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Abstract. We establish the construction theory of function based upon a local field K,
as underlying space. By virture of the concept of pseudo-differential operator, we in-
troduce “fractal calculus” (or, p-type calculus, or, Gibbs-Butzer calculus). Then, show
the Jackson direct approximation theorems, Bermstein inverse approximation theo-
rems and the equivalent approximation theorems for compact group D(C Kj) and
locally compact group K;(: K}), so that the foundation of construction theory of
function on local fields is established. Moreover, the Jackson type, Bernstein type,
and equivalent approximation theorems on the Hélder-type space C?(K}), 0 >0, are
proved; then the equivalent approximation theorem on Sobolev-type space W (K;),
0>0,1<r<+o00,is shown.
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1 Concept and notation

A local field K} is a locally compact, non-trivial, totally disconnected, non-Archimedean
norm valued, T>-type, complete topological field [1]. It can be a p-series field, or its finite
algebraic extension field (with addition +, multiplication X, term by term, mod p, and
no carrying); or can be a p-adic filed, or its finite algebraic extension field (with +, x,
term by term, mod p, carrying from left to right), with p > 2 prime.

This kind of fields has important theoretical and applied meaning, for example, the
dyadic system in the computer science, and switch functions in physics science, they are
special cases of local fields at p=2.

We concern the cases of p-series field and p-adic field, denoted by K, = (K, +, %), and
call them local fields. For the algebraic extension of K, denoted by K, g=p¢, c€IN, we
refer to [1].
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1.1 Haar measure and Haar integral on a local field K,

The addition group K;‘f =K, of a local field K, = (K,,+,x) is a locally compact group,

there exist the Haar measure and Haar integral with invariance of translation. The Haar
measure of a Haar measurable subset A C K, is denoted by |A|; the Haar integral of a
Haar measurable function f:K, — C is denoted by |, K, f(x)dx.

1.2 Non-Archimedean valued norm |x| on K,

If a mapping |x|: K, — [0,+00) satisfies: (1) |x| >0, [x| =0 x=0; (2) |[xxy|=|x||ly|; (3)
|x+y| <max{]|x|,|y|}; Then |x| is said to be a non-Archimedean valued norm of x €K,,.

There exists an element € K, with || =p~! in K, called prime element. Vx €K, can
be expressed as

x=x_ B x T Hrx B xofapl (1.1)

where x;€{0,1,---,p—1}, j=—1,—1+1,---, | €Z.

Each x € K, in p-series field or in p-aidc field can be expressed as the form in (1.1),
the difference is: the operations in p-series field are term by term, mod p, no carrying;
whereas, the operations in p-aidc field are term by term, mod p, carrying from left to
right.

The range of non-Archimedean valued norm is |x| € {p~*:k€ Z}.

1.3 Important subsets in K,

(1) Compact group in K, (ring of integers): D= {x€Kj,:|x| <1}, it is a unique maximal
compact subring in K, and is an open, closed, compact subset with Haar measure
|D|=1.

(2) Unit open ball in K, (prime ideal): B={x€Kj,:|x| <1}, it is a unique maximal ideal
in D, also principle ideal, prime ideal; and is open, closed, compact subset with
Haar measure |B|=p~ L.

(3) Ball in K,, (fractional ideal): B¥={x€K,:|x| <p~*}, k€ Z, it is a ball in K, with
center 0€K,, and radius p*k ; and is open, closed, compact subset with Haar measure
|BF|=p~F, kez.

(4) Base for neighborhood system of 0 € K, : {Bk CKy:ke Z} satisfies Bl BK ke Z;
K,= Ukt"iooBk, {0} = ﬂ,j:"iooBk; the set of all p-coset representatives of B! in D is
D/B'={0xp°+B!, 1xB°+B,---,(p—1) x B°+ B}, it is isomorphic with the finite
Galois field D/B'<* GF(p).

(5) Character group of K,,: T, ={x:K, = C, x(x1+x2) =x(x1)x(x2); [x(x)| =1} is the

character group of K, it is a locally compact group, and I, &Kp.
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The annihilators in T', are T¥={x €T, :Vx€ B = x(x) =1}, k€ Z, with [T*| = p*.
The base for neighborhood system of unit I €T, is {I* C T, :k € Z}, satisfies [*! >

ThkeZ; T, =U> JT5 {1} =i T5 THES Bk ke z.

Theorem 1.1 (see [1,2]). (i) Let S, T be two balls in local field K, then either S and T are disjoint,
or one ball contains the other one; (ii) Any ball in K, has multi-centers; (iit) Any ball in K, is
open, closed, and compact.

