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1 Introduction and main results

In this paper, we deal with the following Yamabe type equation in dimension n =4:
Agu+hu=8u’, u>0. (1.1)

Here, Ag= —Vi(V;) is the Laplace-Beltrami operator and / is an arbitrary bounded func-
tion.

The Eq. (1.1) was studied a lot, when M =Q CR" or M =S5, see for example, [2-4,
11,15]. In this case we have a sup xinf inequality. The corresponding equation in two
dimensions on open set Q) of R?, is:

Au=V(x)e". (1.2)

The Eq. (1.2) was studied by many authors and we can find very important result about a
priori estimates in [8,9,12,16] and [19]. In particular in [9], we have the following interior
estimate:

sipu <c=c (%fV, [ V||Loo(Q),1gfu,K,Q> )

And, precisely, in [8,12,16] and [20], we have:
Csupu+infu <c=c <ian, | VHLOO(Q),K,Q),
K 0 0
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and
infu <c=c(infV, |V (0), K0Q),
sipu%—lg usc=c(in [Vl ce(a
where K is a compact subset of (2, C is a positive constant which depends on

inf 0O \%
sup,V

and a € (0,1]. When 6h= Rq the scalar curvature, and M compact, the Eq. (1.1) is Yamabe
equation. T. Aubin and R. Schoen have proved the existence of solution in this case, see
for example [1] and [14] for a complete and detailed summary. When M is a compact
Riemannian manifold, there exist some compactness results for Eq. (1.1) see [18]. Li and
Zhu see [18], proved that the energy is bounded and if we suppose M not diffeormorfic
to the three sphere, the solutions are uniformly bounded. To have this result they use the
positive mass theorem. Now, if we suppose M a Riemannian manifold (not necessarily
compact) Li and Zhang [17] proved that the product sup xinf is bounded. Here we ex-
tend the result of [5]. Our proof is an extension Li-Zhang result in dimension 3, see [3]
and [17], and, the moving-plane method is used to have this estimate. We refer to Gidas-
Ni-Nirenberg for the moving-plane method, see [13]. Also, we can seein [3,6,10,11,16,17],
some applications of this method, for example an uniqueness result. We refer to [7] for
the uniqueness result on the sphere and in dimension 3. Here, we give an equality of
type sup xinf for the Eq. (1.1) in dimension 4. In dimension greater than 3 we have other
type of estimates by using moving-plane method, see for example [3,5]. There are other
estimates of type sup+inf on complex Monge-Ampere equation on compact manifolds,
see [20,21]. They consider, on compact Kahler manifold (M, g), the following equation:

We+09¢) =ef 1o,
{( ¢ +999) K (1.3)

wg+0909>0 on M.

And, they prove some estimates of type sup,,+minfy; < C or sup,,+minfy > C under
the positivity of the first Chern class of M. Here, we have,

Theorem 1.1. For all compact set K of M, there is a positive constant c, which depends only on,
ho = ||| (), K, M, g such that:

1/3
<supu) xinfu <c,
K M

for all u solution of (1.1).

Here we consider more general equation and this theorem extends a result of Li and
Zhang, see [17]. Li and Zhang considered precisely the Yamabe equation and here we
consider a general equation (1 # £ R, with Ry the scalar curvature). Here, we use a differ-
ent method than the method of Li and Zhang in [17]. Also, we extend a result of [5].
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Corollary 1.1. For all compact set K of M there is a positive constant c, such that:

supu<c=c(g,m,ho,K,M) if il\r}lfu >m>0,
K

for all u solution of (1.1).

2 Proof of the results

Proof of Theorem 1.1. Let xg be a point of M. We want to prove a uniform estimate around
xo. We argue by contradiction, we assume that the sup x inf is not bounded.
Vc¢,R >0, Ju g solution to (1.1) such that:

1/3
Rz( sup uC,R) xinfu. g >c. (2.1)
B(xo,R) M

Proposition 2.1 (Blow-Up Analysis). There is a sequence of points (y;);, y; — xo and two
sequences of positive real numbers (I;);, (L;);, I;—0, L;— 400, such that if we set

o ui[expyi(y/[”i(yi)])]
Ul(y)_ ui(yi)

7

we have:
0<vi(y)<Bi<2, Bi—1,

1
vi(y) — Ty uniformly on compact sets of R*,

l?(ui(yi))l/g’rr}vilnui — +-o0.

