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1 Introduction

In the past decades, much effort has been devoted to study nonlinear partial differential

equations [1-25]. Nonlinear fractional partial differential equations (NFPDEs) regarded

as the generalization form of nonlinear partial differential equations of integer order have

attracted considerable attention in recent years. Moreover, the investigation of exact and

approximate solutions for NFPDEs arising in mathematical physics, chemistry, biology,

engineering, control theory, signal processing and so forth has become one of the most

active and important research areas. A variety of analytical and numerical techniques

have been well established and applied to solve NFPDEs, including the homogeneous

balance method [6], the fractional sub-equation method [7-11], the exp-function method

[12], the (G′/G)-expansion method [13, 14], the first integral method [15], the modi-

fied trial equation method [16], the Jacobi elliptic equation method [17], the modified

∗Corresponding author. Email address: zhzhkang@126.com (Z. Z. Kang)

http://www.global-sci.org/jpde/ 48



Infinite Sequence Solutions for Space-Time Fractional Symmetric Regularized Long Wave Equation 49

Kudryashov method [18], the homotopy analysis transform method [19], the fractional

variational iteration method [20], the Adomian decomposition method [21], and so on. In

many analytical methods, the fractional complex transformation proposed by Li and He

[22] plays a key role in converting NFPDEs into NODEs. The purpose of present article

is to examine the space-time fractional symmetric regularized long wave (FSRLW) equa-

tion by means of Riccati equation method and symbolic computation. As a result, based

on the Bäcklund transformations and nonlinear superposition formulas of solutions to

Riccati equation, infinite sequence solutions in terms of trigonometric and hyperbolic

functions are established.

For the convenience of a reader, we recall the Jumarie’s modified Riemann-Liouville

derivative [23] of order α, that is

Dα
t f (t)=































1

Γ(−α)

∫ t

0
(t−ξ)−α−1( f (ξ)− f (0))dξ, α<0,

1

Γ(1−α)

d

dt

∫ t

0
(t−ξ)−α( f (ξ)− f (0))dξ, 0<α<1,

( f (n)(t))
(α−n)

, n≤α<n+1, n≥1.

Some significant properties of fractional modified Riemann-Liouville derivative are

Dα
t tδ =

Γ(1+δ)

Γ(1+δ−α)
tδ−α, δ>0,

Dα
t ( f (t)g(t))= g(t)Dα

t f (t)+ f (t)Dα
t g(t),

Dα
t f [g(t)]= f ′g [g(t)]D

α
t g(t)=Dα

g [g(t)](g′(t))α
.

The layout of this paper is as follows. In Section 2 and Section 3, we present the main

steps of Riccati equation method, and list the Bäcklund transformations and nonlinear

superposition formulas [24, 25] of solutions to Riccati equation. In Section 4, we apply

this method to establish infinite sequence solutions for space-time FSRLW equation. The

last section is the conclusion.

2 Method

Consider a NFPDE in three independent variables as

P
(

u, Dα
t u, D

β
x u, D

γ
y u, Dα

t Dα
t u, Dα

t D
β
x u, ···

)

=0, 0<α, β, γ≤1, (2.1)

where Dα
t u, D

β
x u, D

γ
y u, ··· are the modified Riemann-Liouville derivatives, and P is a

polynomial in u and its fractional derivatives. We find solutions to Eq. (2.1) in the form

u(t, x, y)=U(ξ), ξ=
ctα

Γ(1+α)
+

kxβ

Γ(1+β)
+

lyγ

Γ(1+γ)
.
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Then, Eq. (2.1) is reduced to a nonlinear ordinary differential equation

O(U, U′, U′′, U′′′, ···)=0, (2.2)

where the prime represents the derivative with respect to ξ. Next, we aim to find exact

solutions for Eq. (2.2). We suppose that formal solution of (2.2) can be expressed by

U(ξ)=A0+
m

∑
i=1

[

wi−1
(

Aiw+Ci

√

R+w2
)

+Biw
−i
]

, (2.3)

in which A0, Ai, Bi, Ci (i = 1, 2, ··· , m), and R are constants to be determined. And

w=w(ξ) satisfies Riccati equation

dw

dξ
=R+w2, (2.4)

which possesses the following solutions.