2 Test function class and distribution space on local fields

We introduce the test function class (Schwartz type space) and the distribution space of
Schwartz type space on a local field K.

2.1 Test function class (Schwartz type space) 5(K})

The space

S5(Kp)= {qo:Kp%C, (%) zgcjrhj®3kj(x), ¢;€C, hi€Ky, ki ez}
I

is said to be a test function class, or Schwartz type space, where

1, xeBN,
q’gkf (x)= { 0, x¢Bb,

is the characteristic function of B/; Th].CIJ g5 (x) is translation (for h]-) of ® g5 (x),j=1,2,--,n.

2.1.1 The topology of S(K,)
The null sequence {¢,(x))} > CS(K,) is defined by

1. Vg, exists the same index pair (the index pair of a 9 €S(K,,):3(k,l) €Z X Z, st. (i) ¢
is constant on the coset of BY; (ii) supp ¢ = B'; denoted by the index ¢ = (k,1)).

2. limy, 4 00 @n(x) =0, x € Kp, uniformly.

With the above topology, S(K,) becomes a complete, separated, T>-type, semi-normed
topological linear space.

2.1.2 The important properties of S(K,,)

1. S(K,) is an algebra of continuous functions with compact support, consisted of
finite linear combinations of translations of characteristic fucntions of balls, which
distinguishes points, and S(K,) = C(K,).
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2. The Fourier transformation
0"@)= | o(X:(x)dx, CeT,,
4
is topological isomorphic from S(K) onto S(I';). The inverse Fourier transforma-
tion

v(0)= [ 900 xek,

14
is topological isomorphic from S(I',) onto S(K,). And (¢")"(x)=¢(x), Vo S(K,),
x €K, holds; as well as ()" (&) =y(&), Y eS(Tp), €T, holds.

2.2 Schwartz distribution space 5*(K},)

The space S*(K,) = {u : continuous linear functional on S(K,)}, endowed with w*-
topology, it becomes a complete, separated, T>-type, topological linear space.
The Fourier transformation of T € 5*(K}) (in distribution sense) is defined as a distri-

bution T €5*(T,) satisfies

(T @)=(T, "), VpeS(Kp).
The inverse Fourier transformation of S € $*(I',) (in distribution sense) is defined as a
distribution §¥ €5*(K,,) satisfies

(S" ) =(Sy7), VpeS(T,).
Thus, the Fourier transformation in the distribution sense A: T — T” is a bounded linear

operator; and it is isomorphic from 5*(K,) onto $*(T',). And hold (T")V=T, VT €S*(K,);
(SV)" =8, VSES*(T,).

3 Fractal calculus on local fields

By virtue of the pseudo-differential operator, we define a kind of new calculus on local
fields, called fractal calculus (or p-type calculus, since the p of “pseudo”; or Gibbs-Butzer
calculus) [2-6].

3.1 Symbol class Sg(s(Kp) = g(s(KP xTy),a€R,p>0,6>0o0nK,

The space S3;(Kp) ={0(x,8):Ky xI',—~C, with (i), (ii) }, «€R, p>0, >0, where (i) 3c>0,
¢ is a constant, st. |o(x,¢)| <c(5)", x€Kp, 0# ¢ €Ty, (¢) =max{1,|Z|}; (i) V(u,v) €P xIP
holds: 3¢, >0, st. ]AﬁAga(x,Cﬂ <cuw|h|*|C]" (E)aFon—pv, x,h€Ky, ¢,0€T,,6#0; 3¢, >0, st.
000 8)| < B, xR Ky, £ £0; ey >0, st. | Ao (x,8)| e 16, ELET,,
0] < (&), G#0, here A} Aga(x,é) is the second order difference, Afo(x,¢), Ag(r(x,(f) are first
order differences. The set S) 5(Kp) = S 5(Ky xT'p) defined on K, xT', is said to be symbol
class on Kp; o€ Sz‘é(Kp) is said to be a symbol.
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3.2 Pseudo-differential operator T, (, py with symbol o € Sg 5(Kp) on K,

Let f:K, — C be a Haar measurable function on K,. Denote by

(t—x)dtdg, €K,,
/F,,/K Xg ) ¢ x p

we call Ty, p) a pseudo-differential operator on K, with the symbol o€ 5 5(Kp)-

For a function ¢ € S(K,) in Schwartz-type space S(K,), the action of pseudo-
differential operator T;(, py on it can be denoted by

Ta(x,D)(P(x):/r a(x,C)(pA(C)Xx(C)dC:[a(x,-)goA(-)]v(x), x €Ky,

since the Fourier transformation A:5(K,) — (I',) is isomorphic from S(K,) onto S(I'p).

