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Abstract. Let H
n be the Heisenberg group and Q=2n+2 be its homogeneous dimen-

sion. In this paper, we consider the Schrödinger operator −∆Hn +V, where ∆Hn is
the sub-Laplacian and V is the nonnegative potential belonging to the reverse Hölder
class Bq1 for q1 ≥ Q/2. We show that the operators T1 = V(−∆Hn +V)−1 and T2 =

V1/2(−∆Hn +V)−1/2 are both bounded from H1
L(H

n) into L1(Hn). Our results are
also valid on the stratified Lie group.
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1 Introduction

Let L = −∆Hn+V be a Schrödinger operator, where ∆Hn is the sub-Laplacian on the
Heisenberg group H

n and V the nonnegative potential belonging to the reverse Hölder
class Bq1

for some q
1
≥ Q/2 and Q> 5. In this paper we consider the Riesz transforms

associated with the Schrödinger operator L

T1=V(−∆Hn+V)−1, T2=V1/2(−∆Hn+V)−1/2, T3=∇Hn(−∆Hn +V)−1/2.

We are interested in the Hardy type estimates for the Riesz transform Ti, i=1,2,3. In recent
years, some problems related to Schrödinger operators and Schrödinger type operators
on the Heisenberg group and other nilpotent Lie group have been investigated by a num-
ber of scholars (see [2,3,5–10,12]). Among these papers the core problem is the research of
estimates for Riesz transforms associated with the Schrödinger operator L. As we know,
C. C. Lin, H. P. Liu and Y. Liu have proved that the operator T3=∇Hn(−∆Hn +V)−1/2 is
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bounded from H1
L(H

n) to L1(Hn) in [5]. In this paper we will show that the other two
operators T1 and T2 are also bounded from H1

L(H
n) to L1(Hn). At the last section, we

simply state the results on the stratified Lie group.
In what follows we recall some basic facts for the Heisenberg group H

n (cf. [11]). The
Heisenberg group H

n is a lie group with the underlying manifold R
n×R

n×R, and the
multiplication

(x,y,t)(x′,y′,t′)=(x+x′,y+y′,t+t′+2x′y−2xy′).

A basis for the Lie algebra of left-invariant vector fields on H
n is given by

Xj =
∂

∂xj
+2yj

∂

∂t
,Yj=

∂

∂yj
+2xj

∂

∂t
,T=

∂

∂t
, j=1,2,··· ,n.

All non-trivial commutation relations are given by [Xj,Yj]=−4T, j= 1,2,··· ,n. Then the

sub-Laplacian ∆Hn is defined by ∆Hn =∑
n
j=1(Xj

2+Yj
2) and the gradient operator ∇Hn is

defined by

∇Hn =(X1,··· ,Xn,Y1,··· ,Yn).

The dilations on H
n have the form δλ(x,y,t)= (λx,λy,λ2t),λ> 0. The Haar measure on

H
n coincides with the Lebesgue measure on R

n×R
n×R. We denote the measure of any

measurable set E by |E|. Then |δλE|=λQ|E|, where Q=2n+2 is called the homogeneous
dimension of H

n.
We define a homogeneous norm function on H

n by

|g|=((|x|2+|y|2)2+|t|2)
1
4 , g=(x,y,t)∈H

n .

This norm satisfies the triangular inequality and leads to a left-invariant distant function
d(g,h)= |g−1h|. Then the ball of radius r centered at g is given by

B(g,r)={h∈H
n : |g−1h|< r}.

The ball B(g,r) is the left translation by g of B(0,r) and we have |B(g,r)|= α1rQ, where
α1= |B(0,1)|, but it is not important for us.

A nonnegative locally Lq integrable function V on H
n is said to belong to Bq (1<q<∞)

if there exists C>0 such that the reverse Hölder inequality

( 1

|B|

∫

B
V(g)q

dg
)

1
q
≤

C

|B|

∫

B
V(g)dg

holds for every ball B in H
n.

It is obvious that Bq2 ⊂ Bq1
where q2 > q1. From [3] we know that the Bq class has a

property of ”self improvement”; that is, if V∈Bq, then V∈Bq+ε for some ε>0.
Assume that V∈Bq1

for some q1>Q/2. The definition of the auxiliary function m(g,V)
is given as follows.
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Definition 1.1. For g∈H
n, the function m(g,V) is defined by

ρ(g)=
1

m(g,V)
=sup

r>0

{

r :
1

rQ−2

∫

B(g,r)
V(h)dh≤1

}

.

