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Abstract. In this paper, we have studied the separation for the biharmonic Laplace-
Beltrami differential operator

Au(x)=−∆∆u(x)+V(x)u(x),

for all x∈ Rn, in the Hilbert space H = L2(Rn,H1) with the operator potential V(x)∈
C1(Rn,L(H1)), where L(H1) is the space of all bounded linear operators on the Hilbert
space H1, while ∆∆u is the biharmonic differential operator and

∆u=−
n

∑
i,j=1

1√
detg

∂

∂xi

[
√

detgg−1(x)
∂u

∂xj

]

is the Laplace-Beltrami differential operator in Rn. Here g(x)=(gij(x)) is the Rieman-

nian matrix, while g−1(x) is the inverse of the matrix g(x). Moreover, we have studied
the existence and uniqueness Theorem for the solution of the non-homogeneous bi-
harmonic Laplace-Beltrami differential equation Au=−∆∆u+V(x)u(x)= f (x) in the
Hilbert space H where f (x)∈H as an application of the separation approach.
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1 Introduction

The concept of separation for differential operators was first introduced by Everitt and

Giertz [1,2]. They have obtained the separation results for the Sturm Liouville differential
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operator

Au(x)=−u′′(x)+V(x)u(x), x∈R, (1.1)

in the space L2(R). They have studied the following question: What are the condi-

tions on V(x) such that if u(x) ∈ L2(R) and Au(x) ∈ L2(R) imply that both of u′′(x)
and V(x)u(x)∈L2(R)? More fundamental results of separation for differential operators

were obtained by Everitt and Giertz [3, 4]. A number of results concerning the property

referred to the separation of differential operators was discussed by Biomatov [5], Otel-

baev [6], Zettle [7] and Mohamed et al. [8–13]. The separation for the differential opera-

tors with the matrix potential was first studied by Bergbaev [14]. Brown [15] has shown

that certain properties of positive solutions of disconjugate second order differential ex-

pressions imply the separation. Some separation criteria and inequalities associated with

linear second order differential operators have been studied by Brown et al. [16,17]. Mo-

hamed et al. [11] have studied the separation property of the Sturm Liouville differential

operator

Au(x)=−(µ(x)u′)′+V(x)u(x), x∈R, (1.2)

in the Hilbert space Hp(R) , (p=1,2), where V(x)∈ L(lp) is an operator potential which

is a bounded linear operator on lp and µ(x)∈C1(R) is a positive continuous function on

R.

Mohamed et al. [9] have studied the separation property for the linear differential

operator

Au(x)=(−1)mD2mu(x)+V(x)u(x), x∈R, (1.3)

in the Banach space Lp(R)l where V(x) is an l×l positive hermitian matrix and D2m =
d2m/dx2m is the classical differentiation of order 2m.

Mohamed et al. [12] have studied the separation of the Schrodinger operator

Au(x)=−∆u(x)+V(x)u(x), x∈Rn , (1.4)

with the operator potential V(x)∈C1(Rn,L(H1)) in the Hilbert space L2(Rn,H1) and ∆=

∑
n
i=1

(
∂2/∂x2

i

)
is the Laplace operator in Rn.

Mohamed et al. [13] have studied the separation for the general second order differ-

ential operator

Au(x)=−
n

∑
i,j=1

αij(x)D
j
iu(x)+V(x)u(x), x∈Rn , (1.5)

in the weighted Hilbert space L2,k(Rn,H1) with a positive weight function k(x) and the

operator potential V(x)∈C1(Rn,L(H1)) where αij ∈C2(Rn) and D
j
i =∂2/∂xi∂xj.

Zayed et al. [18] have obtained recent results on the separation of linear and nonlinear

Schrodinger-type operators with the operator potentials in Banach spaces. Furthermore,
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Zayed et al. [19] have studied the separation of the elliptic differential operator

Au(x)=−
n

∑
i,j=1

[
Di

(
Pij(x) Dj u(x)

)
−Pij(x) bi(x) bj(x) u(x)

]
+V(x)u(x), (1.6)

for all x∈Rn, in the weighted Hilbert space L2,k(Rn,H1) with the operator potential V(x)∈
C1(Rn,L(H1)), where Pij(x) and bi(x) are real-valued continuous function, while Di =
∂/∂xi.