3.3 Fractal calculus on Kp

The pseudo-differential operator with symbol o= (£)" € 57;(K;) acting on Haar measur-
able function f: K, — C is denoted by

(t—x)dtd €K,
/FP/K Xg x)dtd¢, x€K,

Fractal derivative — for a >0, if the integral

// (H)xe(t—x)dtdg, x€Kp,
r, /K,

exists, then T .. f(x) is said to be an a-order point-wise fractal derivative of f(x) at x,
denoted by (¥ (x) = Tryef(x).
Fractal integral — for a >0, if the integral

(t,x)dtd €K,
W= [ @ xR xek,

exists, then T« f(x) is said to be an a-order point-wise fractal integral of f(x) at x,
denoted by f, (x) =Ty f(x).

Similarly, the a-order L’-strong fractal derivative of f(x) and the a-order L’-strong
fractal integral of f(x) can be defined, i.e., the strong limits of T(.,. f(x) and T(.y- f(x) in

L"(K,) sense, denoted by D! f(x) and I i f(x), respectively.
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3.4 Properties of fractal calculus on S(K,)

For ¢ €5(K,) and a € R, the derivative operator (« >0) and integral operator (« <0)

Tro(@)= [ [ (0 oo (t—x)atde

q0<“>(x), a>0,
=< ¢(x), a=0, x€K,,

?(—a) (x), a<O,
has the following properties.

Theorem 3.1. For Schwartz-type function ¢ €S(K,), it holds in the fractal calculus sense

(i) @ is any order point-wise fractal derivable, and any order point-wise fractal integrable; and
') (x) = Tryep(x) €S(Kp), @uy(x)=Tpy«@(x)€S(Kp), x€Kp, a>0;

i.e., point-wise fractal derivative operation and point-wise fractal integral operation are closed on
S(Kp).
Moreover, ¢ is any order L'-strong fractal derivable, and any order L'-strong fractal inte-
grable; and
DWeeS(Ky), LypeS(Ky), a>0;

i.e.,, L"-strong fractal derivative operation and L'-strong fractal integral operation are closed on
S(Kp).

(ii) For &> 0, holds D™ @ (x) = ¢*) (x), x €Ky, i.e., the point-wise fractal derivative equals
the L" -strong fractal derivative; And so does the fractal integral, I,y ¢(x) = @(x), x EKp.

Thus, it is no necessary to distinguish between “point-wise derivability” and "L’-strong
derivability”; Also neither for "point-wise integrability” and "L’-strong integrability”.

(iii) The fractal derivative operator and fractal integral operator are isomorphic linear map-
pings from S(K,) onto S(K}) (linear, one-one, continuous).

(iv) The fractal derivative operator and fractal integral operator are inverse each other, i.e., for
a >0, holds

3.5 Definitions and properties of fractal calculus on 5*(K})

By Theorem 3.1, we may generalize the fractal calculus to the distribution space $*(K,).
Let T € S*(K,) be a Schwartz-type distribution. The fractal derivative and fractal
integral of T are defined as follows.
Fractal derivative — for a>>0, an a-order fractal derivative T'* of T€S* (Kp) is defined
as a Schwartz-type distribution satisfying

(TW,0)=(T,¢'), VpeS(K,).
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Fractal integral — for a >0, an a-order fractal integral T,y of T €5"(K}) is defined as
a Schwartz-type distribution satisfying

(Tiay, @) =(T,¢0)), YPES(Kp).
Corresponding to Theorem 3.1, we have

Theorem 3.2. For Schwartz-type distribution T €5*(K}), hold

(i) T is any order fractal derivable, and any order fractal integrable, and T<”‘>,T<a> €S*(Kp),
a>0; i.e., the fractal derivative operation and fractal integral operation are closed on S*(K,).

(ii) The fractal derivative operator and fractal integral operator are isomorphic linear mappings
from 5*(K,) onto $*(Ky) (linear, one-one, continuous).

(iii) The fractal derivative operator and fractal integral operator are inverse each other, i.e., for
a >0, holds (T<“>)<“> =T= (T<“>)<“>.
3.6 Principle for establish new calculus

The principle to establish some new calculus is suggested in [5], we now verify the fractal
calculus on local fields satisfies the principle.