In order to obtain the estimates of T1 and T2 on Hardy spaces, we also need to recall
the Hardy space associated with the Schrödinger operator L on the Heisenberg group
which had been studied in [5] and [12]. The maximal function associated with

{

TL
s :s>0

}

is defined by ML f (g)=sups>0

∣

∣TL
s f (g)

∣

∣, where
{

TL
s :s>0

}

=
{

e−sL :s>0
}

is the semigroup

generated by the Schrödinger operator L. The Hardy space H1
L(H

n) is defined as follows.

Definition 1.2. We say that f ∈ L1(Hn) is an element of H1
L(H

n) if the maximal function
ML f belongs to L1(Hn). The quasi-norm of f is defined by ‖ f‖H1

L(H
n)=‖ML f‖L1(Hn).

Definition 1.3. Let 1<q≤∞. A function a∈Lq(Hn) is called an H
1,q
L -atom if r≤ρ(g0) and

the following conditions hold:

(i) suppa⊂B(g0,r), r>0,

(ii) ‖a‖Lq(Hn)≤|B(g0,r)|
1
q −1

,

(iii) if r<
ρ(g0)

4 , then
∫

B(g0,r)a(g)dg=0.

It follows from (i) and (ii) in Definition 1.3 that a H1,∞
L atom is also a H

1,q
L atom for

1≤q<∞. We have the following atomic characterization by the results in [5] and [12].

Proposition 1.1. Let 1< q≤∞ and f ∈ L1(Hn). Then f ∈ H1
L(H

n) if and only if f can be

written as f =∑j λjaj, where aj are H
1,q
L -atoms,

∑
j

|λj|<∞,

and the sum converges in the H1
L(H

n) quasi-norm. Moreover,

‖ f‖H1
L(H

n)∼ inf
{

∑
j

|λj|
}

,

where the infimum is taken over all atomic decompositions of f into H
1,q
L -atoms.

The atomic decompositions of H1
L(H

n) imply that the space H1
L(H

n) is larger than the
classical Hardy space H1(Hn). Specifically, the Hardy space H1

L(H
n) is the local Hardy

space H1(Hn) if the potential V is a positive constant (cf. [5]).
Now we are in a position to give the main results.

Theorem 1.1. Suppose V∈Bq1
, q1>Q/2. Then the operator T1=V(−∆Hn+V)−1 is a bounded

linear operator from H1
L(H

n) to L1(Hn). That is, there exists a positive constant C>0 such that

‖T1 f‖L1(Hn)≤C‖ f‖H1
L(H

n).
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Theorem 1.2. Suppose V ∈ Bq1
, q1 > Q/2. Then the operator T2 = V1/2(−∆Hn +V)−1/2 is

bounded from H1
L(H

n) to L1(Hn). That is, there exists a positive constant C>0 such that

‖T2 f‖L1(Hn)≤C‖ f‖H1
L(H

n).

Remark 1.1. It is natural to ask whether the operators T1 and T2 are bounded from
H1

L(H
n) into H1

L(H
n), even from H

p
L(H

n) into H
p
L(H

n) with suitable p < 1? We think
these problems are true. But their proofs depend on the molecular characterization of
H

p
L(H

n). We will investigate the topic in our another paper.

2 The auxiliary function m(g,V)

In this section, we will recall some related lemmas about the auxiliary function. Refer
to [3] for the proofs. We assume that the potential V(g) is nonnegative and belongs to Bq1

for q1≥Q/2.

Lemma 2.1. There exists a constant C>0 such that, for 0< r<R<∞,

1

rQ−2

∫

B(g,r)
V(h)dh≤C

(R

r

)

Q
q1
−2 1

RQ−2

∫

B(g,R)
V(h)dh.

Lemma 2.2.
1

rQ−2

∫

B(g,r)
V(h)dh∼1

holds if and only if r∼ρ(g).

Lemma 2.3. There exist C>0 and l0>0 such that

1

C
(1+m(g,V)|g−1h|)−l0 ≤

m(g,V)

m(h,V)
≤C(1+|g−1h|m(g,V))

l0
l0+1 .

In particular, ρ(g)∼ρ(h) if |g−1h|<Cρ(g).

Lemma 2.4. There exist C>0 and l1>0 such that
∫

B(g,R)

V(h)

|g−1h|Q−2
dh≤

C

RQ−2

∫

B(g,R)
V(h)dh≤C(1+Rm(g,V)g−1h)l1 .

