On a Linear Partial Differential Equation of the Higher Order in Two Variables with Initial Condition Whose Coefficients are Real-valued Simple Step Functions

PANTSULAIA Gogi ${ }^{1, *}$ and GIORGADZE Givi ${ }^{2}$
${ }^{1}$ I. Vekua Institute of Applied Mathematics, Tbilisi State University, B. P. 0143, University St. 2, Tbilisi, Georgia.
${ }^{2}$ Department of Mathematics, Georgian Technical University, B. P. 0175, Kostava St. 77, Tbilisi 75, Georgia.

Received 23 May 2015; Accepted 15 January 2016

Abstract

By using the method developed in the paper [Georg. Inter. J. Sci. Tech., Volume 3, Issue 1 (2011), 107-129], it is obtained a representation in an explicit form of the weak solution of a linear partial differential equation of the higher order in two variables with initial condition whose coefficients are real-valued simple step functions.

AMS Subject Classifications: 34Axx, 34A35, 34K06
Chinese Library Classifications: O175.4
Key Words: Linear partial differential equation of the higher order in two variables; Fourier differential operator.

1 Introduction

In [1] has been obtained a representation in an explicit form of the solution of the linear partial differential equation of the higher order in two variables with initial condition whose coefficients were real-valued coefficients. The aim of the present manuscript is resolve an analogous problem for a linear partial differential equation of the higher order in two variables with initial condition whose coefficients are real-valued simple step functions.

The paper is organized as follows.
In Section 2, we consider some auxiliary notions and facts which come from works [1-3]. In Section 3, we get a representation in an explicit form of the weak solution of

[^0]the partial differential equation of the higher order in two variables with initial condition whose coefficients are real-valued simple step functions.

2 Some auxiliary notions and results

Definition 2.1. Fourier differential operator $(\mathcal{F}) \frac{\partial}{\partial x}$ in R^{∞} is defined as follows :

$$
(\mathcal{F}) \frac{\partial}{\partial x}\left(\begin{array}{c}
\frac{a_{0}}{2} \tag{2.1}\\
a_{1} \\
b_{1} \\
a_{2} \\
b_{2} \\
a_{3} \\
b_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & \frac{1 \pi}{l} & 0 & 0 & 0 & 0 & \ldots \\
0 & -\frac{1 \pi}{l} & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & \frac{2 \pi}{l} & 0 & 0 & \ldots \\
0 & 0 & 0 & -\frac{2 \pi}{l} & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{3 \pi}{T} & \ddots \\
0 & 0 & 0 & 0 & 0 & -\frac{3 \pi}{l} & 0 & \ddots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right) \times\left(\begin{array}{c}
\frac{a_{0}}{2} \\
a_{1} \\
b_{1} \\
a_{2} \\
b_{2} \\
a_{3} \\
b_{2} \\
\vdots
\end{array}\right) .
$$

For $n \in \mathbb{N}$, let $F D^{n}[-l, l[$ be a vector space of all n-times differentiable functions on [$-l, l$ [such that for arbitrary $0 \leq k \leq n-1$, a series obtained by a differentiation term by term of the Fourier series of $f^{(k)}$ pointwise converges to $f^{(k+1)}$ for all $x \in[-l, l[$.
Lemma 2.1. Let $f \in F D^{(1)}\left[-l, l\left[\right.\right.$. Let G_{M} be an embedding of the $F D^{(1)}\left[-l, l\left[\right.\right.$ in to R^{∞} which sends a function to a sequence of real numbers consisting from its Fourier coefficients. i.e., if

$$
f(x)=\frac{c_{0}}{2}+\sum_{k=1}^{\infty} c_{k} \cos \left(\frac{k \pi x}{l}\right)+d_{k} \sin \left(\frac{k \pi x}{l}\right)(x \in[-l, l[)
$$

then $G_{F}(f)=\left(\frac{c_{0}}{2}, c_{1}, d_{1}, c_{2}, d_{2}, \ldots\right)$. Then, for $f \in F D^{(1)}[-l, l[$, the following equality

$$
\begin{equation*}
\left(G_{F}^{-1} \circ(\mathcal{F}) \frac{\partial}{\partial x} \circ G_{F}\right)(f)=\frac{\partial}{\partial x}(f) \tag{2.2}
\end{equation*}
$$

holds.
Proof. Assume that for $f \in F D^{(1)}[-l, l[$, we have the following representation

$$
f(x)=\frac{c_{0}}{2}+\sum_{k=1}^{\infty} c_{k} \cos \left(\frac{k \pi x}{l}\right)+d_{k} \sin \left(\frac{k \pi x}{l}\right)(x \in[-l, l[) .
$$