(1) Fractal derivative operator and fractal integral operator are inverse each other (in
the point of view of mathematical analysis and operator theory)

Va>0, VoeS(K,) = (¢! () (x)=9(x)= (9w () (x), x€K,;
Ya>0, VYTeS*(Ky)=>(T™)=T=(Tyy)".
(2) Fourier transformation formulas (in the point of view of spectrum theory)
Va>0, VeeS(Ky) = (9" ()" ()=(&)"¢"(&), €Ty
Ya>0, VTES*(K,) = (T")"=(&)*T", ¢eT,.
(3) Equivalent theorems (in the point of view of construction theory of function)
On locally compact group Ky, for Vs >0,

VfeX(Kp) :{ C((Iz,))', 1<r< +oo,

holds
9 eLip(X(Ky)a), a>0<=Epn(X(K,),f)=0(p7"C*%), a>0, neN,

with Lip class Lip(X(K}),a), & > 0; the best approximation
P”( (K(p )f):p lsnf Hf PHHX )’ nelN,

and S, (K,) = {9 €S(K,): index ¢=(n,1), | € Z} for a fixed n € Z.
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(4) Relationship between characters of local fields with eigen-functions of Newton me-
chanics (in the point of views of group theory and physics science).

iso.

For locally compact group K, the character group is I'r, = {xz(x) : €K, } < € K.
Character function y(k)=xx(x), x&K,<— eigen-function in Newton mechanics,

Character equation y<1> = Ay <— eigen-equation in Newton mechanics,

Character value A=(), ¢¢&K,+— eigen-value in Newton mechanics.

The character values are the numbers for which the character equations have non-zero
solutions.

4 The construction theory of function in Holder-type spaces

The classical approximation theory of functions, also called construction theory of func-
tion, has had its bright era in the 40’s to 90’s of last century. Starting from the Weierstrass
approximation theory of trigonometric functions and polynomial functions, as well as the
Fourier series theory, it has created and developed successfully the idea and mentality of
construction theory of function, and kept back lots of valuable wealth for mathematical
science.

It is worth to mention the two important contributions of classical construction theory
of function [7]

1. lots of approximation identity kernels and approximation identity operators with
theoretical and applied senses are constructed.

2. the direct (Jackson) and inverse (Bernstein) approximation theorems, and equiva-
lent theorem on function spaces, such as, on C([a,b]) and L?([a,b]), 1 < p < +oo, are
proved. These theorems reveal an essential property of functions: the smoother the
functions, the faster to zero the best approximations; and vice versa.

In this section, we summarize the foundation of construction theory of function on
the spaces X(D) and X(K}); and prove the Jackson type, Bernstein type approximation
theorems, and equivalent theorems on the Holder-type space and Sobolev-type space.

4.1 Foundation of construction theory of function on K,

Since the 70’s of last century, mathematicians in all of the world have contributed lots of
excellent work for studying construction theory of function over local fields, such as, the
jobs of Chinese mathematicians for compact group D, locally compact group K, see [8-
25], or the citations in [2]. Results of foreign mathematicians have listed in references [25—
30], or the citations in [29, 30].

We now show the fundamental theorems of construction theory of function on the
function spaces X (D) and X(K,) over local fields: Jackson theorems, Bernstein theorems,
equivalent theorems.
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4.1.1 Approximation theorems on function spaces X(D) over compact group D

Let D={x€K,:|x| <1} CK, be the compact group of a local field K,, and X (D) be the

function spaces
{ C(D)={f:bounded and continuous function on D},
X(D)=

U(D):{f:/D]f(x)|’dx<—i—oo}, 1<r<+oo,
with norms
" {max{f(x):felc(D),xeD}, X(D)=c(D),
X(D) = ra L7 oy
{/D|f(x)ydx} , 1<r<+oco, X(D)=L"(D).

Modulus of continuity, Lipschitz function class, the best approximation on X(D)
Modulus of continuity

@X(DLL8)= sup_If(-+1)=FC)lxoy 820

Lipschitz class

Lip(X(D),a) ={f € X(D):[|f(-+1) = f(-) | x(p) = O(|1|*), he D}, a>0.
The best approximation

Epx(X(D),f)= ian) | f —anllx(p), n €N, where P, is the set of all k-degree character
qnelly

polynomials, P, = {gx(x):x€D, 0<k<n}, 0<k<n,and gx(x) =axxx(x) +ax_1Xx_1(x)+
s x(x)+ao, a;€C, 0<j<k.