3 Estimates of fundamental solution for the Schrödinger

operator

In this section we recall some estimates of fundamental solution of the operator −∆Hn+
V+λ and estimates of the kernels of Riesz transforms. Let Γ(g,h,λ) be the fundamental
solution of the operator −∆Hn +V+λ, where λ∈ [0,∞). Obviously, Γ(g,h,λ)=γ(h,g,λ).

The proofs of the following Lemmas have been given in [3].
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Lemma 3.1. Suppose V∈Bq1
, q1>Q/2. For any integer N>0 there exists CN>0 such that for

g 6=h, we have

|Γ(g,h,λ)|≤
CN

{1+|g−1h||λ|1/2}
N
{1+|g−1h|ρ(g)−1}

N

1

|g−1h|Q−2
.

The operator T1=V(−∆Hn+V)−1 is defined by

T1 f (g)=
∫

Hn
K1(g,h) f (h)dh,

where K1(g,h)=V(g)Γ(g,h) and Γ(g,h)=Γ(g,h,0). By functional calculus, the operator

T2=V
1
2 (−∆Hn+V)−

1
2

is defined by

T2 f (g)=
∫

Hn
K2(g,h) f (h)dh,

where

K2(g,h)=
1

π

∫ ∞

0
λ− 1

2 Γ(g,h,λ)dλV(g)1/2.

The proofs of the following lemmas can be found from Lemma 3 and Lemma 4 in [4].

Lemma 3.2. Suppose V∈Bq1
, q1>Q/2. For any integer N>0 there exists CN >0 such that

|K1(g,h)|≤
CN

{1+|g−1h|ρ(g)−1}
N

V(g)

|g−1h|Q−2

and

|K1(g,hξ)−K1(g,h)|≤
CN

{1+|g−1h|ρ(g)−1}
N

|ξ|δ

|g−1h|Q−2+δ
V(g)

for any g,h∈H
n, |ξ|≤ |g−1h|

2 and some δ>0.

Lemma 3.3. Suppose V∈Bq1
, q>Q/2. For any integer N>0 there exists CN >0 such that

|K2(g,h)|≤
CN

{1+|g−1h|ρ(g)−1}
N

V(g)1/2

|g−1h|Q−1

and

|K2(g,hξ)−K2(g,h)|≤
CN

{1+|g−1h|ρ(g)−1}
N

|ξ|δ

|g−1h|Q−1+δ
V(g)1/2

for any g,h∈H
n, |ξ|≤ |g−1h|

2 and some δ>0.
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4 Proofs of main results

The aim of this section is to prove the Hardy type estimates for Riesz transforms T1 and
T2 on the Heisenberg group H

n.

The following propositions prove the Lp(Hn) boundedness of Riesz transforms asso-
ciated with the Schrödinger operator L=−∆Hn +V. The proofs have been given in [3].

Proposition 4.1. Suppose V∈Bq1
, Q/2≤q1 <Q, then for 1< p≤q1,

‖V(−∆Hn +V)−1
f ‖Lp(Hn)≤Cp‖ f‖Lp(Hn),

where the constant Cp>0 doesn’t depend on f .

Proposition 4.2. Suppose V∈Bq1
, Q/2≤q1 <Q, then for 1< p≤2q1,

‖V1/2(−∆Hn +V)−1/2
f‖Lp(Hn)≤Cp‖ f‖Lp(Hn),

where the constant Cp>0 doesn’t depend on f .

We can arrive at the proof of Theorem 5.1 by the following Lemma.

Lemma 4.1. Let q1>Q/2. There exists q with 1<q<q1 such that

‖T1a‖L1(Hn)≤C

for any H
1,q
L -atom a, where the constant C>0 doesn’t depend on a.

Proof. Assume that suppa⊆B(g0,r). We divided into two cases for the proof of the lemma:

r≥ ρ(g0)
4 and r<

ρ(g0)
4 .

Case 1: we consider r≥ ρ(g0)
4 . Let B∗=B(g0,2r), B#=B(g0,2ρ(g0)). Then

‖T1a‖L1(Hn)≤‖χB∗T1a‖L1(Hn)+‖χB∗c T1a‖L1(Hn) := I1+ I2.