For R<0, the expressions of hyperbolic function solutions read

w0(ξ)=−
√
−Rtanh

(
√
−Rξ

)

, (2.5)

w0(ξ)=−
√
−Rcoth

(
√
−Rξ

)

, (2.6)

w1(ξ)=
b3R+a3

√
−Rtanh

(√
−Rξ

)

−a3+b3

√
−Rtanh

(√
−Rξ

) . (2.7)

For R>0, the expressions of trigonometric function solutions read

w0(ξ)=
√

Rtan
(

√
Rξ
)

, (2.8)

w0(ξ)=−
√

Rcot
(

√
Rξ
)

, (2.9)

w1(ξ)=

√
R
[

cos
(
√

Rξ
)

+sin
(
√

Rξ
)]

cos
(
√

Rξ
)

−sin
(
√

Rξ
) , (2.10)

w1(ξ)=
−
(

r
√

R+CR
)

cos
(
√

Rξ
)

+
√

R
(

r−C
√

R
)

sin
(
√

Rξ
)

(

r−C
√

R
)

cos
(
√

Rξ
)

+
(

r+C
√

R
)

sin
(
√

Rξ
) , (2.11)

w1(ξ)=
−3b4R+4a4

√
R−5b4Rsin

(

2
√

Rξ
)

−5a4

√
Rcos

(

2
√

Rξ
)

3a4+4b4

√
R+5a4 sin

(

2
√

Rξ
)

−5b4

√
Rcos

(

2
√

Rξ
) , (2.12)

w1(ξ)=
−b5R+a5

√
R
[

sec
(

2
√

Rξ
)

+tan
(

2
√

Rξ
)]

a5+b5

√
R
[

sec
(

2
√

Rξ
)

+tan
(

2
√

Rξ
)] , (2.13)

w1(ξ)=

√
R
[

−2a6b6

√
R+

(

a2
6−b2

6R
)(

sec
(

2
√

Rξ
)

+tan
(

2
√

Rξ
))]

a2
6−b2

6R+2a6b6

√
R
[

sec
(

2
√

Rξ
)

+tan
(

2
√

Rξ
)] , (2.14)

where r, ai, bi (i=3, 4, 5, 6) and C are arbitrary nonzero constants.
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For R=0, the rational solution is

w0(ξ)=
1

−ξ+d0
, (2.15)

where d0 is free constant.

Step 1. By homogeneous balance between the highest order derivative and nonlinear

terms appearing in Eq. (2.2), one can get the value of m easily.

Step 2. Substituting (2.3) together with (2.4) into Eq. (2.2), collecting all terms with the

same powers of wj1 (ξ) and wj2 (ξ)
(
√

R+w2(ξ)
)j3

, and equating zero of all the coefficients

yield a system of algebraic equations about unknowns {A0, Ai, Bi, Ci, R} (i=1, 2, ··· , m).
Step 3. Solving the system obtained in Step 2 by symbolic computation system, one

can get all the values of unknowns {A0, Ai, Bi, Ci, R} (i= 1, 2, ··· , m). Inserting all the

values of unknowns and solutions (2.5)-(2.15) into (2.3), many families of exact solutions

to (2.1) can be got.

3 Bäcklund transformations and nonlinear superposition

formulas of solutions to Eq. (2.4)

3.1 Bäcklund transformations

Eq. (2.4) admits Bäcklund transformations

w̃(ξ)=
p2+q2w(ξ)+m2w2(ξ)+r2w′(ξ)+n2w3(ξ)+l2(w′(ξ))2

a2+b2w(ξ)+d2w2(ξ)+c2w′(ξ)+ f2w3(ξ)+k2(w′(ξ))2
(3.1)

and

w̃(ξ)=
−BR+Aw(ξ)

A+Bw(ξ)
, (3.2)

where A, B, a2, b2, c2, d2, f2, k2, m2, l2, r2, a6, b6 are arbitrary nonzero constants, and w(ξ)
is known solution of (2.4). The relationships among parameters are given by

p2 =R(−b2+m2+ f2R),

q2=
1

k2l2

[

b2l2
2−(l2

2+k2
2R)(m2+r2+( f2+l2)R)

]

,

n2=
1

k2
( f2l2−l2

2−k2
2R),

d2 =−c2+
1

k2
( f2l2−l2

2)+
1

l2
(m2+r2+ f2R)k2−k2R,

a2 =
1

k2

[

b2l2−l2
2 R−l2(m2+r2+ f2R)−k2R(c2+k2R)

]

.
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The combinations of an arbitrary solution to (2.4) with transformation (3.1) or (3.2)

and iterations can result in infinite sequence solutions for (2.4). Here we only list three

groups, and omit others.














wn(ξ)=
p2+q2wn−1(ξ)+m2w2

n−1(ξ)+r2w′
n−1(ξ)+n2w3

n−1(ξ)+l2(w′
n−1(ξ))