Remark 4.1. (i) each k-degree character polynomial g(x), is any s(s > 0)-order fractal
derivable and (g;){! € P,; and is infinitely order fractal integrable; (ii) the best approxi-
mation character polynomial g;, €IP,, exists and unique,

Ep(X(D),f)=|f=aullxpy= inf [If=4ullxp)-

an cP,

Partial sun of Fourier series
n
Su(X(D),f,x) =Y cxxi(x) = /D F(x—t)Dn(D)dt, neN,
k=0
with the Dirichlet kernel .
"
Yox(t), n>1,
k=0

1, n=0.
Direct (Jackson) and inverse (Bernstein) approximation theorems on X (D)
The direct theorem on X(D)

Dn(t):
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Lemma 4.1 (Jackson type theorem). For function spaces X(D), if s >0, then
£ €X(D) = Ep(X(D),f) = 0(p ™ w(X(D),f,p™)), neN.

Specially,

¥ eLip(X(D),a), a>0=Eu(X(D),f)=0(p~ "), neN, a>0.
The inverse theorem on X (D)
Lemma 4.2 (Bernstein type theoem). For function spaces X(D), if s>0, a >0, then

Ep(X(D),f)=0(p~ """, n—+oo=w(X(D),f*,86)=0(6%), 5—0.
Specially,

Epn(X(D),f)=0(p~ "), a>0, neN= f* cLip(X(D),x), a>0.
Equivalent theorem on X (D)

Theorem 4.1. For function spaces X(D), if s >0, then the following statements are equivalent
(i) ) eLip(X(D),a), a >0.
(ii) w(X(D),f$),8) = 0(8%), § 0.
(iii) Epn(X(D), f) = O(p~"@F9), n— +o0.
(i0) [|Spe(X(D), f,) = f ()l x(p) = O(p~"*)), 1 — o0,
4.1.2 Approximation theorems on function spaces X(K,) over locally
compact group K,

Let K7 =K, be the locally compact group of a local field Kj, and X(K}) be function spaces

C(Kp)={f:bounded and continuous function on K, },
X(Kp)=9 Lr(k,)= {f;/K f(x)|"dx < +oo}, 1<r< oo,
4

with norms

max{|f(x)]:fElC(Kp), xeKp}, X(Kp)=C(Ky),
Hf”x(Kp): {/K |f(x)’rdx}’, 1<r< +oo, X(Kp):Lr(Kp).

Modulus of continuity, Lipschitz function class, the best approximation on X (K)
Modulus of continuity

w(X(Kp), f,0) = Eu‘l;q\\f('Jrh) —fOllxx,), >0
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Lipschitz class

Lip(X(Kp),a) ={f € X(Kp): [ f (- +1) = f ()l x(x,) =O([1]*), heKp},  a>0.

The best approximation

Epi(X(Kp), f) = infyes,(x,) If — @llx(k,), n € N, where the set 5,(K}) is a subset of
S(K}), in which V¢ € 5,,(K,) = {¢ € S(K}) : index ¢ = (n,l), | € Z} is constant on each
coset of B" for the same n € Z, and suppg = B'.

Remark 4.2. J¢; €5,(K}) as the best approximation function, such that

B (X(K). ) =11~ @illxc) = inf =0k,
n{&p

also

5, (K,) CS(K,) C C(K,) =L (K,).

Direct (Jackson) and inverse (Bernstein) approximation theorems on X(K})
The direct theorem on X (K,)

Lemma 4.3 (Jackson type theorem). For function spaces X(Kp), if s >0, then
f& e X(Ky)=Ep (X(Kp), f)=0(p " w(X(Ky),f*,p7")), neN.

Specially,

9 eLip(X(K,)a), a>0=Epn(X(K,),f)=0(p "), neN, >0,
The inverse type theorems on X(K})
Lemma 4.4 (Bernstein type theorem). For function spaces X(Kp), if s >0, a >0, then

Epi(X(Kp),f)=0(p~ "), n—+oo=w(X(Kp),f*,6)=0(0%), 6—0.
Specially,

Ep(X(Kp), f)=0(p~ "), a>0, neN=f® cLip(X(K,),a), a>0.
Equivalent theorem on X (K,)

Theorem 4.2. For function spaces X(Ky), if s >0, then the following statements are equivalent
(i) £ e Lip(X(K,),a), a>0.
(i) w(X(Kp),f*),6)=0(5), § —0.
(i) Eyr (X(Ky),f) = 0(p~"04)), n s o,
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4.2 Holder-type space C?(K,),c € R