According to Proposition 4.1, T1 is bounded from Lq(Hn) into Lq(Hn), thus via the
Hölder inequality we get

I1=
(

∫

B∗
|T1a(g)|

)

≤
(

∫

B∗
1dg

)1− 1
q
(

∫

B∗
|T1a(g)|qdg

)
1
q

≤C|B|1−
1
q ‖a‖Lq(Hn)≤C|B|1−

1
q |B|

1
q −1=C.
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For I2, using the Minkowski inequality, Lemma 2.3 and Lemma 2.4, noting that |g−1h|∼
|g−1g0|, we have

I2≤
∫

B
|a(h)|dh

(

∫

B∗c
|K1(g,h)|dg

)

≤CN

∫

B
|a(h)|dh

(

∫

B∗c

V(g)dg

|g−1h|Q−2(1+|g−1h|ρ(g)−1)
N

)

≤CN

∫

B
|a(h)|dh

(

∫

B∗c

V(g)dg

|g−1g0|
Q−2(1+|g−1g0|ρ(g0)

−1)
N

l0+1

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

∫

2jr<|g−1g0|≤2j+1r

V(g)dg

(2jr)
Q−2

(1+2j)
N

l0+1

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

1

(1+2j)
N

l0+1

1

(2jr)
Q−2

∫

|g−1g0 |≤2j+1r
V(g)dg

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

1

(1+2j)
N

l0+1−l1

)

≤C
(

∫

B
|a(h)|qdh

)1/q
|B|1−1/q =C,

where we choose N sufficiently large and use the assumption

ρ(g0)

4
≤ r≤ρ(g0).

Case 2: we consider r<
ρ(g0)

4 . At this time, B∗⊆B# and the atom a is a classical atom. We
give the decomposition of the operator T1 as follows:

T1a(g)=
∫

Hn
K1(g,h)a(h)dh

=χB#c(g)
∫

Hn
K1(g,h)a(h)dh+χB#\B∗(g)

∫

Hn
[K1(g,h)−K1(g,g0)]a(h)dh

+χB∗(g)
∫

Hn
K1(g,h)a(h)dh

:=J1+ J2+ J3,

then

‖T1a‖L1(Hn)≤‖J1‖L1(Hn)+‖J2‖L1(Hn)+‖J3‖L1(Hn).

Obviously, similar to the proof of Case 1, it is easy to get

‖J1‖L1(Hn)+‖J3‖L1(Hn)≤C.
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For J2. Using Lemma 3.2 and Lemma 2.3, we can get

‖J2‖L1(Hn)≤
∫

B
|a(h)|dh

(

∫

B#\B∗
|K1(g,h)−K1(g,g0)|dg

)

≤CN

∫

B
|a(h)|dh

(

∫

B#\B∗

|h−1g0|
δ
V(g)dg

(1+|g−1g0|ρ(g0)
−1)

N
|g−1g0|

Q−2+δ

)

≤CN

∫

B
|a(h)|dh(

∫

B#\B∗

|h−1g0|
δ
V(g)dg

(1+|g−1g0|ρ(g0)
−1)

N
l0+1 |g−1g0|

Q−2+δ
)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

∫

2jr<|g−1g0 |≤2j+1r

rδV(g)dg

(1+2jrρ(g0)
−1)

N
l0+1 (2jr)

Q−2+δ

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

2−δj 1

(1+2jrρ(g0)
−1)

N
l0+1

1

(2jr)
Q−2

∫

|g−1g0 |≤2j+1r
V(g)dg

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

2−δj 1

(1+2jrρ(g0)
−1)

N
l0+1−l2

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

2−δj
)

≤C,

where we choose N sufficiently large. Thus Lemma 4.1 is proved.

We also arrive at the proof of Theorem 5.2 by the following Lemma.

Lemma 4.2. Let q1>
Q
2 . There exists q with 1<q<2q1 such that

‖T2a‖L1(Hn)≤C

for any H
1,q
L -atom a, where the constant C>0 doesn’t depend on a.

Proof. Assume that suppa⊆B(g0,r). We divided into two cases for the proof of the lemma:

r≥ ρ(g0)
4 and r<

ρ(g0)
4 .

Case 1: we consider r≥ ρ(g0)
4 . Let B∗=B(g0,2r), B#=B(g0,2ρ(g0)). Then

‖T2a‖L1(Hn)≤‖χB∗T2a‖L1(Hn)+‖χB∗c T2a‖L1(Hn) := Ĩ1+ Ĩ2.

