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Abstract. In this paper, a conservative fifth-order upwind compact scheme using cen-
tered stencil is introduced. This scheme uses asymmetric coefficients to achieve the up-
wind property since the stencil is symmetric. Theoretical analysis shows that the pro-
posed scheme is low-dissipative and has a relatively large stability range. To maintain
the convergence rate of the whole spatial discretization, a proper non-periodic bound-
ary scheme is also proposed. A detailed analysis shows that the spatial discretization
implemented with the boundary scheme proposed by Pirozzoli [J. Comput. Phys., 178
(2001), pp. 81–117] is approximately fourth-order. Furthermore, a hybrid methodology,
coupling the compact scheme with WENO scheme, is adopted for problems with dis-
continuities. Numerical results demonstrate the effectiveness of the proposed scheme.
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1 Introduction

In recent years, high-order compact schemes have attracted much attention in various
fields, such as simulation of incompressible or compressible flows, computational aeroa-
coustics, and computational electromagnetics [1–4]. Compact schemes can be viewed as
weighted averages of explicit difference schemes at several adjacent points. Hence, these
schemes are implicit ones and often produce tri-diagonal or penta-diagonal linear sys-
tems which could be solved by many effective algorithms. Compared with those explicit
finite difference schemes, compact schemes use narrower stencil and show better spec-
tral resolution property when offering the same order of approximation. Therefore, for
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problems with wide range of spatial and temporal scales, compact schemes should be a
good choice. For such multi-scale problems, spectral methods may do the best. Howev-
er, they are used mostly for problems with simple geometries and boundary conditions.
Another type of difference schemes, the dispersion-relation-preserving (DRP) schemes,
optimizes the coefficients of the schemes in order to resolve short waves whose wave-
length is small with respect to the computational grid [5]. Since for long waves even
lower order scheme can do fairly well, DRP schemes can be another choice for the prob-
lems mentioned above. However, they perform poorly for longer distances of travel if
optimization is too aggressive [6].

A systematic analysis to high-order accurate, central stencil schemes appropriate for
problems with a wide range of scales was presented by Lele [7]. However, for advec-
tion dominated problems, central high-order compact schemes lack some robustness be-
cause there is no built-in dissipation term in the schemes. A filtering procedure could be
used to cure this problem. Otherwise, an artificial viscosity term has to be added into
the scheme to improve the robustness of the scheme. Another choice is using upwind
schemes which have inherent dissipation. Since difference schemes usually achieve the
highest convergence order on their grid stencils and no effort has been made to optimize
the resolution properties, the stencils used by upwind compact schemes are often upwind
biased [8, 9]. However, there are some researches about upwind schemes using centered
stencils [10, 11], whose coefficients are no longer symmetric. Compared with the central
schemes on the same stencils, these schemes are usually degraded by one convergence
order, and a free parameter is left to optimize the resolution property.

For problems involving discontinuities, compact schemes mentioned above will pro-
duce oscillations whose amplitude does not decrease when the grid is refined. To over-
come this difficulty, nonlinear procedures should be employed. One way is to modify
the compact schemes by using the ideas of TVD, WENO [12], or other kinds of lim-
iter [13]. Hybridization with shock capturing schemes could be another kind of ways
which take into account high resolution, high efficiency and good robustness. There are
some works about hybrid compact ENO/WENO schemes [11, 14, 15], among which the
hybrid methodology of Ren et al. shows the best resolution [16, 17].

The compact schemes proposed by Lele [7] need special boundary treatment to main-
tain the global conservation. However, conservative compact schemes guarantee the con-
servation without additional treatment [14]. Furthermore, the shock capturing schemes
are usually conservative which is necessary for converging to the right solution when the
grid is refined. Therefore, it should be better to use a conservative scheme for hybridiza-
tion with shock capturing schemes. But the order of boundary treatment of conservative
schemes should be analyzed carefully because the two adjacent fluxes of the boundary
point may employ different schemes, which will be shown in the present work.