Zayed et al. [20] recently have studied the separation for the Laplace Beltrami differ-

ential operator

Au(x)=− 1√
detg(x)

∂

∂xi

[√
detg(x)g−1(x)

∂u

∂x j

]
+V(x)u(x) (1.7)

for all x∈Rn, in the Hilbert space L2(Rn,H1) with the operator potential V(x)∈C1(Rn,L(H1))
and g(x) = (gij(x)) is the Riemannian matrix, while g−1(x) is the inverse of the matrix

g(x).
Recently, Zayed [21] has studied the separation for the biharmonic differential opera-

tor

Au(x)=∆∆u+V(x)u(x), x∈Rn, (1.8)

in the Hilbert space H= L2(Rn,H1) with the operator potential V(x)∈C1(Rn,L(H1)) and

∆∆u is the biharmonic differential operator, while ∆u=∑
n
i=1

(
∂2u(x)/∂x2

i

)
is the Laplace

operator in Rn.

Further results for separation of differential operators can be found in [22–30].

The main objective of the present paper is to study the separation for the biharmonic

Laplace-Beltrami differential operator

Au(x)=−∆∆u+V(x)u(x), x∈Rn, (1.9)

in the Hilbert space L2(Rn,H1) with the operator potential V(x)∈C1(Rn,L(H1)) where

∆∆u is the biharmonic differential operator and

∆u=−
n

∑
i,j=1

1√
detg

∂

∂xi

[√
detgg−1(x)

∂u

∂x j

]
, (1.10)

is the Laplace-Beltrami differential operator in Rn. We derive also the coercive estimate

for the operator (1.9). The existence and uniqueness Theorem for the solution of the non-

homogeneous biharmonic Laplace-Beltrami differential equation

Au(x)=−∆∆u(x)+V(x)u(x)= f (x), (1.11)

in the Hilbert space H= L2(Rn,H1) is also given, where f (x)∈H.
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2 Some notations

In this section, we introduce the definitions that will be used in the subsequent section.

Let H1 be a separable Hilbert space with the norm ‖·‖1 and the scalar product 〈·,·〉1. We

introduce the Hilbert space H = L2(Rn,H1) of all vector functions u(x),x∈Rn equipped

with the norm

‖u‖2=
∫

Rn
‖u(x)‖2

1dx. (2.1)

The symbol 〈u,v〉 where u,v∈H denotes the scalar product in H which is defined by

〈u,v〉=
∫

Rn
〈u,v〉1dx. (2.2)

The space of all vector functions u(x),x∈Rn, that have generalized derivatives Dαu(x),
α ≤ 2 such that u(x) and Dαu(x) belong to H is denoted by W2

2 (Rn,H1). We say that

the function u(x) ∈ W2
2,loc(Rn,H1) if for all functions Q(x) ∈ C∞

0 (R) the vector function

Q(x)u(x)∈W2
2 (Rn,H1).

3 Main results

Definition 3.1. The biharmonic Laplace-Beltrami differential operator

Au(x)=−∆∆u+V(x)u(x),

for all x∈Rn where ∆u is given by (10) is said to be separated in the Hilbert space H=L2(Rn,H1)
if the following statement holds: If u(x)∈H∩W2

2,loc(Rn,H1) and Au(x)∈H imply both of ∆∆u

and Vu∈H .