We choose appropriate q>1 such that 1< q<2q1. Then according to Proposition 4.2, T2

is bounded from Lq(Hn) to Lq(Hn). So similar to the proof of Case 1 in Lemma 4.1, it is
easy to see that Ĩ1≤C.
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For Ĩ2, using the Minkowski inequality, Lemma 2.3 and Lemma 2.4, noting that |g−1h|∼
|g−1g0|, we have

Ĩ2≤
∫

B
|a(h)|dh

(

∫

B∗c
|K2(g,h)|dg

)

≤CN

∫

B
|a(h)|dh

(

∫

B∗c

V(g)1/2dg

|g−1h|
Q−1

(1+|g−1h|ρ(g)−1)
N

)

≤CN

∫

B
|a(h)|dh

(

∫

B∗c

V(g)1/2dg

|g−1g0|
Q−1

(1+|g−1g0|ρ(g0)
−1)

N
l0+1

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

∫

2jr<|g−1g0|≤2j+1r

V(g)1/2dg

(2jr)
Q−1

(1+2j)
N

l0+1

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

1

(1+2j)
N

l0+1

1

(2jr)
Q−1

∫

|g−1g0|≤2j+1r
V(g)1/2dg

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

1

(1+2j)
N

l0+1

1

(2jr)
Q−1

{

∫

|g−1g0|≤2j+1r
V(g)q1 dg

}

1
2q1 (2jr)

(1− 1
2q1

)Q
)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

1

(1+2j)
N

l0+1

1

(2jr)
−1

{ 1

(2jr)
Q

∫

|g−1g0|≤2j+1r
V(g)q1 dg

}

1
2q1

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

1

(1+2j)
N

l0+1

1

(2jr)
−1

{ 1

(2jr)
Q

∫

|g−1g0|≤2j+1r
V(g)dg

}

1
2 )

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

1

(1+2j)
N

l0+1

{ 1

(2jr)
Q−2

∫

|g−1g0|≤2j+1r
V(g)dg

}

1
2 )

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

1

(1+2j)
N

l0+1−
l1
2

)

≤C
(

∫

B
|a(h)|qdh

)1/q
|B|1−1/q

=C,

where we choose N sufficiently large and use the assumption
ρ(g0)

4 ≤ r≤ρ(g0).

Case 2: we consider r<
ρ(g0)

4 . At this time, B∗⊆B# and the atom a is a classical atom. We
give the decomposition of the operator T2 as follows:

T2a(g)=
∫

Hn
K2(g,h)a(h)dh

=χB#c(g)
∫

Hn
K2(g,h)a(h)dh+χB#\B∗(g)

∫

Hn
[K2(g,h)−K2(g,g0)]a(h)dh

+χB∗(g)
∫

Hn
K2(g,h)a(h)dh



Y. Liu and G. B. Tang / Anal. Theory Appl., 32 (2016), pp. 78-89 87

:= J̃1+ J̃2+ J̃3,

then

‖T2a‖L1(Hn)≤‖ J̃1‖L1(Hn)+‖ J̃2‖L1(Hn)+‖ J̃3‖L1(Hn).

Obviously, similar to the proof of Case 1 in the proof of this lemma, we can get

‖ J̃1‖L1(Hn)+‖ J̃3‖L1(Hn)≤C.

For J̃2, using Lemma 3.3 and Lemma 2.3, we have

‖ J̃2‖L1(Hn)≤
∫

B
|a(h)|dh

(

∫

B#\B∗
|K2(g,h)−K2(g,g0)|dg

)

≤CN

∫

B
|a(h)|dh

(

∫

B#\B∗

|h−1g0|
δ
V(g)1/2dg

(1+ |g−1g0|ρ(g0)
−1)

N
|g−1g0|

Q−1+δ

)

≤CN

∫

B
|a(h)|dh

(

∫

B#\B∗

|h−1g0|
δ
V(g)1/2dg

(1+ |g−1g0|ρ(g0)
−1)

N
l0+1 |g−1g0|

Q−1+δ

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

∫

2jr<|g−1g0 |≤2j+1r

rδV(g)1/2dg

(1+2jrρ(g0)
−1)

N
l0+1 (2jr)

Q−1+δ

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

2−δj 1

(1+2jrρ(g0)
−1)

N
l0+1

1

(2jr)
Q−1

∫

|g−1g0 |≤2j+1r
V(g)1/2dg

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

2−δj 1

(2jr)
Q−1

1

(1+2jrρ(g0)
−1)