Proof. We use the hypothesis (2.1), we take two sequences, R; >0, R; — 0 and ¢; — +oo,

such that, )
1/3
R ( sup ”ci,Ri> xinfug, g, > c; — +00. (2.2)
B(xo,R;) M

Let, x; € B(xo,R;), such that supp
B(x;,R;). Then, x; — xo. We have:

yui=u;(x;) and s;(x) = [R;—d(x,x)] (u;(x))V, x €

xO/Ri

sup Si(x)zsi(yi)zsi(xi)ZRi(Mi(xi))l/62Ci1/2—>+oo
B(xirRi)
with y; € B(x;,R;).
We set :

li=R;—d(y;,xi), ﬁi(y):”i[expyi(y)]/ vi(z)= Iul( )
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Clearly, we have, y; — x9. We obtain:

Li:w[ i(yi)l = 1 g =¢ Tt
l

If [z] < Lj, then y=exp, [z/[ui(yi)]] € B(yi,dili) with 6;= T )1/4 and d(y,yi) < Ri—d(yi,xi),
)

thus, d(y,x;) <R; and, s;(y) <s;(y;). We can write,

(ui(y) O [Ri—d(y,x:)] < (ui(yi)) /L.

But, d(y,y;) <dil;, Ri>1; and R;—d(y,x;) > R;—d(x;,y;) —;l;>1;—6;il;=1;(1—0;), hence, we
obtain,

0<”i(z):5-i(y) = (zi(1li(si)>6§26'

We set, B; = 1%&, clearly g; —1.
Because R; >I; we have u;(y;) > u;(x;) using the fact that s;(y;) > s;(x;) we obtain:

l?(ui(yi))l/S X i]\r}ffui — —-00.
Thus, we complete the proof. O

Remark 2.1. We can consider s;(x) = (R;—d(y,x;))u;(x) and in this case we can replace I;
by R; to have the last assertion of the proposition (our computations do not change):

R*(u;(y;))'/3 xi}r\}fui—) +o0.

The function v; satisfies the following equation:
(00— | ek s / Q:0: h(z) —8p3 23
—8"(2)0jkvi— k[g |g]}(z) ]01+mvz— Ui (2.3)

with g/ (z) = g/ (exp,, (2/ui(y:)))-
We use Ascoli and Ladyzenskaya theorems (see [1]) to obtain the local uniform con-
vergence (on every compact set of IR*) of (v;); to v solution on IR* to:

Av=80%, v(0)=1, 0<v<1<2.

By the maximum principle, we have v >0 on R". According to Caffarelli-Gidas-Spruck

result (see [10]), we have, v(y) = 1+1\y\2
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Polar geodesic coordinates

Let u be a function on M. We denote g, ;; the local expression of the metric ¢ in the

exponential chart centered at x. We set,
w;(t,0) :etui[expyi (e'9)],
a(yi,t,0) =log] (yie',0) =log[/det(gy, ij)].

We can write the Laplace-Beltrami operator in polar geodesic coordinates:

—Au=20,, i+ %arajua, [logJ(x,r,0)]0,1— %A@ﬂ.
We deduce the two following lemmas:
Lemma 2.1. The function w; is a solution to:
— 0y w; — 0;a0;w; — Ngw; +cw; = Sw?

with
c=c(y;t,0)= 1+ata—|—he2t.

Proof. We write:
0yw; =€ 0,11+ wj, opw; =e> [arrﬁi—l—;arﬁl} +w,
dia= etarlog](yi,et,ﬁ), 910y w; = e [0,10g J0, 1] +0raw;.
Lemma 2.1 follows.

Let by (y;,t,0) =] (y;,e',0) > 0. We can write:

1 _
] \/7’(1)1 —Agw;+ (t)+bl 1/2b2(t,9)]w1‘=8w1‘3,

Vo
where,
— 2
by (t,0) =3y (/1) = 2\F O1iby — 10, )3/2 R
We set,
Wi = mwi~
Lemma 2.2. The function W; is a solution to:
1
—attwi—FA@(wi) —|—2V9(?I)Z)V910g(\/a) + (C+b;l/2b2 —Cz) ==38 <b > ~13,
1

where, c; is a function to be determined.