421 The definition of Holder-type space
1) 0=0=C%(K,)=C(K,)={f:K,—C, continuous and bounded on K, }, with the norm
1 fllcx,) =suPyex, [f (X)]-
2) 0>0=C/(Kp) = {u €S*(Kp):u= Z;:S”j}' where u € 5*(K,) has Littlewood-Paley
decgmposition u= 2]108 u;j with (i) suppug CTo, suppu' C LT, j>0; @) [Jujll o (x,) <
cq /7, j>0. The norm of u € C?(Kp) is |lul|co(k,) :supj{p]‘7||u]-|\Loo(Kp)}, o>0.
3) 0 <0=C"(Kp) =B (Kp). The norm of u € C?(Ky) is [|ul[ce (k) = [lullpz ) where

0000 p

By (Kp) ={f €5"(Kp):[f|
is the B-type space of Teribel with norm

B:‘t(Kp)<+00}, seR, 0<r, t<+4oo,

||f||B;(Kp)=|\p5f|¢j<->fArV||lt<Lr>={zj 1P (o)) iy}
£

see [33,34], and sequence as {¢;({) ;“:"8 ={®@ro(&), Prj\ri-1(E) }]J;"i’

4.2.2 The important properties of Holder-type space

Theorem 4.3 (Equivalent definition, see [32,33]). For the Holder-type space, hold

(i) C?(K,) =B%(K,), r€R.

(ii) C?(K,) =Lip(Kp,0), ¢ >0.

(iii) S(K,) =C?(K,), c € R.
Theorem 4.4 (see [32]). For the Holder-type space C7(Ky), if o € [0,+00), then

(i) f €C7(K,), VA€ [0,0] = f has any A-order fractal derivatives f =T\, f, and fN €
Co=M(K,); specially, f € C7(K,) = f\7 € C(K,).

(ii) {9 =T yof €C(Kp), VA€ [0,0] = f has any A -order fractal derivatives f*) = Tiynf,
and f*) € C7=*(K,); specially, f\%) € C(K,)=>f € C7(K,).

Thus, f€C?(K,) & fl7eC(K,), Yoe[0,+00), i.e., the Holder-type space C7(Kp) is the
space in which fractals live.

As we know, the Newton k-order continuous derivable function space is Ck(lR”),
k € N; and for the Holder space C7(R"), o € RT\N, the parameter ¢ has a “gap” at
natural numbers, o ZIN. However, in the case of local field, the parameter o € R has "no
gap” of the Holder type space C’(K}). On the other hand, the Lipschitz function classes
Lip(C([a,b]),a), Lip(C(R),«) on Euclidean spaces exist just for 0 <a <1, of parameter «,
but the Lip(C(D),«), Lip(C(K}),«) on local fields exist for a > 0, without restriction of
0 <« <1. These differences show that the smoothness of functions defined on R and on
K, are quite different.
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4.3 Approximation theorems on Hoélder-type space C’(K))

We study approximation theorems on the Holder-type C7(K}), o >0, over a local field
Kp.

4.3.1 Modulus of continuity, Lipschitz function class, the best approximation
on C7(K,)

Modulus of continuity
w(C7(Kp),f,0), >0, defined as

WK f8)= sup  [F(+M)~fO)leriy) >0,

heK,,|h|<s

Lipschitz class
Lip(C7 (K, ),zx), a >0, defined as

Lip(C7(Ky),w) = {F € CT(Ky): [ F(-4+1) —F O lco () = O(HI*), hE Ky}, a>0.

The best approximation
Epn(C7(Kp),f), n€N, defined as

Ep(C(K,).f) = inf If—0lcrcy, nEN,
where S, ={¢€S(K,):index ¢ =(n,l), € Z}, n€N.

4.3.2 Direct (Jackson) and inverse (Bernstein) approximation theorems
on C’(K,),0c>0

The direct type theorem on C’(K})
Lemma 4.5 (Jackson type theorem). For Holder-type space C°(K,), >0, if >0, then
feC(Ky) = Epr(C7(Kp), /)=0(p " w(C7(Ky),f*,p7")), neN. (41
Specially,
S eLip(C(Ky)x), a>0=Ep(C7(Ky),f)=0(p~ M), neN, a>0.
Proof. To prove the assertion (4.1), we only need prove the following (4.2) for a >0

9" €S(Ky) = Epn(C7(Kp),9) =0(p "w(C(Ky),9®,p™), neN, (42

since $(K,) € C?(K,), and [lglls(x,) = ll9llcv 1) Then for £ €C?(K,), 3¢, €S(K,), st. hold
191 = FOllcrte) 0, j— +00, and