In this paper, a set of conservative upwind compact schemes with a free parameter
using a centered stencil are given firstly. Following the method in [10], this free parameter
is set to satisfy the condition that the dissipation errors of the compact scheme are smaller
or comparable to the corresponding phase errors. Next, the boundary treatment is given
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to maintain the convergence rate of the inner scheme. After that, the stability property of
the spatial discretization and the whole discretization including the time integration are
analyzed. Then, the hybridization method of the proposed scheme with WENO scheme
is introduced for problems with discontinuities. At last, the numerical investigation is
performed, where the high accuracy and the low-dissipation property of the proposed
scheme are demonstrated.

2 A fifth-order conservative compact scheme

2.1 Conservative compact scheme

Conservative compact schemes have advantages over those non-conservative counter-
parts in the following two aspects. The first is that they need no special treatment to
maintain the global conservation, and the other is that it may be a better choice for cou-
pling with shock capturing schemes than those non-conservative ones. In this subsection,
the formulation of conservative approximations to the derivative of a scalar variable u(x)
from point-wise values is given.

Consider a scalar variable u(x) and a uniform grid xi= ih, i=1,2,··· ,N, where h is the
grid length. Let

ui=u(xi), i=1,2,··· ,N.

To get a conservative approximation to u′(x) at node xi, the problem is to determine the
numerical flux at the intermediate node. Suppose that the approximation to u′(x) is k-th
order accurate, that is

1

h
(ũi+1/2−ũi−1/2)=u′(xi)+O(hk), i=1,2,··· ,N, (2.1)

where ũi+1/2 and ũi−1/2 are the numerical fluxes which need to be determined.
In order to analyze the relation between the formula of numerical flux and the con-

vergence order of Eq. (2.1), a function s(x) is considered which is given implicitly by

u(x)=
1

h

∫ x+h/2

x−h/2
s(ξ)dξ . (2.2)

Differentiating this equality at xi, we have

u′(xi)=
1

h

(

si+1/2−si−1/2

)

, (2.3)

where si+1/2 = s(xi+1/2). A k-th order approximation to si+1/2 can meet the condition of
Eq. (2.1) in most cases:

ũi+1/2= s(xi+1/2)+O(hk). (2.4)
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It seems that an O(hk+1) term is needed to satisfy Eq. (2.1). In practice, the O(hk)
term is usually smooth. Hence, the difference in Eq. (2.1) would give an extra h, just to
cancel the one in the dominator. However, the smooth property of the O(hk) term will be
violated when two adjacent fluxes use different kind of schemes, resulting in degradation
of the convergence accuracy. This could happen at the boundary treatment which will be
discussed later.

Now we will construct the numerical flux which should meet the condition of E-
q. (2.1). A compact reconstruction of u(x) around the intermediate node xi+1/2 can be
written as:

L2

∑
l=−L1

al ũi+1/2+l =
M2

∑
m=−M1

bmui+m. (2.5)

Assuming that the function s(x) can be expanded in Taylor series up to order k,

s(x)=
k−1

∑
n=0

s(n)(xi+1/2)
(x−xi+1/2)

n

n!
+O(hk).

Let Eq. (2.4) hold, then

ũi+1/2+l =s(xi+1/2+l)+O(hk)=
k−1

∑
n=0

s(n)(xi+1/2)
(xi+1/2+l−xi+1/2)

n

n!
+O(hk)

=
k−1

∑
n=0

s(n)(xi+1/2)
ln

n!
hn+O(hk). (2.6)

According to the definition of function s(x), we have

ui+m=
Si+m+1/2−Si+m−1/2

h
,

where S(x) is one of the primitive function of s(x),

S(x)=
k−1

∑
n=0

s(n)(xi+1/2)
(x−xi+1/2)

n

(n+1)!
+O(hk+1).

Thus,

ui+m=
k−1

∑
n=0

s(n)(xi+1/2)
1

(n+1)!
[mn+1−(m−1)n+1]+O(hk). (2.7)

Replacing ũ and u in Eq. (2.5) with the Taylor series expansions, and matching the coeffi-
cients of powers of h up to k-th order, we get

(n+1)
L2

∑
l=−L1

al l
n−

M2

∑
m=−M1

bm

[

mn+1−(m−1)n+1]=0, n=0,··· ,k−1. (2.8)

Then, the coefficients of the compact scheme can be obtained by solving Eq. (2.8).
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2.2 A fifth-order conservative compact scheme