By the definition of the class $F D^{(1)}[-l, l[$, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(f)=\frac{\partial}{\partial x}\left(\frac{c_{0}}{2}+\sum_{k=1}^{\infty} c_{k} \cos \left(\frac{k \pi x}{l}\right)+d_{k} \sin \left(\frac{k \pi x}{l}\right)\right)
$$

$$
\begin{aligned}
& =\sum_{k=1}^{\infty} c_{k} \frac{\partial}{\partial x}\left(\cos \left(\frac{k \pi x}{l}\right)\right)+d_{k} \frac{\partial}{\partial x}\left(\sin \left(\frac{k \pi x}{l}\right)\right) \\
& =\sum_{k=1}^{\infty}-c_{k} \frac{k \pi}{l} \sin \left(\frac{k \pi x}{l}\right)+d_{k} \frac{k \pi}{l} \cos \left(\frac{k \pi x}{l}\right) \\
& =\sum_{k=1}^{\infty} \frac{k \pi d_{k}}{l} \cos \left(\frac{k \pi x}{l}\right)-\frac{k \pi c_{k}}{l} \sin \left(\frac{k \pi x}{l}\right)
\end{aligned}
$$

By the definition of the composition of mappings, we have

$$
\begin{aligned}
& \left(G_{F}^{-1} \circ(\mathcal{F}) \frac{\partial}{\partial x} \circ G_{F}\right)(f)=G_{F}^{-1}\left((\mathcal{F}) \frac{\partial}{\partial x}\left(\left(G_{F}(f)\right)\right)\right)=G_{F}^{-1}\left(\begin{array}{c}
\mathcal{F}) \frac{\partial}{\partial x}\left(\begin{array}{c}
\frac{c_{0}}{2} \\
c_{1} \\
d_{1} \\
c_{2} \\
d_{2} \\
c_{3} \\
d_{3} \\
\vdots
\end{array}\right)
\end{array}\right) \\
& \left.=G_{F}^{-1}\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & \frac{1 \pi}{l} & 0 & 0 & 0 & 0 & \ldots \\
0 & -\frac{1 \pi}{l} & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & \frac{2 \pi}{l} & 0 & 0 & \ldots \\
0 & 0 & 0 & -\frac{2 \pi}{l} & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{3 \pi}{l} & \ddots \\
0 & 0 & 0 & 0 & 0 & -\frac{3 \pi}{l} & 0 & \ddots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right) \times\left(\begin{array}{c}
\frac{c_{0}}{2} \\
c_{1} \\
d_{1} \\
c_{2} \\
d_{2} \\
c_{3} \\
d_{3} \\
\vdots
\end{array}\right)\right) \\
& =G_{F}^{-1}\left(\left(\begin{array}{c}
0 \\
\frac{1 \pi d_{1}}{l} \\
-\frac{1 \pi c_{1}}{l} \\
\frac{2 \pi d_{2}}{l} \\
-\frac{2 \pi c_{2}}{l} \\
\frac{3 \pi d_{3}}{l} \\
-\frac{3 \pi c_{3}}{l} \\
\vdots
\end{array}\right)=\sum_{k=1}^{\infty} \frac{k \pi d_{k}}{l} \cos \left(\frac{k \pi x}{l}\right)-\frac{k \pi c_{k}}{l} \sin \left(\frac{k \pi x}{l}\right) .\right.
\end{aligned}
$$

By the scheme used in the proof of Lemma 2.1, we can get the validity of the following assertion.

Lemma 2.2. Let G_{M} be an embedding of the $F D^{n}\left[-l, l\left[\right.\right.$ in to R^{∞} which sends a function to a sequence of real numbers consisting from its Fourier coefficients.

Then, for $f \in F D^{(n)}\left[-l, l\left[\right.\right.$ and $A_{k} \in R(0 \leq k \leq n)$, the following equality

$$
\begin{equation*}
\left(G_{F}^{-1} \circ\left(\sum_{k=0}^{n} A_{k}\left((\mathcal{F}) \frac{\partial}{\partial x}\right)^{k}\right) \circ G_{F}\right)(f)=\sum_{k=0}^{n} A_{k} \frac{\partial^{k}}{\partial x^{k}}(f) \tag{2.3}
\end{equation*}
$$

holds, where A_{k} are real numbers for $0 \leq k \leq n$.

Example 2.1. [2] If A is the real matrix

$$
\left(\begin{array}{cc}
\sigma & \omega \tag{2.4}\\
-\omega & \sigma
\end{array}\right)
$$

then

$$
e^{t A}=e^{\sigma t}\left(\begin{array}{cc}
\cos (\omega t) & \sin (\omega t) \tag{2.5}\\
-\sin (\omega t) & \cos (\omega t)
\end{array}\right) .
$$

Lemma 2.3. For $m \geq 1$, let us consider a linear autonomous nonhomogeneous ordinary differential equations of the first order

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left(a_{k}\right)_{k \in \mathbb{N}}\right)=\left(\sum_{n=0}^{2 m} A_{n}\left((\mathcal{F}) \frac{\partial}{\partial x}\right)^{n}\right) \times\left(\left(a_{k}\right)_{k \in \mathbb{N}}\right)+\left(f_{k}\right)_{k \in \mathbb{N}} \tag{2.6}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
\left(a_{k}(0)\right)_{k \in \mathbb{N}}=\left(C_{k}\right)_{k \in \mathbb{N}}, \tag{2.7}
\end{equation*}
$$

where
(i) $\left(C_{k}\right)_{k \in \mathbb{N}} \in \mathbf{R}^{\infty}$;
(ii) $f=\left(f_{k}\right)_{k \in \mathbb{N}}$ is the sequence of continuous functions of a parameter t on R.