19 () =F (Vlerx,y =0, = +oo.
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By [2, Theorem 3.3.1], p €S(K,) = ¢'*) €5(K,), s€Z, and

fractal derivative, s>0,
PP (x) =T yp(x) =rsxp(x) = @(x), s=0,
fractal integer, s<0,

where ks €5*(K}) is a bounded linear functional on S(K,). We estimate || @] co(k,)- And

also only need to estimate for ®p € 5(K,). By (@) (&) =p P (¢), €€Tp, k€ Z, it
holds for s >0

Ty (x)= [ (€)°(@p)" (@)x(£)dE = /<c> O (@) (0)dE

P

= [[@rr = Z/]W QL
pk
]Zoo/r]\r] 1|§'| xx(¢
J] J] (&)
]zwp ARt Ef’ ARG
Pf(l P, is—l,
pt Z P’ J i=—1+1, |x|=p!, lez,
jE—oo O, j>—=141,
(for xe BF= |x|=p~5)

L& P’(l p), j<k,
=p * Y pIc —p! j=k+1,
j=—oo 0, i>k+1,

(for x€B* = |x|=pF=1=—k)

_p(ps+l _

e )@ ().

Thus,
Vo eS(Ky) = [ lcox,) =0 " ll¢llcok,)), 5=0.
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By
P(x+h)—(x) =TT { @(x+h) —(x) } =Ty { 9" (x+h)— 9" (x)},
then for s >0

lp(-+1) = @)l e, =T+ {9 (+1) = 9 () }Hllee )
=0(p"l9® (- +1) = 9® (Vo (k)

This implies
w(C7(Kp),@,p") =0(p"w(C7(K,),9",p")), n€N, s>0,

(generally, it holds w(CY(K,),¢,0) = O((st(C‘T(Kp),q)<5>,(5)), 6—0,5s>0).
Since E,n (C7(Kp),¢) <w(C7(K,),@,p~"), combining (4.3), it holds for s >0

Ep(C7(Kp),9) Sw(C7(Kp),p,p~") SO(p~"w(C7(Kp), 9 ,p7"), neN,
this implies (4.2). Moreover, by S(K,) C C?(K,), it follows for s >0
F €C(K) = Epn(C7(Kp), f)=0(p"w(C(Kp), f,p™")), n€N.

Thus, (4.1) is proved.
For the special case,

) eLip(C7(Ky),a), a>0=Epu(C7(Kp),f)=0(p~ ™", neN, a>0,
since (4.2) holds for f € C7(K,), thus

W(C7(Kp), f,p")=0(p~"w(C7(Ky), [, p7")) = f € C7(Ky)
W(C7(Kp), £,p") =0(p ™" I llco k),

then
£ €Lip(CT (Ky)a) = £ () = £ () er sy =OAT)
=l cex,) = O(h[*) = w(C(Kp), £,p")
=0(p " -p ") =0(p~ @)
=Ep(C7(Ky),f)=0(p~*+)"), neN, a>0.
The Lemma 4.5 is proved.

The inverse type theorem on C?(K},)

39

(4.3)
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Lemma 4.6 (Bernstein type theorem). For Holder-type space C’(Ky), 0 >0, if s >0, a >0,
then

Ep(C7(Kp), f)=0(p~ ™M), n—4oo=w(C(K,),f,8)=0(5"), 0.
Specially,

Epn(CO(Kp), f)=0(p~ """, neN, a>0=f cLip(C7(K,),a), a>0.

Proof. We prove Bernstein type inequality:

Y €5u(Kp) = (4n) ¥ €5u(Kp) and  [[(40) " o (i) < cp™ ullce (i, -

Since Vg, €S,(Kp) CS(Kp), index q, = (n,1) = (g2)® e S(K}), index (g2)® = (n,1); by [2],
Theorem 3.2.3, Theorem 3.1.7, and (g,,) " (x) = ({-)*(g,)"(:))" (x), we have
index g, = (n,1) = index (g,)" = (I,n) =index ({&)*(g,)")" = (n,1).

Thus, Vg, €5, (K,) = (qn)<>€Sn(Kp).
Then by

Y9 €Su(Kp) = 19" llco () =0~ l9llco i, )

we get Bernstein type inequality.
We prove theorem for s =0:

Epn(CO(Kp), f)=0(p~*"), n—+oo=w(C'(K,),f,6)=0(5%), 6—0.

By the assumption, E;»(C7(K}),f) =0(p™*"), n— 400, then
1fCH1) = fC)llee k) <N FC+R) —an (-
<2E,;(C7(Kp),

f
=+ —=£()
=w(C7(Kp),f,0)

Mo,y +lan(-+h) = f()llcok,)
)=0(p
lcox,) =00 (p "1 <s<p™")
=0(6").
Specially, this implies f € Lip(C7(K,),«).