2

a2+b2wn−1(ξ)+d2w2
n−1(ξ)+c2w′

n−1(ξ)+ f2w3
n−1(ξ)+k2(w′

n−1(ξ))
2

,

w0(ξ)=−
√
−Rtanh

(
√
−Rξ

)

, R<0, n=1, 2, ···
(3.3)















wn(ξ)=
p2+q2wn−1(ξ)+m2w2

n−1(ξ)+r2w′
n−1(ξ)+n2w3

n−1(ξ)+l2(w′
n−1(ξ))

2

a2+b2wn−1(ξ)+d2w2
n−1(ξ)+c2w′

n−1(ξ)+ f2w3
n−1(ξ)+k2(w′

n−1(ξ))
2

,

w0(ξ)=
√

Rtan
(

√
Rξ
)

, R>0, n=1, 2, ···
(3.4)

and






























wn(ξ)=
−BR+Awn−1(ξ)

A+Bwn−1(ξ)
,

w1(ξ)=

√
R
[

−2a6b6

√
R+

(

a2
6−b2

6R
)(

sec
(

2
√

Rξ
)

+tan
(

2
√

Rξ
))]

a2
6−b2

6R+2a6b6

√
R
[

sec
(

2
√

Rξ
)

+tan
(

2
√

Rξ
)] ,

R>0, n=2, 3, ···

(3.5)

3.2 Nonlinear superposition formulas

Under the condition of m3d3<0, Eq. (2.4) possesses the following solutions w̃(ξ),

w̃(ξ)=
iR
[

im3

√
R+(m3+id3

√
R+c3R)w2(ξ)+(−c3R+d3w2(ξ))w1(ξ)

]

−
√

R3(d3+c3w2(ξ))+(m3

√
R+iRd3+c3

√
R3−im3w2(ξ))w1(ξ)

, (3.6)

w̃(ξ)=
m3+d3w2(ξ)+

1√
R

[

−ic3Rw1(ξ)+i(m3+c3R+d3w1(ξ))w2(ξ)
]

d3+c3w2(ξ)− 1√
R3
(m3

√
R−iRd3+c3

√
R3+im3w2(ξ))w1(ξ)

, (3.7)

and

w̃(ξ)=
R
[

−r3w1(ξ)+(p3+r3)w2(ξ)−p3w3(ξ)
]

−r3w2(ξ)w3(ξ)+w1(ξ)(−p3w2(ξ)+(p3+r3)w3(ξ))
, (3.8)

where c3, p3, r3 are arbitrary nonzero constants, and w1(ξ), w2(ξ), w3(ξ) are three known

solutions of (2.4). Thus, combining nonlinear superposition formulas (3.6) and (3.8) with

known solutions, one gets























wn(ξ)=
iR
[

im3

√
R+
(

m3+id3

√
R+c3R

)

wn−1(ξ)+(−c3R+d3wn−1(ξ))wn−2(ξ)
]

−
√

R3(d3+c3wn−1(ξ))+(m3

√
R+iRd3+c3

√
R3−im3wn−1(ξ))wn−2(ξ)

,

w1(ξ)=−
√
−Rtanh

(√
−Rξ

)

,

w2(ξ)=
b3R+a3

√
−Rtanh(

√
−Rξ)

−a3+b3

√
−Rtanh(

√
−Rξ)

, n=3, 4, ···
(3.9)
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and























































wn(ξ)=
R
[

−r3wn−3(ξ)+(p3+r3)wn−2(ξ)−p3wn−1(ξ)
]

−r3wn−2(ξ)wn−1(ξ)+wn−3(ξ)(−p3wn−2(ξ)+(p3+r3)wn−1(ξ))
,

w1(ξ)=
−b5R+a5

√
R
[

sec
(

2
√

Rξ
)

+tan
(

2
√

Rξ
)]

a5+b5

√
R
[

sec
(

2
√

Rξ
)

+tan
(

2
√

Rξ
)] ,

w2(ξ)=

√
R
[

cos
(
√

Rξ
)

+sin
(
√

Rξ
)]

cos
(
√

Rξ
)

−sin
(
√

Rξ
) ,

w3(ξ)=
√

Rtan
(

√
Rξ
)

, n=4, 5, ···

(3.10)

4 Application to space-time FSRLW equation

Now, we focus on the space-time FSRLW equation [8]

D2α
t u+D2α

x u+uDα
t (Dα

xu)+Dα
xuDα

t u+D2α
t

(

D2α
x u
)

=0, 0<α≤1, (4.1)

which arises in several physical applications including ion sound waves in plasma. When

α= 1, it is shown that this equation describes weakly nonlinear ion acoustic and space-

charge waves, and the real-valued u(x, t) corresponds to the dimensionless fluid velocity

with a decay condition.