For each $k \geq 1$, we put

$$
\begin{align*}
& \sigma_{k}=\sum_{n=0}^{m}(-1)^{n} A_{2 n}\left(\frac{k \pi}{l}\right)^{2 n}, \tag{2.8}\\
& \omega_{k}=\sum_{n=0}^{m-1}(-1)^{n} A_{2 n+1}\left(\frac{k \pi}{l}\right)^{2 n+1} . \tag{2.9}
\end{align*}
$$

Then the solution of (2.6)-(2.7) is given by

$$
\begin{equation*}
\left(a_{k}(t)\right)_{k \in \mathbb{N}}=e^{t\left(\sum_{n=0}^{2 m} A_{n}\left((\mathcal{F}) \frac{\partial}{\partial x}\right)^{n}\right)} \times\left(C_{k}\right)_{k \in \mathbb{N}}+\int_{0}^{t} e^{(\tau-t)\left(\sum_{n=0}^{2 m} A_{n}\left((\mathcal{F}) \frac{\partial}{\partial x}\right)^{n}\right)} \times f(\tau) \mathrm{d} \tau \tag{2.10}
\end{equation*}
$$

where $\exp \left(t\left(\sum_{n=0}^{2 m} A_{n}\left((\mathcal{F}) \frac{\partial}{\partial x}\right)^{n}\right)\right)$ denotes an exponent of the matrix $t\left(\sum_{n=0}^{2 m} A_{n}\left((\mathcal{F}) \frac{\partial}{\partial x}\right)^{n}\right)$ and it exactly coincides with an infinite-dimensional $(1,2,2, \ldots)$-cellular matrix $D(t)$ with cells $\left(D_{k}(t)\right)$ $k \in \mathbb{N}$ for which $D_{0}(t)=\left(e^{t A_{0}}\right)$ and

$$
D_{k}(t)=e^{\sigma_{k} t}\left(\begin{array}{cc}
\cos \left(\omega_{k} t\right) & \sin \left(\omega_{k} t\right) \tag{2.11}\\
-\sin \left(\omega_{k} t\right) & \cos \left(\omega_{k} t\right)
\end{array}\right)
$$

where for $k \geq 1, \sigma_{k}$ and ω_{k} are defined by (2.8)-(2.9), respectively.
Proof. We know that if we have a linear autonomous inhomogeneous ordinary differential equations of the first order

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left(a_{k}\right)_{k \in \mathbb{N}}\right)=E \times\left(\left(a_{k}\right)_{k \in N}\right)+\left(f_{k}\right)_{k \in \mathbb{N}} \tag{2.12}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
\left(a_{k}(0)\right)_{k \in \mathbb{N}}=\left(C_{k}\right)_{k \in \mathbb{N}} \tag{2.13}
\end{equation*}
$$

where
(i) $\left(C_{k}\right)_{k \in \mathbb{N}} \in \mathbf{R}^{\infty}$;
(ii) $\left.\left(f_{k}\right)\right)_{k \in \mathbb{N}}$ is the sequence of continuous functions of parameter t on R;
(iii) E is an infinite dimensional $(1,2,2, \ldots)$-cellular matrix with cells $\left(E_{k}\right)_{k \in \mathbb{N}}$.

Then the solution of (2.6)-(2.7) is given by (cf. [2], $\S 6$, Section 1)

$$
\begin{equation*}
\left(a_{k}(t)\right)_{k \in \mathbb{N}}=e^{t E} \times\left(C_{k}\right)_{k \in \mathbb{N}}+\int_{0}^{t} e^{(\tau-t) E} \times f(\tau) \mathrm{d} \tau \tag{2.14}
\end{equation*}
$$

where $e^{t E}$ and $e^{(\tau-t) E}$ denote exponents of matrices $t E$ and $(\tau-t) E$, respectively.
Note that $t \sum_{n=0}^{2 m} A_{n}\left((\mathcal{F}) \frac{\partial}{\partial x}\right)^{n}$ is an infinite-dimensional $(1,2,2, \ldots)$-cellular matrix with cells $\left(t E_{k}\right)_{k \in \mathbb{N}}$ such that $t E_{0}=\left(t A_{0}\right)$ and

$$
t E_{k}=\left(\begin{array}{cc}
t \sigma_{k} & t \omega_{k} \tag{2.15}\\
-t \omega_{k} & t \sigma_{k}
\end{array}\right)
$$

for $k \geq 1$. Under notations (2.8)-(2.9), by using Example 2.1 we get that for $t \in R, e^{t E}$ exactly coincides with an infinite-dimensional ($1,2,2, \ldots$) -cellular matrix $D(t)$ with cells $\left(D_{k}(t)\right)_{k \in \mathbb{N}}$ for which $D_{0}(t)=\left(e^{t A_{0}}\right)$ and

$$
D_{k}(t)=e^{\sigma_{k} t}\left(\begin{array}{cc}
\cos \left(\omega_{k} t\right) & \sin \left(\omega_{k} t\right) \tag{2.16}\\
-\sin \left(\omega_{k} t\right) & \cos \left(\omega_{k} t\right)
\end{array}\right)
$$

Note that, for $0 \leq \tau \leq t$, the matrix $e^{(\tau-t) E}$ exactly coincides with an infinite-dimensional $(1,2,2, \ldots)$-cellular matrix $D(\tau-t)$.