In the previous subsection, the general formula of the conservative compact scheme is
given. With this formula, a fifth-order conservative compact scheme will be constructed
in this subsection. Here the case L1 = L2 = M1 = 1, M2 = 2 is considered which means
that the stencil is symmetric. According to Eq. (2.8), there are L1+L2+1+M1+M2+1=7
unknown coefficients and only six of them are independent (one could set any coefficient
to be 1). Let the order requirement be k= 5, a set of one-parameter fifth-order compact
schemes can be obtained as

(12−6α)ũi−1/2+36ũi+1/2+(12+6α)ũi+3/2

=(1−α)ui−1+(29−9α)ui+(29+9α)ui+1+(1+α)ui+2. (2.9)

The only sixth-order compact scheme is achieved when α= 0 which is a central scheme
without built-in dissipation. The compact scheme using upwind biased stencil can also
be achieved when α=±1, where the sign is chosen by the upwind direction. This is the
scheme extensively analyzed by Pirozzoli [14] which shows good resolution property.
But sometimes it may be somewhat dissipative. However, α could be chosen such that
the scheme is robust and is less dissipative than the scheme using an upwind-biased
stencil.

Here the resolution property of Eq. (2.9) will be analyzed. Consider a monochromatic
wave with a scaled wavenumber κ

f (x)= eiκx/h.

The first derivative of f will be

f ′=
iκ

h
eiκx/h =

iκ

h
f .

For difference scheme, we could get a formula in a similar form as below

f̃ ′=
iκ̃

h
f ,

where f̃ ′ is the numerical approximation to the first order derivative, and κ̃ is the effective
wavenumber which can be viewed as an approximation to κ. For the scheme in Eqs. (2.1)-
(2.9),

κ̃=2sin
κ

2

∑
M2
m=−M1

bmeimκ

∑
L2

l=−L1
alei(l+1/2)κ

. (2.10)

κ̃ will be used for measuring the dissipation and dispersion error of the scheme. Here,
the linear advection equation is considered

∂u

∂t
+c

∂u

∂x
=0, a≤ x≤b, (2.11)
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Figure 1: Phase errors and dissipation errors with several values of α. The three solid lines from top to bottom
correspond to the phase errors of the schemes using α values of 0, −0.5 and −1, respectively.

where c>0. Let the initial condition be u(x,0)= f (x)=eiκx/h. Then the exact solution will
be

u(x,t)= f (x−ct)= eiκ(x−ct)/h = ei(κx−cκt)/h. (2.12)

If the scheme in Eqs. (2.1)-(2.9) is employed as the spatial discretization and the temporal
discretization error is ignored, the solution will be

ũ(x,t)= ei(κx−cκ̃t)/h. (2.13)

Compared this solution with the exact solution, the only difference is that one of the vari-
ant κ is replaced by κ̃. Moreover, the real part and the imaginary part of the difference
between κ̃ and κ will lead to the dispersive and dissipative error respectively. Here the
real part and the imaginary part of κ̃−κ will be used to indicate the dimensionless dis-
persive and dissipative error. Since the imaginary part of κ is always zero for 0≤ κ ≤π
and positive error values are expected to be shown in the figure, these two errors are
indicated by κ−real(κ̃) and imag(−κ̃) respectively.

Fig. 1 shows the dispersion and dissipation errors of (4) with α at 0, −0.5 and −1.
The imaginary part of κ̃ vanishes for α= 0, which is not shown in the figure. Note that
α should be negative such that the difference scheme is upwind biased. As the value
of α decreases, the dissipation errors of the schemes will increase. Following the idea
in [10], the case that the dissipation errors of the scheme are smaller or comparable to
the dissipation error is considered. From this figure, this condition can be fulfilled by
−0.5< α< 0. Because some dissipation is necessary for the robustness of the scheme, a
balanced value of α=−0.5 is chosen in this paper. This scheme can be written as

15ũi−1/2+36ũi+1/2+9ũi+3/2=
3

2
ui−1+

67

2
ui+

49

2
ui+1+

1

2
ui+2. (2.14)
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3 Boundary treatment and time discretization

3.1 Boundary treatment

For non-periodic problem, a proper boundary scheme should be implemented which
is crucial to the formal order of and the stability of the whole scheme. It is sufficient
to maintain the convergence rate of the inner scheme with a one-order lower boundary
scheme [18]. Therefore, a fourth-order approximation at boundary points could be uti-
lized.