Next, we will prove theorem for s > 0:

Epn(CO(Kp), f)=0(p~ @), n— too=w(C/(K,),f,6)=0(8%), 6—0.

By the assumption, E,«(C?(K,),f) = O(p~@*)m), n — +oo, then = let ¥/ {g;(x)—
7y_1(x)}, q5=0, then the sum is g;; (x), with || f(x) —q;; (%) co(k ,) —0,and

13 (%) = -1 ()l o i) <M (0) = F ()l o i) + 11 (%) = -1 (0) | o i, )
:o(pf(ac+s)n)/ (4.4)
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= Y1 p~ ()" converges implies f(x) =Y.' {g:—q" ;(x)} and the s-order fractal

derivative is
—+o00

F 0= L A@)® ()~ (450 (1)},

n=1

= the Bernstein inequality implies

=Ep (C7(K )< Z @)™ ) =70 Olleriy) < Z O(p~)=0(p~"")
j=n+1 j=n+1
w(C7(Kp),f,8)=0(6%), 5—0.
Specially, this implies f' €Lip(C?(K,),«). The Lemma 4.6 is proved. O

Equivalent theorem on C7(K)

Theorem 4.5. For Holder-type space C’(K,), 0 >0, if s >0, then the following statements are
equivalent

(i) f €Lip(C’(K,), &), a>0;
(i) w(C7(Kp), f1,8) = 0(8*), 6= 0;
(iii) Epn (C7(Kyp), f) = O(p~+)"), 1 — +-c0.

Proof. (i) = (iii) By the Jackson type theorem,
£ eLip(C7(Ky),a), a>0=Epu(C(Kp),f)=0(p~ ™), neN, a>0.
(iif) = (ii) By the Bernstein type theorem,
Epi(CO(Kp),f)=0(p~ M), n—too=w(CO(Kp),f*,6)=0(5%), 5—0.
(ii) = (i) By the definition,
w(C7(Kp),f,8)=0(%), 0= f* €Lip(C’(Kp),a), a>0.
Then Theorem 4.5 is proved. O

For the applications of approximation theorems on Hélder-type space C?(K,), 0 >0,
we refer to [5].
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5 Approximation theorems on Sobolev-type space L] (K,)
5.1 Definiitons of Lebesgue-type spaces L (K})
Lebesgue-type space L) (K,), 0 €R, 1<r< +oo, is defined as [34]

={feS" (Kp): 1)) )k, <+oo}, 0€R, 1<r< oo,

withnorm || £l x,) = [1(¢)7F) Y ()l x, )-
Sobolev-type space W} (K,) =L (K,), c€[0,4+00), 1<r < +oois defined as

Wi (Kp)={f€S™(Kp):[1(()7 ) () llrk,) < +o0}, 0 €[0,+00,) 1<r<+oo,

with norm || fllw x,) =1 (¢-)7 )Y ()l x,)-
The classical Sobolev-type space W(K,)=L5(K,), o€ [0,+), is defined as

W (Kp) ={f €S (Kp): 1)) (D2, < Ho0}, 0 €[0,+00),

with norm || [l we k) = [1(()7 ") () llc2(x,)
It is clear that

={feS"(Kp):I(F")" (Ollz(k,y < oo} with || fllzgic,) =l (F") " Ik, )

5.2 Modulus of continuity, Lipschitz class, the best
approximation on Wy (Kp)

Modulus of continuity w (W} (K;),f,d), >0, is defined as

w(We(Kp), f,0)= sup [[f(-+h)=f()llwsx,), 0>0.

heKy,[h|<é
Lipschitz class Lip(W,(K,),a), a >0, is defined as
Lip (W) (K ) ) = {F € WJ (K ) L F(41) — £ gy = O(IHI), EK,}, >0,
The best approximation E,«(W;(K},),f), n €N, is defined by

Epr (Wo(Kp).f)= inf |f ~@llwsix) nEN,

with S, (K,) ={@€S(K,): indexgp=(n,l),|€Z}, ncN.
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5.3 Equivalent theorem on Sobolev-type spaces W (K})

Theorem 5.1. For Sobolev-type spaces W) (Kp), >0, 1<r < 4c0, if s >0, then the following
statements are equivalent

(i) £ ELlp(W’(Kp) ), a>0.
(ii) (WG (Kp), f),8) =0(6"), 6 —0.
(iii) Epn (W (Kp )f): (p= (@) 1 — 40,
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