The following proposition is a simple consequence of Lemma 2.3.
Corollary 2.1. For $m \geq 1$, let us consider a linear partial differential equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \Psi(t, x)=\sum_{n=0}^{2 m} A_{n} \frac{\partial^{n}}{\partial x^{n}} \Psi(t, x)((t, x) \in[0,+\infty[\times[-l, l[) \tag{2.17}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
\Psi(0, x)=\frac{c_{0}}{2}+\sum_{k=1}^{\infty} c_{k} \cos \left(\frac{k \pi x}{l}\right)+d_{k} \sin \left(\frac{k \pi x}{l}\right) \in F D^{(0)}[-l, l[. \tag{2.18}
\end{equation*}
$$

If $\left(\frac{c_{0}}{2}, c_{1}, d_{1}, c_{2}, d_{2}, \ldots\right)$ is such a sequence of real numbers that a series $\Psi(t, x)$ defined by

$$
\begin{gather*}
\Psi(t, x)=\frac{e^{t A_{0}} c_{0}}{2}+\sum_{k=1}^{\infty} e^{\sigma_{k} t}\left(\left(c_{k} \cos \left(\omega_{k} t\right)+d_{k} \sin \left(\omega_{k} t\right)\right) \cos \left(\frac{k \pi x}{l}\right)\right. \\
\left.+\left(d_{k} \cos \left(\omega_{k} t\right)-c_{k} \sin \left(\omega_{k} t\right)\right) \sin \left(\frac{k \pi x}{l}\right)\right) \tag{2.19}
\end{gather*}
$$

belongs to the class $F D^{(2 m)}[-l, l[$ as a series of a variable x for all $t \geq 0$, and is differentiable term by term as a series of a variable t for all $x \in[-l, l[$, then Ψ is a solution of (2.17)-(2.18).

3 Solution of a linear partial differential equation of the higher order in two variables with initial condition when coefficients are real-valued simple step functions

Let $0=t_{0}<\cdots<t_{I}=T$ and $-l=x_{0}<\cdots<x_{J}=l$. Suppose that

$$
A_{n}(t, x)=\sum_{i=0}^{I-1 J-1} \sum_{j=0}^{(i, j)} A_{n} \times \chi_{\left[t_{i}, t_{i+1}\left[\times\left[x_{j}, x_{j+1}[(t, x),\right.\right.\right.},
$$

where $A_{n}^{(i, j)}$ are given real numbers for $0 \leq k \leq n, 0 \leq i<I, 0 \leq j<J$.
For $m \geq 1$, let us consider a partial differential equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \Psi(t, x)=\sum_{n=0}^{2 m} A_{n}(t, x) \frac{\partial^{n}}{\partial x^{n}} \Psi(t, x)((t, x) \in[0, T[\times[-l, l[) \tag{3.1}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
\Psi(0, x)=\frac{c_{0}}{2}+\sum_{k=1}^{\infty} c_{k} \cos \left(\frac{k \pi x}{l}\right)+d_{k} \sin \left(\frac{k \pi x}{l}\right) \in F D^{(0)}[-l, l[. \tag{3.2}
\end{equation*}
$$

Definition 3.1. We say that $\Psi(t, x)$ is a weak solution of (3.1)-(3.2) if the following conditions hold:
(i) $\Psi(t, x)$ satisfies (3.1) for each $(t, x) \in\left[0, T\left[\times\left[-l, l\left[\right.\right.\right.\right.$ for which $t \neq t_{i}(0 \leq i \leq I)$ or $x \neq x_{j}(0 \leq$ $j \leq J$);
(ii) $\Psi(t, x)$ satisfies (3.2);
(iii) for each fixed $x \in[-l, l[$, the function $\Psi(t, x)$ is continuous with respect to $t \in[0, T[$, and for each $t \in[0, T[$ the function $\Psi(t, x)$ is continuous with respect to x on $[-l, l[$ except points $\left\{x_{j}: 0 \leq j \leq J-1\right\}$.