For compact scheme, the boundary schemes may not be the same as inner schemes
even if enough ghost points are used. Therefore, as mentioned in the previous section,
the boundary scheme may be suffered from a degradation of convergence order. Because
of implicit nature of the inner compact schemes, the analysis of the accuracy order of
the boundary treatment will be inconvenient. The following analysis is based on the
conservative explicit scheme and only has some reference significance to conservative
compact scheme. But the numerical investigation in later section validates the conclusion.

For example, let the grid nodes be x1,x2,··· ,xN . To get the numerical derivative of the
left boundary point x1, the numerical fluxes ũ1/2 and ũ3/2 should be given. Suppose that
these two fluxes meet the following equations

ũ1/2=S1/2+O(h4), ũ3/2=S3/2+O(h5),

where the formula of ũ1/2 is the boundary treatment and that of ũ3/2 is the inner scheme.
This boundary treatment is usually considered as a fourth-order accurate scheme and the
inner scheme is fifth-order accurate. However, the accuracy order of the approximation
to the derivative which is attained by two different kinds of numerical fluxes may be
degraded

ũ′
1=

1

h
(ũ3/2−ũ1/2)=

1

h
(S3/2−S1/2)+O(h3)=u′(x1)+O(h3).

This means that the approximation of the derivatives at point x1 is only third-order, which
will cause the overall accuracy to be fourth-order at most according to the conclusion
in [18]. In fact, Pirozzoli has proposed a boundary treatment for a fifth-order upwind
conservative compact scheme as below [14]

ũ1/2=
1

4
u0+

13

12
u1−

5

12
u2+

1

12
u3, (3.1a)

18ũi−1/2+36ũi+1/2+6ũi+3/2=2ui−1+38ui+20ui+1, i=1,··· ,N−1, (3.1b)

ũN+1/2=−
1

4
uN−3+

13

12
uN−2−

13

12
uN−1+

25

12
uN . (3.1c)

The scheme above is applied for right running waves. As for the left running waves,
the scheme could be attained symmetrically. For a nonlinear problem, a flux splitting
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procedure like Lax-Friedrichs splitting should be employed. In Eq. (3.1), an additional
ghost node x0 is used at the left boundary such that the physical boundary information
related to incoming disturbance could be imposed. The right boundary schemes do not
use any ghost node, which ensures that no signal downwind could influence the inner
flow. According to the analysis above, this spatial discretization would be fourth-order
in effect.

Therefore, formally fifth-order explicit boundary schemes should be employed here.
It ensures that the approximations to spatial derivative at the boundary reach fourth-
order which is necessary for the fifth-order of convergence of the whole spatial scheme.
The following is the boundary treatment for right running waves, and the boundary
treatment of left running waves can be achieved by symmetry

ũ1/2=
1

60
(12u0+77u1−43u2+17u3−3u4), (3.2a)

15ũi−1/2+36ũi+1/2+9ũi+3/2=
3

2
ui−1+

67

2
ui+

49

2
ui+1+

1

2
ui+2, i=1,··· ,N−2, (3.2b)

ũN−1/2=
1

60

(

−3uN−4+17uN−3−43uN−2+77uN−1+12uN

)

, (3.2c)

ũN+1/2=
1

60

(

12uN−4−63uN−3+137uN−2−163uN−1+137uN

)

. (3.2d)

Here the right boundary schemes are imposed on two points in contrast to one point in
Eq. (3.1). This is the result that the stencil of the inner scheme has one more point than
the stencil of the inner scheme of Eq. (3.1). This spatial discretization would be fifth-order
accurate according to the analysis above.

3.2 Stability of the semi-discrete scheme

In this subsection, the stability character of the compact scheme including the closures
given by Eq. (3.2) is analyzed. The spatial approximation procedure can be split in two
parts:

(i) AŨ=BU+b,
where Ũ=(u1/2,u3/2,··· ,uN+1/2)

T, U=(u1,u2,··· ,uN)
T, b=(u0/5,3u0/2,0,··· ,0)T, and

A=























1
15 36 9

15 36 9
. . .