N
l0+1

{

∫

|g−1g0 |≤2j+1r
V(g)q1 dg

}
1

2q1 (2jr)
(1− 1

2q1
)Q

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

2−δj 1

(1+2jrρ(g0)
−1)

N
l0+1

1

(2jr)
−1

{

∫

|g−1g0 |≤2j+1r
V(g)q1 dg

}

1
2q1

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

2−δj 1

(1+2jrρ(g0)
−1)

N
l0+1

{ 1

(2jr)
Q−2

∫

|g−1g0 |≤2j+1r
V(g)dg}

1
2
)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

2−δj 1

(1+2jrρ(g0)
−1)

N
l0+1−

l1
2

)

≤CN

∫

B
|a(h)|dh

( ∞

∑
j=1

2−δj
)

≤C,

where we choose N sufficiently large. Thus this completes the proof of Lemma 4.2.

5 Results for stratified groups

In this section, we state results for stratified groups. We consistently use the same nota-
tions and terminologies as those in Folland and Stein’s book [1].
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A Lie group G is called stratified if it is nilpotent, connected and simple connected,
and its Lie algebra g admits a vector space decomposition g= V1

⊕

···
⊕

Vm such that
[V1,Vk] = Vk+1 for 1 ≤ k < m and [V1,Vm] = 0. If G is stratified, its Lie algebra admits a
family of dilations, namely,

δr(X1+X2+···+Xm)= rX1+r2X2+···+rmXm(Xj ∈Vj, j∈{1,··· ,m}).

Assume that G is a Lie group with underlying manifold R
n for some positive integer n.

G inherits dilations from g: if x∈G and r>0, we write

δrx=(rd1 x1 ,··· ,rdn xn),

where 1 ≤ d1 ≤ ··· ≤ dn. The map x → δrx is an automorphism of G. The left (or right)
Haar measure on G is simply dx

1
···dxn , which is the Lebesgue measure on g. For any

measurable set E⊆G, denote by |E| the measure of E. The inverse of any x∈G is simply
x−1=−x. The group law has the following form

xy=(p1 (x,y),··· ,pn(x,y)) (5.1)

for some polynomials p
1
,··· ,pn in x

1
,··· ,xn ,y

1
,··· ,yn .

The number Q=∑
m
j=1 j(dimVj) is called the homogeneous dimension of G. We fix a

homogeneous norm function |·| on G, which is smooth away from e, where e is the unit
element of G. Thus, |δrx|=r|x| for all x∈G,r>0,|x−1|=|x| for all x∈G, and |x|>0 if x 6=0.
The homogeneous norm induces a quasi-metric d which is defined by d(x,y) := |x−1y|.
In particularly, d(e,x) = |x| and d(x,y) = d(e,x−1y). The ball of radius r centered at x is
written by

B(x,r)={y∈G|d(x,y)< r}.

The measure of B(x,r) is
|B(x,r)|=brQ,

where b is a constant.
Let X = {X1,··· ,Xl} be a basis for V1 (viewed as left-invariant vector fields on G). It

follows from [1] that Xj, j=1,2,··· ,l, are skew adjoint, that is, X∗
j =−Xj. Let ∆G =∑

l
i=1 X2

i

be the sub-Laplacian on G. It follows from the definition of the stratified Lie group that
the Heisenberg group is a special stratified Lie group.

The corresponding results on the stratified Lie group are given as follows:

Theorem 5.1. Suppose V∈Bq1
, q1>Q/2. Then the operator T1=V(−∆G+V)−1 is a bounded

linear operator from H1
L(G) to L1(G). That is, there exists a positive constant C>0 such that

‖T1 f ‖L1(G)≤C‖ f‖H1
L(G).

Theorem 5.2. Suppose V ∈ Bq1
, q1 > Q/2. Then the operator T2 = V1/2(−∆G+V)−1/2 is

bounded from H1
L(G) to L1(G). That is, there exists a positive constant C>0 such that

‖T2 f ‖L1(G)≤C‖ f‖H1
L(G).



Y. Liu and G. B. Tang / Anal. Theory Appl., 32 (2016), pp. 78-89 89

References

[1] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University
Press, Princeton, 1982.

[2] R. M. Gong, J. Li and L. Song, Besov and Hardy spaces associated with the Schrödinger
operator on the Heisenberg group, J. Geom. Anal., 24 (2014), 144–168.
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