First, let fix j and consider a partial differential equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \Psi_{(0, j)}(t, x)=\sum_{n=0}^{2 m} A_{n}^{(0, j)} \frac{\partial^{n}}{\partial x^{n}} \Psi_{(0, j)}(t, x)((t, x) \in[0,+\infty[\times[-l, l[) \tag{0,j}
\end{equation*}
$$

with initial condition

$$
\begin{align*}
& \Psi_{(0, j)}\left(t_{0}, x\right)=\frac{c_{0}}{2}+\sum_{k=1}^{\infty} c_{k} \cos \left(\frac{k \pi x}{l}\right)+d_{k} \sin \left(\frac{k \pi x}{l}\right) \\
= & \frac{c_{0}^{(0, j)}}{2}+\sum_{k=1}^{\infty} c_{k}^{(0, j)} \cos \left(\frac{k \pi x}{l}\right)+d_{k}^{(0, j)} \sin \left(\frac{k \pi x}{l}\right) \in F D^{(0)}[-l, l[, \tag{0,j}
\end{align*}
$$

By Corollary 2.1, under some restrictions on ($\left.\frac{c_{0}}{2}, c_{1}, d_{1}, c_{2}, d_{2}, \ldots\right)$, a series $\Psi_{(0, j)}(t, x)$ defined by

$$
\begin{gather*}
\Psi_{(0, j)}(t, x)=\frac{e^{t A_{0}^{(0, j)}} c_{0}^{(0, j)}}{2}+\sum_{k=1}^{\infty} e^{\sigma_{k}^{(0, j)} t}\left(\left(c_{k}^{(0, j)} \cos \left(\omega_{k}^{(0, j)} t\right)+d_{k}^{(0, j)} \sin \left(\omega_{k}^{(0, j)} t\right)\right) \cos \left(\frac{k \pi x}{l}\right)\right. \\
\left.+\left(d_{k}^{(0, j)} \cos \left(\omega_{k}^{(0, j)} t\right)-c_{k}^{(0, j)} \sin \left(\omega_{k}^{(0, j)} t\right)\right) \sin \left(\frac{k \pi x}{l}\right)\right) \tag{3.3}
\end{gather*}
$$

is a solution of $(0, \mathrm{j})(\mathrm{PDE})-(0, \mathrm{j})(\mathrm{IC})$.
Now let consider a partial differential equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \Psi_{(1, j)}(t, x)=\sum_{n=0}^{2 m} A_{n}^{(1, j)} \frac{\partial^{n}}{\partial x^{n}} \Psi_{(1, j)}(t, x)((t, x) \in[0,+\infty[\times[-l, l[) \tag{1,j}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
\Psi_{(1, j)}\left(t_{1}, x\right)=\Psi_{(0, j)}\left(t_{1}, x\right) . \tag{1,j}
\end{equation*}
$$

We will try to present the solution of the ($1, j$)(PDE) by the following form

$$
\Psi_{(1, j)}(t, x)=\frac{e^{t A_{0}^{(1, j)}} c_{0}^{(1, j)}}{2}+\sum_{k=1}^{\infty} e^{\sigma_{k}^{(1, j)} t} t\left(c_{k}^{(1, j)} \cos \left(\omega_{k}^{(1, j)} t\right)+d_{k}^{(1, j)} \sin \left(\omega_{k}^{(1, j)} t\right)\right) \cos \left(\frac{k \pi x}{l}\right)
$$

$$
\begin{equation*}
\left.+\left(d_{k}^{(1, j)} \cos \left(\omega_{k}^{(1, j)} t\right)-c_{k}^{(1, j)} \sin \left(\omega_{k}^{(1, j)} t\right)\right) \sin \left(\frac{k \pi x}{l}\right)\right) \tag{3.4}
\end{equation*}
$$

In order to get validity of the condition ($1, \mathrm{j}$)(IC), we consider the following infinite system of equations:

$$
\begin{align*}
& \frac{e^{t_{1} A_{0}^{(1, j)}} c_{0}^{(1, j)}}{2}=\frac{e^{t_{1} A_{0}^{(0, j)} c_{0}^{(0, j)}}}{2}, \tag{3.5}\\
& e^{\sigma_{k}^{(1, j)} t_{1}}\left(c_{k}^{(1, j)} \cos \left(\omega_{k}^{(1, j)} t_{1}\right)+d_{k}^{(1, j)} \sin \left(\omega_{k}^{(1, j)} t_{1}\right)\right) \\
= & e^{\sigma_{k}^{(0, j)} t_{1}}\left(c_{k}^{(0, j)} \cos \left(\omega_{k}^{(0, j)} t_{1}\right)+d_{k}^{(0, j)} \sin \left(\omega_{k}^{(0, j)} t_{1}\right)\right)(k \in \mathbb{N}), \tag{3.6}\\
& e^{\sigma_{k}^{(1, j)} t_{1}}\left(d_{k}^{(1, j)} \cos \left(\omega_{k}^{(1, j)} t_{1}\right)-c_{k}^{(1, j)} \sin \left(\omega_{k}^{(1, j)} t_{1}\right)\right) \\
= & e^{\sigma_{k}^{(0, j)} t_{1}}\left(d_{k}^{(0, j)} \cos \left(\omega_{k}^{(0, j)} t_{1}\right)-c_{k}^{(0, j)} \sin \left(\omega_{k}^{(0, j)} t_{1}\right)\right)(k \in \mathbb{N}) . \tag{3.7}
\end{align*}
$$