. . .
. . .

15 36 9
1

1























,
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B=























77/60 −43/60 17/60 −1/20
67/2 49/2 1/2
3/2 67/2 49/2 1/2

. . .
. . .

. . .
. . .

3/2 67/2 49/2 1/2
−1/20 17/60 −43/60 77/60 1/5

1/5 −21/20 137/60 −163/60 137/60























.

(ii) U′=
1

h
CU, here

C=







−1 1
. . .

. . .

−1 1






.

Then the semi-discrete approximation to (2.11) is

Ut=−
c

h
CA−1(BU+b). (3.3)

The asymptotic stability condition for this equation, which is necessary for the stability
of long-time integration, is that all eigenvalues of matrix P=−CA−1B contain no posi-
tive real parts. Fig. 2 shows the eigenvalue spectra of the matrix P for N = 50, 200, 400.
It is obvious that all eigenvalues are on the left side of the imaginary axis for these dif-
ferent node points, which means that the asymptotic stability condition is satisfied. The
eigenvalue spectrum of P in the case of periodic boundary is also plotted with the solid
line in the figure. The eigenvalues with the presence of boundary treatment (Eq. (3.2))
lie inside the region of the spectrum for periodic boundary condition, indicating that this
boundary treatment stabilizes the overall numerical scheme.
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Figure 2: Spectrum of P for N=50, 200, 400 and the periodic condition.
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3.3 Stability of the full discretization

A proper time scheme should be implemented to complete the numerical algorithm.
In the present work, the fourth-order non-TVD Runge-Kutta scheme [12] is employed,
which could be written as

U(1)=Un+
1

2
∆tL(Un), U(2)=Un+

1

2
∆tL(U(1)), U(3)=Un+∆tL(U(2)),

Un+1=
1

3
(−Un+U(1)+2U(2)+U(3))+

1

6
∆tL(U(3)),

where L is the spatial operator.

The stability of the full discretization will be carried out by utilizing von Neumann
analysis which is appropriate for periodic problem. For the non-periodic case, this analy-
sis could give a heuristic result and a matrix method would be more rigorous. However,
in the previous subsection, the boundary scheme imposed shows better stability than pe-
riodic boundary treatment, which ensures the practical applicability of a von Neumann
analysis. The spatial discretization could be expressed as the relation (2.10), named as
transfer function. The amplification factor for the full discretization is

g(κ)=
[

1+(−iσκ̃)+
1

2
(−iσκ̃)2+

1

6
(−iσκ̃)3+

1

24
(−iσκ̃)4

]

, (3.4)

where σ = c∆t/h is the Courant number, and κ̃ is given by Eq. (2.10). In Fig. 3, g(κ) is
plotted in polar coordinates for several values of κ. The von Neumann stability requires
that the condition |g(κ)|≤1 is satisfied for |κ|≤π. From the figure, the stable range of the
Courant number is

σ≤1.421, (3.5)

while the Courant number of upwind fifth-order compact scheme using biased stencil
(Eq. (2.9) with α=−1) with the same time integration method is σ≤1.034, which shows
that the proposed scheme has a larger range of stability.

 

 

σ=1

σ=1.421

σ=1.5
unit circle

Figure 3: Amplification factor for different Courant numbers.
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3.4 Convergence test

In this section, numerical tests on the convergence rate of the compact schemes including
the boundary closures are performed. Two spatial discretizations, Eqs. (3.1) and (3.2) are
tested. The linear advection equation Eq. (2.11) with advection speed c=1 is considered,
and the computational domain is −1≤ x≤ 1. Here the time step is set as ∆t∼∆x5/4, so
that the fourth-order non-TVD Runge-Kutta method is effectively fifth-order.

In Tables 1 and 2, the errors and the convergence rates of these two schemes at t= 1
for the initial condition u(x)=sin(πx) and boundary condition u(−1,t)=sin(π(−1−t))
are shown. The exact solution is uexact = sin(π(x−t)). In Tables 3 and 4, the initial con-
dition and boundary condition are set to u0(x)= sin4(πx) and u(−1,t)= sin4(π(−1−t))
respectively, then the exact solution is uexact=sin4(π(x−t)). It is clear that the spatial dis-
cretization (Eq. (3.1)) is actually fourth-order, because its boundary scheme is third-order
in effect, as mentioned in the previous section. The proposed discretization (Eq. (3.2))
achieves fifth-order of accuracy which should be owed to a revised boundary implemen-
tation.