(2.4)

(2.5)

(2.6)
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Proof. We have:
1
—0pW;— /b1 Agw;+ (c+by)W; =8 <b_> ZT)?,
1
But,

Ng(V/brw;) = /b1 Agw;— 2V gw;- Vo / by +wiAg (1/D1),
Vo(vb1w;) =w;Ve\/b1 ++/b1 Vew;,

and

we can write,

Vow;-Vor/by = Vo(w;)- Velog(v/b1) — ;| Velog(v/b1) %,

we deduce,
Vb1 Agw; = Do (@) +2V(@;).Vlog (/1) — 2y,
with .
[ 2
cZ—[\/EAe(\/E)JrIVelog(\/E)I ]
Lemma 2.2 is proved. O

The Moving-Plane method

Let & be a real number, we assume ¢; < t. We set % =2¢& —t and zbz-gi (t,0) =w;(t%,0). Set,
)\i = —logui(yi).

Proposition 2.2. We claim: there exists a positive constant k such that:

;(A;,0) —w;(Aj+4,0)>k>0, VOcSs. (2.7)
For all >0, there exists cg >0 such that:
Cietgzbi()\i—ktﬁ) <cge!, Vt<B, VO€ESs. (2.8)
p

Proof. Asin [2], There exists a positive constant k such that, w;(A;,0) —w;(A;+4,0) > k>0
for i large, V0. We can remark that by (y;,A;,0) — 1 and by (y;,A;+4,0) — 1 uniformly in 6,
we obtain the first claim of Proposition 2.2. For the second claim we use Proposition 2.1,
see also [2]. We set:

Zi=—=0u (- )+ 8 () +2Vg(-+)- Volog(v/b1) + (c+by Py =) (-++).  (29)
We complete the proof. O
Remark 2.2. In the operator Z;, we can remark that:
c+b; by~ >K >0 for t<0,

we can apply the maximum principle and the Hopf lemma.
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Goal

Like in [2], we have an elliptic second order operator. Here it is Z;, the goal is to use the
“moving-plane” method to have a contradiction. For this, we must have:

Zi(@% —;) <0, if @ —@,; <0. (2.10)

We write, Ay = Ag s . We obtain:
-1

) (@)

y,',et,sa

Zi(@' ~ ) = L

>3
+2(V, 5= Vo) @)V, e log(\/b)+2Vu(@)-V, e llog(y/b]) —log /b
+zv9,etw§f~(veet¢,.—vg,et)log\/a—[(c+b;1/2bz—c2)€f—(c+bl—1/ by —cy)] @t

+8<b1,1> (@)%~ s(bll) @, 2.11)

Clearly, we have the following lemma:
Lemma 2.3. It holds
b1 (y;,t,0)=1— %Ricciyi (68,0)e* +---,
R (€'0) =Rq(yi)+ < VRg(y:)|0 > e +---
By the previous computations and Lemma 2.3, we have:
Proposition 2.3. It holds
Zi(@ — i) <8(67) (@)~ 7]+ Cle¥ = (| Vot |+ V5 (@)
+C|e¥ —|(|Ricciy, |+ | )@ +C’w§’ |3 — 3| (2.12)

Proof. In polar geodesic coordinates (and the Gauss lemma):
g=dr +r°g5do'de) at \/|gF|=a"(6)/[det(gxi)], (2.13)

where aF is the volume element of the unit sphere associated to UF.
We can write (with Lemma 2.2):

10¢b1 () |+ |01 b1 ()| + |9gea(t) | < Ce*,

and
|06,b1|+104,,0,b1]+01,0,01]+|01,6,,0,b1] < Ce™.