Applying the transformation

u(x, t)=U(ξ)=U

(

kxα

Γ(1+α)
+

ctα

Γ(1+α)

)

,

to Eq. (4.1), integrating twice with respect to ξ, and taking the integration constants as

zero, we arrive at

(c2+k2)U+
ck

2
U2+c2k2U′′=0. (4.2)

Analyzing U′′ and U2 in (4.2) reveals m=2. Therefore, we assume that

U(ξ)=A0+A1w(ξ)+C1

√

R+w2(ξ)+
B1

w(ξ)
+A2w2(ξ)

+C2w(ξ)
√

R+w2(ξ)+
B2

w2(ξ)
, (4.3)

where A0, A1, A2, B1, B2, C1, C2, and R are undetermined constants.

The substitution of expression (4.3) along with (2.4) into (4.2), then multiplication by

w4(ξ)
√

R+w2(ξ) and collection of the same powers of wj1 (ξ) and wj2 (ξ)
(
√

R+w2(ξ)
)j3

lead to a sequence of nonlinear algebraic equations whose solutions can be computed
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with the aid of Maple as

Case 1:






R=
k2+c2

c2k2
, A0=−6(k2+c2)

ck
, A1=0, A2=−6ck,

B1=0, B2=0, C1=0, C2=±6ck.

Case 2:






R=− k2+c2

c2k2
, A0=

4(k2+c2)

ck
, A1=0, A2=−6ck,

B1=0, B2=0, C1=0, C2=±6ck.

Case 3:






R=
k2+c2

4c2k2
, A0=−3(k2+c2)

ck
, A1=0, A2=−12ck,

B1=0, B2=0, C1=0, C2=0.

Case 4:






R=− k2+c2

4c2k2
, A0=

k2+c2

ck
, A1=0, A2=−12ck,

B1=0, B2=0, C1=0, C2=0.

Case 5:














R=− k2+c2

16c2k2
, A0=− k2+c2

2ck
, A1=0, A2=−12ck,

B1=0, B2=−3(c4+2c2k2+k4)

64c3k3
, C1=0, C2=0.

Case 6:














R=
k2+c2

16c2k2
, A0=−3(k2+c2)

2ck
, A1=0, A2=−12ck,

B1=0, B2=−3(c4+2c2k2+k4)

64c3k3
, C1=0, C2=0.

Case 7:














R=
k2+c2

4c2k2
, A0=−3(k2+c2)

ck
, A1=0, A2=0,

B1=0, B2=−3(k2+c2)
2

4c3k3
, C1=0, C2=0.

Case 8:














R=− k2+c2

4c2k2
, A0=

k2+c2

ck
, A1=0, A2=0,

B1=0, B2=−3(k2+c2)
2

4c3k3
, C1=0, C2=0.

In fact, we note R= k2+c2

c2k2 >0 from Case 1, which means that we can get trigonometric

function solutions to Eq. (4.1). The expression (4.3) can be rewritten as

U1(ξ)=−6(k2+c2)

ck
−6ckw2(ξ)±6ckw(ξ)

√

R+w2(ξ). (4.4)
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Thus, by substituting (2.8)-(2.14) into (4.4) respectively, a series of general exact solutions

can be obtained. Here we only list one of them via inserting (2.8) into (4.4), namely,

U11(ξ)=− 6(k2+c2)

ck
− 6(k2+c2)

ck
tan2

(
√

k2+c2

c2k2
ξ

)

±6ck

√

k2+c2

c2k2
tan

(
√

k2+c2

c2k2
ξ

)

√

√

√

√

k2+c2

c2k2
sec2

(
√

k2+c2

c2k2
ξ

)

,

where ξ= kxα

Γ(1+α)
+ ctα

Γ(1+α)
.

Moreover, it is clear that many trigonometric function solutions corresponding to

Cases 3, 6, and 7 can be given in a similar way. But for brevity we do not list all of

them.

According to Case 2, we can get the following expression

U2(ξ)=
4(k2+c2)

ck
−6ckw2 (ξ)±6ckw(ξ)

√

R+w2(ξ). (4.5)

In consideration of R=− k2+c2

c2k2 <0, some hyperbolic function solutions can be derived by

carrying (2.5)-(2.7) into (4.5). The substitution of (2.5) into (4.5) yields

U21(ξ)=
4(k2+c2)

ck
− 6(k2+c2)

ck
tanh2

(
√

k2+c2

c2k2
ξ

)

∓6ck

√

k2+c2

c2k2

×tanh

(
√

k2+c2

c2k2
ξ

)

√

√

√

√− k2+c2

c2k2
+

k2+c2

c2k2
tanh2

(
√

k2+c2

c2k2
ξ

)

,

where ξ= kxα

Γ(1+α)+
ctα

Γ(1+α) .