We have

$$
\begin{equation*}
c_{0}^{(1, j)}=e^{t_{1}\left(A_{0}^{(0, j)}-A_{0}^{(1, j)}\right)} c_{0}^{(0, j)} \tag{3.8}
\end{equation*}
$$

For $k \in \mathbb{N}$ we can rewrite Eqs. (3.6)-(3.7) as follows:

$$
\begin{gather*}
c_{k}^{(1, j)} \cos \left(\omega_{k}^{(1, j)} t_{1}\right)+d_{k}^{(1, j)} \sin \left(\omega_{k}^{(1, j)} t_{1}\right)=e^{\left(\sigma_{k}^{(0, j)}-\sigma_{k}^{(1, j)}\right) t_{1}}\left(c_{k}^{(0, j)} \cos \left(\omega_{k}^{(0, j)} t_{1}\right)\right. \\
\left.+d_{k}^{(0, j)} \sin \left(\omega_{k}^{(0, j)} t_{1}\right)\right) \tag{3.9}\\
-c_{k}^{(1, j)} \sin \left(\omega_{k}^{(1, j)} t_{1}\right)+d_{k}^{(1, j)} \cos \left(\omega_{k}^{(1, j)} t_{1}\right)=e^{\left(\sigma_{k}^{(0, j)}-\sigma_{k}^{(1, j)}\right) t_{1}}\left(d_{k}^{(0, j)} \cos \left(\omega_{k}^{(0, j)} t_{1}\right)\right. \\
\left.-c_{k}^{(0, j)} \sin \left(\omega_{k}^{(0, j)} t_{1}\right)\right) . \tag{3.10}
\end{gather*}
$$

Setting

$$
\begin{equation*}
\mathbb{A}=e^{\left(\sigma_{k}^{(0, j)}-\sigma_{k}^{(1, j)}\right) t_{1}}\left(c_{k}^{(0, j)} \cos \left(\omega_{k}^{(0, j)} t_{1}\right)+d_{k}^{(0, j)} \sin \left(\omega_{k}^{(0, j)} t_{1}\right)\right) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{B}=e^{\left(\sigma_{k}^{(0, j)}-\sigma_{k}^{(1, j)}\right) t_{1}}\left(d_{k}^{(0, j)} \cos \left(\omega_{k}^{(0, j)} t_{1}\right)-c_{k}^{(0, j)} \sin \left(\omega_{k}^{(0, j)} t_{1}\right)\right), \tag{3.12}
\end{equation*}
$$

for $k \in \mathbb{N}$, we obtain

$$
\begin{equation*}
c_{k}^{(1, j)} \cos \left(\omega_{k}^{(1, j)} t_{1}\right)+d_{k}^{(1, j)} \sin \left(\omega_{k}^{(1, j)} t_{1}\right)=\mathbb{A} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
-c_{k}^{(1, j)} \sin \left(\omega_{k}^{(1, j)} t_{1}\right)+d_{k}^{(1, j)} \cos \left(\omega_{k}^{(1, j)} t_{1}\right)=\mathbb{B} . \tag{3.14}
\end{equation*}
$$

It is obvious that the system of Eqs. (3.13)-(3.14) has the unique solution which can be done as follows:

$$
\begin{equation*}
c_{k}^{(1, j)}=\mathbb{A} \cos \left(\omega_{k}^{(1, j)} t_{1}\right)-\mathbb{B} \sin \left(\omega_{k}^{(1, j)} t_{1}\right) \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{k}^{(1, j)}=\mathbb{B} \cos \left(\omega_{k}^{(1, j)} t_{1}\right)+\mathbb{A} \sin \left(\omega_{k}^{(1, j)} t_{1}\right) \tag{3.16}
\end{equation*}
$$

for $k \in \mathbb{N}$.
By Corollary 2.1, under some restrictions on $\left(\frac{c^{(1, j)}}{2}, c_{1}^{(1, j)}, d_{1}^{(1, j)}, c_{2}^{(1, j)}, d_{2}^{(1, j)}, \ldots\right)$, the series $\Psi_{(1, j)}(t, x)$ defined by (3.4) is the solution of (1,j)(PDE)-(1,j)(IC).