S.S. Bahoura / Anal. Theory Appl., 32 (2016), pp. 272-282

But, ‘
Ap=A __ Oy 577 (¢,0) /13 (¢,0)[9g1] _
s 0]
Then,
oloi = Gi olgi =
|| 9 (8919] 1851961) dyi (89191 1851961) ~Ci\ _ R, .
Api= V! - v (@) =B;+D;,
s V18"
where, ‘ ‘
Bi = |:g9’9] (etéilg) _g~919/ (Et,g)] aelefw?l
and

D;=

dyi ~991 téz \/—k| tg" agl[gelgj(etzg)\/’g—k’(etfg)]]a-ZT)(:i
tél 5k t o
e (e

Clearly, we can choose €1 >0 such that:

9r 87 (x,18) | +19r 09ng™[i(x,r,0)| <Cr, x € B(xoer), r€[0e1], 0 €U”

Finally,
A< Cle? — | [|Voaf |+ | V(@) .
We take, C=max{C;,1<i<g} and we use (2.11). Proposition 2.3 is proved.
We have,

c(yi,t,0) =140;a+he*,

1 1
ba(t,0) =2 (V1) = 5 Z=0ubi — 15

c2= (=80 (VB + [ Volog (/i) .

(3:h1)?%,

F

279

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19a)
(2.19b)

(2.19¢)

We assume that A <A;+2=—logu;(y;)+2, which will be chosen later. We work on [A,#;] x

S5 with
- A 1
=logli>ti= 3= glogui(yi) — —o00,
l; as in the Proposition 2.1. For i large t; > A;+2.

The functions v; tend to a radially symmetric function, then, E)gjwl.A —0ifi— +oo0 and,

Qo (£8) et DIA=NHE=D1/26l -2+ @0 (3, o) (elA-1)+(2-D]g)

wh e(r=2[(A=A)+ (=072, [e(A-A) +(A-1)g]
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where C; does not depend on A and tends to 0. We have also,

09w (t,0)|+[0g w0} (£,0)] < Ciw (1,6), Ci—0, (2.20)
and

1067 (£,0)]+|9g,07 (£,0)| < Ciw? (1,0), Ci—0. (2.21)

C; does not depend on A.

Now, we set:
_ - ﬁ”ll'
_

W; =W; 5 (2.22)
with m; = %ui(xi)l/g’minMui. As in [2], we have,
Lemma 2.4. There is v <0 such that for A<v :
@} (t,0) —w;(t,0) <0, V(t0)€[A,t;]xSs. (2.23)

Let ¢; be the following real number,
&= sup{A<A; +2, w Mt,0)—w (t,0) <0, V(£,0) € [At]xS3}.

By continuity we have in [A, ;] x S3:

According to the definition of @; and @; (before Lemma 2.4 and Lemma 2.4), we have:
0<@b <2e, w;> 5¢" and 5 —w; < 5 (27—,

Like in [2], we use the previous lemma to show:

% —; <0 = Z;(@% — ;) <0.

We have,

7 (5i __ i\— #Gi o & #Gi i
Zi(@§ ;) <8(b§) M [(@5)® — @]+ O(1) (2 — ) + O (1) (¥ — ),
—Zi(e%éi —e*)=(4—1—0;a—he* +bf1/2b2—c2) (eZtéi —eH) < C3(€2t§i —e?).

Thus, y
Zi(@% — ;) <8(B8) T [(@F) — 2]+ (cami—ca) (¥ — )

1

with, c3,c4 > 0. But,

7

~ - m; ~ - m; 6,’
0<w§’§2e, wl-z?leﬂ and w?’—wigi(eﬂ —e?h)
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and
(@)° @ = (@] ) [(@])* +@] @+ ]
< (@ ;) (@) 2+ (@ — ;) mifzt +(@f —w) Teat,  (224)
then,
Zi(@% —w;) < H”l"f ~o(1)]+ [% —0(1)]e'af)(*" —e*) <o. (2.25)

If we use the maximum principle and the Hopf lemma, we obtain (as in [2]):

inw;(t;,0) < maxw®;(2& —t;,0),
min i(t )_{orgs;< i(2¢i—1;,0)

we can write (using Proposition 2.2):
w; (25— £;,0) =wi(§i— ti+Gi— Ai+A;,0) <ceb ™, G <A+2,

and we take,
i

1
ti=73=—3logui(y;)

to have:
[ui(yi)]l/Srr}&Inui <c, (2.26)

which in contradiction with Proposition 2.1.
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