The main results in this paper have been formulated as follows:

Theorem 3.1. If the following conditions are satisfied for all x∈Rn :

∥∥∥∥∥
n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂x j

]
−

n

∑
i,j=1

V−1/2
0

∂

∂xj

[
1

2
g−1Vu

∂

∂xi
lndetg

]∥∥∥∥∥

≤2σ1n2‖Vu‖, (3.1)
∥∥∥∥V−1/2

0

∂

∂xj

[
g−1u

∂V

∂xi

]∥∥∥∥≤2σ2‖Vu‖, (3.2)

and ∥∥∥∥V−1/2
0

∂

∂xj

[
g−1V

∂u

∂xi

]∥∥∥∥≤2σ3‖Vu‖, (3.3)
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where V0 =ReV while σi (i= 1,2,3) are positive constants satisfying the inequality 0< σ<
1
n2 ,

and σ=∑
3
i=1σi. Then, the following coercive estimate is true:

‖Vu‖+‖∆∆u‖+
∥∥∥∥∥

n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂x j

]∥∥∥∥∥≤N‖Au‖, (3.4)

where

N=1+2

(
1− n2σ

β

)−1

+
(
1−n2σβ

)−1/2
(

1− n2σ

β

)−1/2

,

is a positive constant independent on u(x), while β is a positive constant satisfying the inequality

n2σ < β <
1

n2σ
. That is, the biharmonic Laplace-Beltrami differential operator Au(x) given by

(1.9) is separated in the Hilbert space H= L2(Rn,H1).

Proof. From the definition of the scalar product in H and by integrating by parts, we

obtain 〈
∂u

∂xi
,v

〉
=−

〈
u,

∂v

∂xi

〉
for all u,v∈C∞

0 (Rn).

From (1.9), we get

〈Au,Vu〉= 〈−∆∆u+Vu,Vu〉= 〈−∆∆u,Vu〉+〈Vu,Vu〉.

On setting ∆u=W(x), we have

〈Au,Vu〉= 〈−∆W,Vu〉+〈Vu,Vu〉

=

〈
n

∑
i,j=1

1√
detg

∂

∂xi

[√
detgg−1 ∂W

∂xj

]
,Vu

〉
+〈Vu,Vu〉

=−
n

∑
i,j=1

〈
√

detgg−1 ∂W

∂xj
,

∂

∂xi

[
1√
detg

Vu

]〉
+〈Vu,Vu〉

=
1

2

n

∑
i,j=1

〈
g−1 ∂W

∂xj
,Vu

∂

∂xi
(lndetg)

〉
−

n

∑
i,j=1

〈
g−1 ∂W

∂x j
,u

∂V

∂xi

〉

−
n

∑
i,j=1

〈
g−1 ∂W

∂xj
,V

∂u

∂xi

〉
+〈Vu,Vu〉

=−
n

∑
i,j=1

〈
W,

∂

∂xj

[
1

2
g−1Vu

∂

∂xi
(lndetg)

]〉
+

n

∑
i,j=1

〈
W,

∂

∂xj

[
g−1u

∂V

∂xi

]〉

+
n

∑
i,j=1

〈
W,

∂

∂xj

[
g−1V

∂u

∂xi

]〉
+〈Vu,Vu〉. (3.5)
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On substituting (1.10) into (3.5) and equating the real parts of both sides of the resultant

form, we obtain

Re〈Au,Vu〉

=

〈
n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂xj

]
,

n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂x j

]〉

−Re

〈
n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂xj

]
,

n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂x j

]〉

+Re

〈
n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂xj

]
,

n

∑
i,j=1

V−1/2
0

∂

∂xj

[
1

2
g−1Vu

∂

∂xi
(lndetg)

]〉

−Re

〈
n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂xj

]
,

n

∑
i,j=1

V−1/2
0

∂

∂xj

[
g−1u

∂V

∂xi

]〉

−Re

〈
n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂xj

]
,

n

∑
i,j=1

V−1/2
0

∂

∂xj

[
g−1V

∂u

∂xi

]〉

+〈Vu,Vu〉. (3.6)

Since for any complex number Z, we have

−|Z|≤ReZ≤|Z|, (3.7)

then by using the Cauchy-Schwarz inequality, we get

Re〈Au,Vu〉≤ |〈Au,Vu〉|≤‖Au‖‖Vu‖. (3.8)