It is obvious that under nice restrictions on coefficients participated in (3.1) and (3.2), we can continue our procedure step by step. Correspondingly we can construct a sequence $\left(\Psi_{(s, j)}\right)_{0 \leq s \leq I-1,1 \leq j \leq J-1}$ such that $\Psi_{(s, j)}$ satisfies a linear partial differential equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \Psi_{(s, j)}(t, x)=\sum_{n=0}^{2 m} A_{n}^{(s, j)} \frac{\partial^{n}}{\partial x^{n}} \Psi_{(s, j)}(t, x)((t, x) \in[0,+\infty[\times[-l, l[) \tag{s.j}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
\Psi_{(s, j)}\left(t_{s}, x\right)=\Psi_{(s-1, j)}\left(t_{s}, x\right)=\frac{c_{0}^{(s, j)}}{2}+\sum_{k=1}^{\infty} c_{k}^{(s, j)} \cos \left(\frac{k \pi x}{l}\right)+d_{k}^{(s, j)} \sin \left(\frac{k \pi x}{l}\right) . \tag{s,j}
\end{equation*}
$$

Theorem 3.1. If for coefficients $\left(\frac{c_{0}^{(i, j)}}{2}, c_{1}^{(i, j)}, d_{1}^{(i, j)}, c_{2}^{(i, j)}, d_{2}^{(i, j)}, \ldots\right)(1 \leq i \leq I, 1 \leq j \leq J)$ functions $\Psi_{(i, j)}(t, x)$ satisfy conditions of Corollary 2.1, then a function $\Psi(t, x):[0, T[\times[-l, l[\rightarrow R$ defined by

$$
\begin{equation*}
\sum_{i=0}^{I-1 J-1} \sum_{j=0} \Psi_{(i, j)}(x, t) \times \chi_{\left[t_{i}, t_{i+1} \mid \times\left[x_{j}, x_{j+1}\right]\right.}(t, x) \tag{3.17}
\end{equation*}
$$

is a weak solution of (3.1) and (3.2).

Example 3.1. Let consider a linear partial differential equation of the 22 order in two variables

$$
\begin{equation*}
\frac{\partial}{\partial t} \Psi(t, x)=A(t, x) \times \frac{\partial^{2}}{\partial x^{2}} \Psi(t, x)+B(t, x) \times \frac{\partial^{22}}{\partial x^{22}} \Psi(t, x)((t, x) \in[0,2 \pi[\times[0, \pi[) \tag{3.18}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
\Psi(0, x)=\frac{0.015}{2}+5 \sin (x), \tag{3.19}
\end{equation*}
$$

where

$$
A(t, x)=0.5 \times \chi_{[0, \pi[\times[0, \pi[}(t, x)+0.55 \times \chi_{[\pi, 2 \pi[\times[0, \pi[}(t, x)
$$

and

$$
B(t, x)=2 \times \chi_{[0, \pi[\times[0, \pi[}(t, x)+2.5 \times \chi_{[\pi, 2 \pi[\times[0, \pi[}(t, x) .
$$

The programm in MatLab (cf. [4]) for a solution of (3.18) and (3.19), has the following form:

Figure 1: Graphic of the solution of the LPDE-(3.18) with IC-(3.19).
$A 1=[0,0.5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2]$;
$A 2=[0,0.55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2.5] ;$
$C 1=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ;$
$D 1=[5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ;$
$A 10=0 ; A 20=0 ; C 10=0.015$;
for $k=1: 20$
$S 1(k)=A 10 ; S 2(k)=A 20 ;$
for $n=1: 10$
$S 1(k)=S 1(k)+(-1)(n) * A 1(2 * n) * k(2 * n) ;$
$S 2(k)=S 2(k)+(-1)(n) * A 2(2 * n) * k(2 * n)$;
end
end
for $k=1: 20$
$O 1(k)=0$;
$O 2(k)=0$;
end
for $k=1: 20$
for $n=1: 10$
$O 1(k)=O 1(k)+(-1)^{n} * A 1(2 * n+1) * k(2 * n+1)$;
$O 2(k)=O 2(k)+(-1)^{n} * A 2(2 * n+1) * k(2 * n+1)$;
end
end

```
    [T1,X1]= meshgrid}(0:(pi/10):pi,0:(pi/10):pi)
    Z1 = 0.5*C10*exp(T1.*A10);
    for }k=1:2
    Z1=Z1+C1(k)*exp (T1*S1(k)).*\operatorname{cos}(X1.*k).*\operatorname{cos}(T1*O1(k))+D1(1)*\operatorname{exp}(T1*S1(k)).*
cos(X1.*k).*\operatorname{sin}(T1*O1(k))+
    D1(k)*exp(T1*S1(k)).*\operatorname{sin}(X1.*k).*\operatorname{cos}(T1*O1(k))-C1(k)*exp(T1*S1(k)).*\operatorname{sin}(X1.*
k).*\operatorname{sin}(T1*O1(k));
    end
    C20 = exp (pi*(A10-A20))*C10;
    for }k=1:2
    A(k)=\operatorname{exp}((S1(k)-S2(k))*pi)*(C1(k)*\operatorname{cos}(O1(k)*pi)+D1(k)*\operatorname{sin}(O1(k)*pi));
    B(k)=\operatorname{exp}((S1(k)-S2(k))*pi)*(D1(k)*\operatorname{cos}(O1(k)*pi)-C1(k)*\operatorname{sin}(O1(k)*pi));
    end
    for }k=1:2
    C2(k)=A(k)*\operatorname{cos}(O2(k)*pi)-B(k)*\operatorname{sin}(O2(k)*pi);
    D2(k)=B(k)*\operatorname{cos}(O2(k)*pi)+A(k)*\operatorname{sin}(O2(k)*pi);
    end
    [T2,X2]=meshgrid}(pi:(pi/10):(2*pi),0:(pi/10):pi)
    Z2 = 0.5*C20*exp ((T2)*A20);
    for }k=1:2
    Z2=Z2+C2(k)*exp}(T2*S2(k)).*\operatorname{cos}(X2.*k).*\operatorname{cos}(T2*O2(k))+D2(1)*\operatorname{exp}(T2*S2(k)).
cos(X2.*k).*\operatorname{sin}(T2*O2(k))+
    D2(k)*exp}(T2*S2(k)).*\operatorname{sin}(X2.*k).*\operatorname{cos}(T2*O2(k))-C2(k)*\operatorname{exp}(T2*S2(k)).*\operatorname{sin}(X2.
k).*\operatorname{sin}(T2*O2(k));
    end
    surf(T1,X1,Z1)
    hold on
    surf(T2,X2,Z2)
    hold off
```

