepsilon \leq \Lambda^{*}$

$$
I_{\max }\left(s_{\varepsilon}^{u} u\right) \leq \gamma_{\max }+\delta_{0}, \quad \text { where } s_{\varepsilon}^{u} u \in \Omega
$$

By Lemma 4.6, we get

$$
Q_{\varepsilon}\left(s_{\varepsilon}^{u} u\right)=\frac{\int_{\mathbb{R}^{\mathbb{N}}} \chi(\varepsilon z)\left|s_{\varepsilon}^{u} u(z)\right|^{p} \mathrm{~d} z}{\int_{\mathbb{R}^{\mathbb{N}}}\left|s_{\varepsilon}^{u} u(z)\right|^{p} \mathrm{~d} z} \in \mathbf{K}_{\frac{x_{0}}{2}}, \quad \text { for every } 0<\varepsilon<\Lambda^{*},
$$

or $Q_{\varepsilon} \in \mathbf{K}_{\frac{x_{0}}{2}}$.

Applying the above lemma, we get that

$$
\begin{equation*}
\overline{\beta_{\varepsilon, \lambda}^{i}} \geq \gamma_{\max }+\frac{\delta_{0}}{2}, \quad \text { for every } 0<\varepsilon<\Lambda^{*} \tag{4.5}
\end{equation*}
$$

By Lemmas 4.3, 4.4, and Eq. (4.3), there every $0<\varepsilon^{*}<\Lambda^{*}$. So that

$$
\begin{equation*}
\left.\beta_{\varepsilon, \lambda}^{i} \leq J_{\varepsilon, \lambda}\left(\left(t_{\varepsilon}^{i}\right)^{-}\right) w_{\varepsilon}^{i}\right) \leq \gamma_{\max }+\frac{\delta_{0}}{3}<\gamma_{\max }-C_{0} \lambda^{\frac{2}{2-\eta}} \tag{4.6}
\end{equation*}
$$

This completes the proof.
Lemma 4.7. Given $u \in O_{\varepsilon}^{i}$, then there is an $\eta>0$ and differentiable functional $l: B(0 ; \eta) \subset$ $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right) \rightarrow \mathbb{R}^{+}$such that

$$
l(0)=1, l(v)(u-v) \in O_{\varepsilon}^{i}, \quad \text { for every } v \in B(0 ; \eta)
$$

and

$$
\begin{equation*}
\left.\left\langle l^{\prime}(v), \phi\right\rangle\right|_{(l, v)=(1,0)}=\frac{\left\langle\psi_{\varepsilon, \lambda}^{\prime}(u), \phi\right\rangle}{\left\langle\psi_{\varepsilon, \lambda}^{\prime}(u), u\right\rangle}, \quad \text { for every } \phi \in C_{c}^{\infty}\left(\mathbb{R}^{\mathbb{N}}\right) \tag{4.7}
\end{equation*}
$$

where $\psi_{\varepsilon, \lambda}(u)=\left\langle J_{\varepsilon, \lambda}^{\prime}(u), u\right\rangle$.
Proof. See Cao and Zhou [8].
Lemma 4.8. For each $1 \leq i \leq k$, there is a $(P S)_{\beta_{\varepsilon, \lambda}^{i}}$-sequence $\left\{u_{n}\right\} \subset O_{\varepsilon}^{i}$ in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$ for $J_{\varepsilon, \lambda}$.
Proof. See [1, Lemma 4.7].
Theorem 4.1. According to a_{1}, a_{2}, h_{1}, there is a positive number $\left(\varepsilon^{*}\right)^{-2}$ such that for $\lambda, \mu>$ $\left(\varepsilon^{*}\right)^{-2}$, Eq. $\left(E_{\lambda, \mu}\right)$ has $k+1$ positive solution in $\mathbb{R}^{\mathbb{N}}$.

Proof. We know that there is a $(P S)_{\beta_{\varepsilon, \lambda}^{i}}$-sequence $\left\{u_{n}\right\} \subset M_{\varepsilon, \lambda}^{-}$in $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$ for $J_{\varepsilon, \lambda}$ for every $1 \leq i \leq k$, and (4.5). Since $J_{\varepsilon, \lambda}$ satisfy the $(P S)_{\beta}$-condition for $\beta \in\left(-\infty, \gamma_{\max }-C_{0} \lambda^{\frac{2}{2-q}}\right)$, then $J_{\varepsilon, \lambda}$ has at least k critical points in $M_{\varepsilon, \lambda}^{-}$for $0<\varepsilon \leq \varepsilon^{*}$. It follows that Eq. $\left(E_{\lambda, \mu}\right)$ has k nonnegative solution in $\mathbb{R}^{\mathbb{N}}$. Applying the maximum principle and Theorem 3.4, Eq. $\left(E_{\varepsilon, \lambda}\right)$ has $k+1$ positive solution in $\mathbb{R}^{\mathbb{N}}$.

References

[1] Lin H. L., Multiple positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in $\mathbb{R}^{\mathbb{N}}$. Boundary value problems 2012 (2012), 24.
[2] Ambrosetti A., Brezis H., Cerami G., Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122 (1994), 519-543.
[3] Wu T. F., On semilinear elliptic equations involving concave-convex nonlinearities and signchanging weight function. J. Math. Anal. Appl. 318 (2006), 253-270.
[4] Hsu T. S., Lin H. L., Four positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in $\mathbb{R}^{\mathbb{N}}$. J. Math. Anal. Appl. 365 (2010), 758-775.
[5] Tarantello G., On nonhomogeneous elliptic involving critical Sobolev exponent. Ann. Inst. H. Poincare Anal. Non Lmeaire 9 (1992), 281-304.
[6] Brown K. J., Zhang Y., The Nehari manifold for a semilinear elliptic equation with a signchanging weight function. J. Diff. Equ. 193 (2003), 481-499.
[7] Wang H. C. Palais-Smale approaches to semilinear elliptic equations in unbounded. Electron. J. Diff. Equ. Monogragh 06 (2004), 142.
[8] Cao D. M., Zhou H. S., Multiple positive solutions of nonhomogeneous semilinear elliptic equations in $\mathbb{R}^{\mathbb{N}}$. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 443-463.
[9] Miotto M. L., O. H, Multiple positive solutions for semilinear Dirchlet problems with signchanging weight function in infinite strip domains. Nonlinear Anal. 71 (2009), 3434-3447.

[^0]: *Corresponding author. Email addresses: s.khademloo@nit.ac.ir (S. Khademloo), rm_omran78@yahoo.com (R. Mohsenhi)