Similarly, we can express many hyperbolic function solutions from Cases 4, 5, and 8,

whose details we omit here.

Next, we would like to present infinite sequence solutions to (4.1) based on Bäcklund

transformations (3.1)-(3.2) and nonlinear superposition formulas (3.6) and (3.8). Combin-

ing (3.4) with (4.4), we have































un(x, t)=Un(ξ)=−6(k2+c2)

ck
−6ckw2

n(ξ)±6ckwn(ξ)
√

R+w2
n(ξ),

wn (ξ)=
p2+q2wn−1(ξ)+m2w2

n−1(ξ)+r2w′
n−1(ξ)+n2w3

n−1(ξ)+l2
(

w′
n−1(ξ)

)2

a2+b2wn−1(ξ)+d2w2
n−1(ξ)+c2w′

n−1(ξ)+ f2w3
n−1(ξ)+k2

(

w′
n−1(ξ)

)2
,

w0(ξ)=
√

Rtan
(

√
Rξ
)

,

where ξ= kxα

Γ(1+α)
+ ctα

Γ(1+α)
, R= k2+c2

c2k2 >0, n=1, 2, ···
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Combining (3.5) with (4.4), we have






































un(x, t)=Un(ξ)=−6(k2+c2)

ck
−6ckw2

n(ξ)±6ckwn(ξ)
√

R+w2
n(ξ),

wn(ξ)=
−BR+Awn−1(ξ)

A+Bwn−1(ξ)
,

w1(ξ)=

√
R
[

−2a6b6

√
R+

(

a2
6−b2

6R
)(

sec
(

2
√

Rξ
)

+tan
(

2
√

Rξ
))]

a2
6−b2

6R+2a6b6

√
R
[

sec
(

2
√

Rξ
)

+tan
(

2
√

Rξ
)] ,

where ξ= kxα

Γ(1+α)+
ctα

Γ(1+α) , R= k2+c2

c2k2 >0, n=2, 3, ···
Combining (3.3) with (4.5), we have






























un(x, t)=Un (ξ)=
4(k2+c2)

ck
−6ckw2

n (ξ)±6ckwn (ξ)
√

R+w2
n(ξ),

wn(ξ)=
p2+q2wn−1(ξ)+m2w2

n−1(ξ)+r2w′
n−1(ξ)+n2w3

n−1(ξ)+l2
(

w′
n−1(ξ)

)2

a2+b2wn−1(ξ)+d2w2
n−1(ξ)+c2w′

n−1(ξ)+ f2w3
n−1(ξ)+k2

(

w′
n−1(ξ)

)2
,

w0(ξ)=−
√
−Rtanh

(
√
−Rξ

)

,

where ξ= kxα

Γ(1+α)+
ctα

Γ(1+α) , R=− k2+c2

c2k2 <0, n=1, 2, ···
Combining (3.10) with (4.4), we have






































































un(x, t)=Un(ξ)=−6(k2+c2)

ck
−6ckw2

n(ξ)±6ckwn(ξ)
√

R+w2
n(ξ),

wn(ξ)=
R
[

−r3wn−3(ξ)+(p3+r3)wn−2(ξ)−p3wn−1(ξ)
]

−r3wn−2(ξ)wn−1(ξ)+wn−3(ξ)(−p3wn−2(ξ)+(p3+r3)wn−1(ξ))
,

w1(ξ)=
−b5R+a5

√
R
[

sec
(

2
√

Rξ
)

+tan
(

2
√

Rξ
)]

a5+b5

√
R
[

sec
(

2
√

Rξ
)

+tan
(

2
√

Rξ
)] ,

w2(ξ)=

√
R
[

cos
(
√

Rξ
)

+sin
(
√

Rξ
)]

cos
(
√

Rξ
)

−sin
(
√

Rξ
) ,

w3(ξ)=
√

Rtan
(

√
Rξ
)

,

where ξ= kxα

Γ(1+α)+
ctα

Γ(1+α) , R= k2+c2

c2k2 >0, n=4, 5, ···

5 Conclusion

To sum up, taking advantage of Bäcklund transformations and nonlinear superposition

formulas of solutions to Riccati equation, we have successfully established infinite se-

quence solutions for space-time fractional symmetric regularized long wave equation

through symbolic computation. This method can be extended to deal with other nonlin-

ear fractional partial differential equations.
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