Example 3.2. Let consider a linear partial differential equation of the 21 order in two variables

$$
\begin{align*}
\frac{\partial}{\partial t} \Psi(t, x)=A(t, x) & \Psi(t, x)+B(t, x) \times \frac{\partial^{2}}{\partial x^{2}} \Psi(t, x) \\
& +100 \frac{\partial^{3}}{\partial x^{3}} \Psi(t, x)+2 \frac{\partial^{21}}{\partial x^{21}} \Psi(t, x)((t, x) \in[0,2 \pi[\times[0, \pi[) \tag{3.20}
\end{align*}
$$

with initial condition

$$
\begin{equation*}
\Psi(0, x)=\frac{0.015}{2}+100 \sin (x) \tag{3.21}
\end{equation*}
$$

where

$$
A(t, x)=1 \chi_{[0, \pi[\times[0, \pi[}(t, x)+0 \chi_{[\pi, 2 \pi[\times[0, \pi[}(t, x)
$$

Figure 2: Graphic of the solution of the LPDE-(3.20) with IC-(3.21).
and

$$
B(t, x)=\chi_{[0, \pi[\times[0, \pi[}(t, x)-\chi_{[\pi, 2 \pi[\times[0, \pi[}(t, x) .
$$

The graphical solution of (3.20)-(3.21) can be obtained by MatLab programm used in Example 3.1 for the following data:

$$
\begin{aligned}
& A 1=[0,1,100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0] ; \\
& A 2=[0,-1,100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0] ; \\
& C 1=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ; \\
& D 1=[100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ; \\
& A 10=1 ; A 20=0 ; C 10=0.15 ;
\end{aligned}
$$

We see that we have no graphic on the region $[\pi, 2 \pi[\times[0, \pi[$ which hints us that coefficients of the LPDE (3.20)-(3.21) on that region do not satisfy conditions of Theorem 3.1.

Remark 3.1. Notice that for each natural number $M>1$, one can easily modify the MatLab program described in Example 3.1 for obtaining the graphical solution of the linear partial differential equation (3.1)-(3.2) whose coefficients $\left(A_{n}(t, x)\right)_{0 \leq n \leq 2 M}$ are real-valued simple step functions on $[0, T] \times[-l, l[$ and f is a trigonometric polynomial on $[-l, l[$.

Remark 3.2. The approach used for a solution of (3.1)-(3.2) can be used in such a case when coefficients $\left(A_{n}(t, x)\right)_{0 \leq n \leq 2 M}$ are rather smooth continuous functions on $[0, T[\times[-l, l[$. If we will approximate $\left(A_{n}(t, x)\right)_{0 \leq n \leq 2 M}$ by real-valued simple step functions, then it is
natural to wait that under some "nice restrictions" on $\left(A_{n}(t, x)\right)_{0 \leq n \leq 2 M}$ the solutions obtained by Theorem 3.1, will give us a "good approximation" of the solution of the required linear partial differential equation of the higher order in two variables with corresponding initial conditions.

Acknowledgement

The authors wish to thank the referees for their constructive critique of the first draft.

References

[1] Pantsulaia G., Giorgadze G., On some applications of infinite-dimensional cellular matrices, Georg. Inter. J. Sci. Tech., Nova Science Publishers, 3 (1) (2011), 107-129.
[2] Gantmacher F. R., Theorie des matrices, Tome 1: Theorie generale (Traduit du Russe par Ch. Sarthou). Collection Universitaire de Mathematiques, 18, Dunod, Paris, 1966.
[3] John F., Partial Differential Equations. Springer-Verlag, New York, Heidelberg, 1982.
[4] Stanoyevitch A., Introduction to MATLAB ${ }^{\circledR}$ with numerical preliminaries. WileyInterscience, John Wiley \& Sons, Hoboken, NJ, 2005.

[^0]: *Corresponding author. Email addresses: g.pantsulaia@gtu.ge (G. Pantsulaia), g.giorgadze@gtu.ge (G. Giorgadze)