Further, since for any β>0 and y1,y2∈Rn, then with reference to [18] we have

|y1||y2|≤
β

2
|y1|2+

1

2β
|y2|2 . (3.9)

Consequently, we deduce from (3.1)-(3.3) and (3.7)-(3.9) that

−Re

〈
K1,K1−

n

∑
i,j=1

V−1/2
0

∂

∂xj

[
1

2
g−1Vu

∂

∂xi
(lndetg)

]〉

≥−n2σ1β

∥∥∥∥∥
n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂x j

]∥∥∥∥∥

2

− n2σ1

β
‖Vu‖2 , (3.10)

−Re

〈
n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂x j

]
,

n

∑
i,j=1

V−1/2
0

∂

∂xj

[
g−1u

∂V

∂xi

]〉
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≥−n2σ2β

∥∥∥∥∥
n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂x j

]∥∥∥∥∥

2

− n2σ2

β
‖Vu‖2 , (3.11)

and

−Re

〈
n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂x j

]
,

n

∑
i,j=1

V−1/2
0

∂

∂xj

[
g−1V

∂u

∂xi

]〉

≥−n2σ3β

∥∥∥∥∥
n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂x j

]∥∥∥∥∥

2

− n2σ3

β
‖Vu‖2 , (3.12)

On substituting (3.10)-(3.12) into (3.6) we get the inequality

(
1− n2σ

β

)
‖Vu‖2+

(
1−n2σβ

)
∥∥∥∥∥

n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂x j

]∥∥∥∥∥

2

≤‖Au‖‖Vu‖, (3.13)

where σ=∑
3
i=1σi. Choosing n2σ<β< 1

n2σ
, we deduce from (3.13) that

‖Vu‖≤
(

1− n2σ

β

)−1

‖Au‖. (3.14)

∥∥∥∥∥
n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂u

∂x j

]∥∥∥∥∥≤
(
1−n2βσ

)−1/2
(

1− n2σ

β

)−1/2

‖Au‖. (3.15)

Since Au=−∆∆u+Vu, then we get

‖∆∆u‖≤‖Au‖+‖Vu‖≤
{

1+

(
1− n2σ

β

)−1
}
‖Au‖. (3.16)

From the inequalities (3.14)-(3.16) we arrive at the coercive estimate (3.4). Hence, the

proof of Theorem 3.1 is completed.

Theorem 3.2. If the biharmonic Laplace-Beltrami differential operator Au(x) given by (1.9) is

separated in the Hilbert space H = L2(Rn,H1) and if there are positive functions t(x),ψ(x) ∈
C1(Rn) such that the following conditions are true:

∥∥∥∥t1/2ψ1/2g−1/2 ∂u

∂xj

∥∥∥∥≤2
√

ρ1

∥∥∥t1/2ψ1/2V1/2
0 u

∥∥∥, (3.17)

∥∥∥∥g−1/2ψ−1 ∂ψ

∂xi
V−1/2

0

∥∥∥∥≤2
√

ρ2, (3.18)

∥∥∥∥g−1/2t−1 ∂t

∂xj
V−1/2

0

∥∥∥∥≤2
√

ρ3, (3.19)
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∥∥∥∥
1

2
g−1/2V−1/2

0

∂

∂xj
(lndetg)

∥∥∥∥≤2
√

ρ4, (3.20)

and ∥∥∥∥t1/2ψ1/2g−1/2 ∂W

∂xi

∥∥∥∥≤
∥∥∥∥t1/2ψ1/2g−1/2 ∂ψ

∂xi

∥∥∥∥, (3.21)

where ρi (i=1−4) are positive constants satisfying 0<ρ<
β

2n2 and ρ=∑
4
i=1ρi while V0=ReV.

Then, the non-homogeneous biharmonic Laplace-Beltrami differential equation

Au=−∆∆u+V(x)u(x)= f (x), (3.22)

has a unique solution in the Hilbert space H, where f (x)∈H.