Table 1: Accuracy of Pirozzoli’s scheme with initial condition u0(x)=sin(πx).

Node number L1 error L∞ error L1 order L∞ order
32 2.505835e-004 3.916371e-004
64 1.562229e-005 2.446612e-005 4.003614 4.000660

128 9.745787e-007 1.528567e-006 4.002684 4.000534
256 6.084378e-008 9.550225e-008 4.001597 4.000501

Table 2: Accuracy of the proposed scheme with initial condition u0(x)=sin(πx).

Node number L1 error L∞ error L1 order L∞ order
32 4.315639e-005 7.767370e-005
64 1.361171e-006 2.484943e-006 4.986654 4.966142

128 4.289418e-008 8.138891e-008 4.987922 4.932237
256 1.349553e-009 2.976401e-009 4.990228 4.773191

Table 3: Accuracy of Pirozzoli’s scheme with initial condition u0(x)=sin4(πx).

Node number L1 error L∞ error L1 order L∞ order
32 8.563053e-003 1.562180e-002
64 5.156418e-004 9.616685e-004 4.053684 4.021878

128 3.194247e-005 6.062458e-005 4.012821 3.987565
256 1.985865e-006 3.805754e-006 4.007637 3.993649

Table 4: Accuracy of the new scheme with initial condition u0(x)=sin4(πx).

Node number L1 error L∞ error L1 order L∞ order
32 5.614684e-003 1.045647e-002
64 1.768152e-004 2.898994e-004 4.988891 5.172700

128 5.632880e-006 9.109440e-006 4.972225 4.992046
256 1.772034e-007 2.854653e-007 4.990394 4.995975
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4 Coupling with WENO scheme

High-order linear schemes can perform well in smooth region, but for problems involv-
ing discontinuities these schemes produce oscillations whose amplitude does not de-
crease when the computational grids are refined. Of course, compact schemes mentioned
in the previous section suffer from this drawback. Shock capturing mechanism, such
as TVD compact schemes, weighted compact schemes, and hybrid schemes, should be
added in order to cure this deficiency. In hybrid methods, compact schemes are used in
smooth region while shock capturing methods are adopted only near the discontinuities.
Therefore, they are more efficient than other nonlinear compact schemes. The hybrid
methodology of Ren et al. [15] is adopted in this paper and will be briefly introduced. As
the compact sub-scheme employed in their hybrid scheme is just the fifth-order compact
scheme using upwind biased stencil corresponding to Eq. (2.9) with α =−1, it will be
replaced by the proposed compact scheme (Eq. (2.14)) in the following description.

This hybrid scheme is considered as the weighted average of two schemes: the com-
pact fifth-order upwind scheme and the WENO scheme. For the left running waves, the
compact scheme is

5

12
f̃i−1/2+ f̃i+1/2+

1

4
f̃i+3/2=

1

24
fi−1+

67

72
fi+

49

72
fi+1+

1

72
fi+2, (4.1)

which is just the proposed scheme in this work as the coefficient of f̃i+1/2 is set to be 1.
The shock capturing scheme is

f̃i+1/2=
1

6
ωo(2 fi−2−7 fi−1+11 fi)+

1

6
ω1(− fi−1+5 fi+2 fi+1)

+
1

6
ω2(2 fi+5 fi+1− fi+2), (4.2)

where ωk is the nonlinear weight and the formulas can be referred to [12]. As for the right
running waves, the two schemes can be attained by symmetry. For nonlinear problems,
flux-splitting procedure should be employed and the Roe splitting with entropy fix is
adopted in this hybrid method.

The weight of the compact scheme is σj+1/2 while that of the WENO scheme is (1−
σj+1/2). Here σj+1/2 is given by

σj+1/2=min
(

1,
rj+1/2

rc

)

,

where
rj+1/2 =min(rj,rj+1),

and

rj =
|2∆ f j+1/2∆ f j−1/2|+ε

(∆ f j+1/2)
2+(∆ f j−1/2)

2+ε
, ∆ f j+1/2 = f j+1− f j, ε=0.001.
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The shock capturing scheme which is more time-consuming will only be applied for
points near the discontinuities with this choice of weight.