Proof. First, we prove that the homogeneous biharmonic Laplace-Beltrami differential

equation

Au(x)=−∆∆u(x)+V(x)u(x)=0, (3.23)

has only the zero solution u(x)= 0 for all x∈ Rn. To this end, we assume that t(x) and

ψ(x)∈C1(Rn) are postive functions. Thus, on setting ∆u(x)=W(x), we have

〈Vu,tψu〉=〈∆∆u,tψu〉= 〈∆W,tψu〉

=−
〈

n

∑
i,j=1

1√
detg

∂

∂xj

[√
detgg−1 ∂W

∂xi

]
,tψu

〉

=
n

∑
i,j=1

〈
√

detgg−1 ∂W

∂xi
,

∂

∂xj

(
1√
detg

tψu

)〉

=
n

∑
i,j=1

〈
√

detgg−1 ∂W

∂xi
,

1√
detg

∂

∂xj
(tψu)

〉

+
n

∑
i,j=1

〈
√

detgg−1 ∂W

∂xi
,tψu

∂

∂xj

(
1√
detg

)〉

=
n

∑
i,j=1

〈
∂W

∂xi
,g−1 ∂

∂xj
(tψu)

〉
− 1

2

n

∑
i,j=1

〈
∂W

∂xi
,g−1tψu

∂

∂xj
(lndetg)

〉

=
n

∑
i,j=1

〈
∂W

∂xi
,g−1tψ

∂u

∂xj

〉
+

n

∑
i,j=1

〈
∂W

∂xi
,g−1tu

∂ψ

∂xj

〉

+
n

∑
i,j=1

〈
∂W

∂xi
,g−1ψu

∂t

∂xj

〉
− 1

2

n

∑
i,j=1

〈
∂W

∂xi
,g−1tψu

∂

∂xj
(lndetg)

〉
. (3.24)

Equating the real parts of both sides of (3.24), we get

〈V0u,tψu〉=
〈

t1/2ψ1/2V1/2
0 u,t1/2ψ1/2V1/2

0 u
〉
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=
n

∑
i,j=1

Re

〈
t1/2ψ1/2g−1/2 ∂W

∂xi
,t1/2ψ1/2g−1/2 ∂u

∂xj

〉

+
n

∑
i,j=1

Re

〈
t1/2ψ1/2g−1/2 ∂W

∂xi
,t1/2ψ1/2

[
g−1/2ψ−1 ∂ψ

∂xj
V−1/2

0

]
V1/2

0 u

〉

+
n

∑
i,j=1

Re

〈
t1/2ψ1/2g−1/2 ∂W

∂xi
,t1/2ψ1/2

[
g−1/2t−1 ∂t

∂xj
V−1/2

0

]
V1/2

0 u

〉

−
n

∑
i,j=1

Re

〈
t1/2ψ1/2g−1/2 ∂W

∂xi
,t1/2ψ1/2

[
1

2
g−1/2V−1/2

0

∂

∂xj
(lndetg)

]
V1/2

0 u

〉
. (3.25)

With the aid of (3.7)-(3.9) together with the inequalities (3.17)-(3.21), we deduce that (3.25)

takes the form

∥∥∥t1/2ψ1/2V1/2
0 u

∥∥∥
2
≤nβ

2

n

∑
i=1

∥∥∥∥t1/2ψ1/2g−1/2 ∂W

∂xi

∥∥∥∥
2

+
2n2ρ1

β

∥∥∥t1/2ψ1/2V1/2
0 u

∥∥∥
2

+
nβ

2

n

∑
i=1

∥∥∥∥t1/2ψ1/2g−1/2 ∂W

∂xi

∥∥∥∥
2

+
2n2ρ2

β

∥∥∥t1/2ψ1/2V1/2
0 u

∥∥∥
2

+
nβ

2

n

∑
i=1

∥∥∥∥t1/2ψ1/2g−1/2 ∂W

∂xi

∥∥∥∥
2

+
2n2ρ3

β

∥∥∥t1/2ψ1/2V1/2
0 u

∥∥∥
2

+
nβ

2

n

∑
i=1

∥∥∥∥t1/2ψ1/2g−1/2 ∂W

∂xi

∥∥∥∥
2

+
2n2ρ4

β

∥∥∥t1/2ψ1/2V1/2
0 u

∥∥∥
2
. (3.26)