For Euler equations, a characteristic decomposition approach is employed which is
more accurate than the component approach. But the characteristic-wise compact scheme
will lead to block-tri-diagonal systems of linear equations which will increase the com-
putational cost. For more details, please refer to [15].

5 Numerical investigation

In this section, numerical investigation will be carried out to test the capability of the pro-
posed scheme, called as ComCU5 here. For comparison, some schemes are also tested,
including the fifth-order upwind compact scheme (Eq. (2.9) with α=−1), the sixth-order
central compact scheme (Eq. (2.9) with α= 0), WENO scheme in [19], called as ComU5,
ComC6, and WENO-Z respectively. The hybrid method is only applied for the last test
case because there is a shock in that problem.

5.1 Two-dimensional rotation

This test case is the rotation of a Gaussian profile [20], given by

φ(x,y)=exp
(

−
r2

2σ2

)

,

with

r=

√

(x−xc)
2+(y−yc)

2,

where (xc,yc) is the center point of the profile and σ is a constant. In this case, the com-
putational domain is [0,30]×[0,30], and (xc,yc)=(15,22.5), σ=1. The governing equation
for the motion of φ is given by

∂φ

∂t
+

∂(uφ)

∂x
+

∂(vφ)

∂y
=0,

where u=−Ω(y−y0) and v =Ω(x−x0). Ω(= 2π/360) is the rotating angular velocity.
The axis of the rotation (x0,y0) is (15,15) in this case. The profile will keep the original
shape during the rotation. After one full rotation cycle, the distortion of the initial profile
will reflect the capability of the numerical schemes.

ComCU5, ComU5, ComC6 and WENO-Z are tested on a uniform grid of 41×41 with
a time step of ∆t = 0.25. Fig. 4 shows the exact solution (initial profile) and numerical
results. From the figure, the result of WENO-Z exhibits a serious damping of the Gaus-
sian profile while that of ComC6 shows obvious oscillation. The two upwind compact
schemes can preserve the profile well, while the profile of the ComCU5 is slimmer and
closer to the initial profile than that of ComU5. The peak values of these profiles are listed
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(a) (b)

(c) (d)

(e)

Figure 4: Perspective view of the initial profile and numerical results: (a) ComCU5; (b) ComU5; (c) ComC6;
(d) WENO-Z; (e) initial profile.

in Table 5. In this table, it is obvious that ComC6 gets the highest peak value while Com-
CU5 ranks the second. Overall, the proposed scheme (ComCU5) gives the best profile
shape, as compared with the initial profile.

Table 5: The peak value in the profile.

Method ComCU5 ComU5 ComC6 WENO-Z Exact
Peak value 0.884 0.846 0.921 0.587 1

5.2 Advection of an isentropic vortex

This test will validate the capability of the proposed scheme for long-time evolution.
In this problem, an isentropic vortex convects in an inviscid free steam. The state of the
mean flow is given by (ρ,u,v,p)=(1,1,0,1). The vortex can be described as a perturbation
to the velocity (u,v), temperature T = p/ρ, and entropy S= ln(p/ργ) of the mean flow
and it is denoted by the tilde values

u′= ετeα(1−τ2)sinθ, v′=−ετeα(1−τ2)cosθ,

S′=0, T′=−
(γ−1)ε2e2α(1−τ2)

4αγ
,
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(a) (b)

(c) (d)

Figure 5: Density contours of the convecting vortex at t=0, 100, 400 and 1000 using ComU5, equally spaced
18 contours, 0.91∼0.99.

where τ = r/R, r =
√

(x−xc)
2+(y−yc)

2
. Here ε indicates the strength of the vortex, α

controls the decay rate of the vortex, and r is the critical radius for which the vortex has
the maximum strength. These parameters are set as ε=0.3, R=0.5, α=0.204.

The computational domain is set as [0,10]×[−5,5] and the coordinates of the center
of initial vortex is (xc,yc)= (5,0). The mesh size is 41×41 and the time step size is set to
0.04. Periodic boundary conditions in both directions are implemented. This vortex will
return to the original position every non-dimensional time interval of ∆t=10. When the
time elapsed for m∆t (m is an integer), by comparing the vortex shape of the numerical
results with the initial one, the dissipative character of the scheme could be evaluated.

Two upwind compact schemes, ComCu5 and ComC5, are tested. The density con-
tours of the results of t=0, 100, 400 and 1000 are shown in Figs. 5 and 6. As seen in Fig. 5,
when t=100, the shape of vortex can be maintained well while the shape of t=400 shows
obvious distortion. The number of contour lines of t= 1000 are less than those of other
ones because the lowest density has achieved 0.962 as region of the contours is 0.91∼0.99.
This means that the vortex has been seriously damped. However, in Fig. 6 when t=1000,
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(a) (b)

(c) (d)

Figure 6: Density contours of the convecting vortex at t=0, 100, 400 and 1000 using ComCU5, equally spaced
18 contours, 0.91∼0.99.

(a) (b)

Figure 7: Density distributions of the convecting vortex along the center line at t=0, 100, 400 and 1000, (a)
ComU5, (b) ComCU5.

the shape of vortex is closer to the initial one than that in Fig. 5. This should be attributed
to less dissipation of the scheme ComCu5. The density distributions of computational
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results along the center line are plotted in Fig. 7, from which the same conclusion can be
drawn clearly.

Furthermore, the result of stability of the full discretization in subsection 3.3 is also
validated. According to our numerical results, in this test case, the maximum time step
sizes of ComC5 and ComCU5 for stable computation are 0.070 and 0.098 respectively. The
ratio of these two values is very close to the ratio of the two maximum Courant numbers
which is 1.034/1.421. Therefore, this numerical result proves that ComCU5 has a larger
range of stability than ComU5.

5.3 Shock-entropy wave interaction

This is a problem of one-dimensional Euler equation with the initial condition:

(ρ,u,p)=

{

(3.857143,2.629369,10.33333), −5≤ x<−4,

(1+0.2sin5x,0,1.0), −4≤ x≤5.

In this problem, an M = 3 shock wave interacts with a sine entropy wave of a density
ρ = 0.2, which will generate a number of shocklets and fine scales of structures. The
hybrid scheme proposed in this article with rc=0.3 is tested. For comparison, Ren et al.’s

Figure 8: Shock-entropy wave interaction: distribution of density for N=200.

Figure 9: Enlarged portion of Fig. 8.
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hybrid scheme (rc=0.3) and WENO-Z are also tested. Fig. 8 provides the density profiles
at t= 1.8 with N = 200. The solid line in the figure means ”exact solution” attained by
WENO5 scheme with 4000 nodes. Fig. 9 shows an enlarged portion of Fig. 8. From these
figures, although WENO-Z scheme can capture the post-shock entropy waves fairly well,
it performs worse than these two hybrid schemes. The present hybrid scheme performs
the best, which should be owed to the small dissipation of the proposed compact scheme.

6 Conclusions

A fifth-order conservative upwind compact scheme using a centered stencil has been
proposed in this work. Following the process in [10], the scheme is derived such that
the dissipation error is smaller than the dispersive errors and is large enough for robust-
ness of the scheme. Compared with the fifth-order conservative upwind compact scheme
using an upwind biased stencil (named as ComU5 here), this compact scheme is less dis-
sipative and has a larger range of stability. Since the boundary treatment of Pirozzoli [14]
cannot maintain the accuracy order of the inner conservative compact scheme, a proper
boundary scheme ensuring the convergence order of the whole spatial discretization has
also been proposed. Convergence tests on the linear advection equation validate the fifth-
order accuracy of the proposed scheme including the boundary closures. For problems
with high gradient, the hybrid methodology of Ren et al. has been adopted [15].

Three test cases are employed to validate the property of the proposed scheme. Firstly,
numerical test on two-dimensional rotation problem shows that the proposed compact
scheme is low-dissipative and robust. Secondly, numerical results on advection of vortex
show that it performs well for long time evolution because of its low-dissipative property.
Besides, the range of stability of this scheme larger than that of ComU5 is also validated.
Lastly, results on shock-entropy wave interaction give an example for hybrid methods
and verify the low-dissipative property of the proposed scheme again.
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