Consequently, if we put ρ=∑
4
i=1ρi , then (3.26) becomes in the form

(
1− 2n2ρ

β

)∥∥∥t1/2ψ1/2V1/2
0 u

∥∥∥
2
≤2nβ

n

∑
i=1

∥∥∥∥t1/2ψ1/2g−1/2 ∂ψ

∂xi

∥∥∥∥
2

, (3.27)

By choosing ψ(x)= 1 for all x∈ Rn, then if 0< ρ<
β

2n2 we see that (3.27) becomes in the

form

0<

(
1− 2n2ρ

β

)∥∥∥t1/2V1/2
0 u

∥∥∥
2
≤0. (3.28)

From (2.1) and (3.28) we obtain

0<

(
1− 2n2ρ

β

)∫

Rn

∥∥∥t1/2V1/2
0 u

∥∥∥
2

1
dx≤0. (3.29)

Now, the inequality (3.29) holds only for u(x) = 0. This prove that u(x) = 0 is the only

solution of the homogeneous biharmonic Laplace-Beltrami differential equation (3.23).

Furthermore, it is easy to check that the linear manifold

L={ f : Au(x)= f (x), for all f ∈C∞
0 (Rn)}
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is dense in H. So, we can construct a sequence of vector functions {yr}∈C∞
0 (Rn) where

‖yr‖ 6= 0 for all r such that ‖Ayr− f‖→ 0 as r → ∞ for all f ∈ H. On using the coercive

estimate (3.4), we have

∥∥V(yp−yr)
∥∥+
∥∥∆∆(yp−yr)

∥∥+
∥∥∥∥∥

n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂(yp−yr)

∂xj

]∥∥∥∥∥

≤N
∥∥A(yp−yr)

∥∥, (3.30)

where yp−yr=u and p,r=1,2,... As p,r→∞ we see from (3.30) that the sequences {Vyr},

{∆∆yr} and

{
∑

n
i,j=1

V1/2
0√
detg

∂
∂xi

[√
detgg−1 ∂yr

∂x j

]}
are Cauchy sequences in the Hilbert space

H and then they are convergent. Therefore, there exists real functions µ0(x), µ1(x) and

µ2(x) in H such that

‖Vyr−µ0‖→0, ‖∆∆yr−µ1‖→0

and ∥∥∥∥∥
n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂yr

∂x j

]
−µ2

∥∥∥∥∥→0.

Hence these sequences are bounded in H. This implies that as r→∞, we have

yr →V−1µ0=y, ∆∆yr →∆∆y,

and
n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂yr

∂x j

]
→

n

∑
i,j=1

V1/2
0√
detg

∂

∂xi

[√
detgg−1 ∂y

∂x j

]
.

Hence for a given function f ∈ H there exists y ∈ H∩W2
2,loc(Rn,H1) such that Ay = f .

Suppose that ỹ is another solution of the non-homogeneous biharmonic Laplace-Beltrami

differential equation Ay= f , then we get A(y−ỹ)=0. But Au=0 has only the zero solution

u = 0. Then y = ỹ and the uniqueness is proved. Hence, the proof of Theorem 3.2 is

completed.

4 Conclusions

The biharmonic Laplace-Beltrami differential operator (1.9) has been investigated using

the separation method in the Hilbert space H with the norm (2.1) and the scalar product

(2.2). In this paper we have two interesting results. The first result is Theorem 3.1, which

proves that the operator (1.9) is separated in the Hilbert space H. The second result

is Theorem 3.2, which shows that the non-homogeneous biharmonic Laplace-Beltrami

differential equation (3.22) has a unique solution in the Hilbert space H.
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