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Abstract. Using the method of construction, with the help of inequalities, we research
the Muntz rational approximation of two kinds of special function classes, and give
the corresponding estimates of approximation rates of these classes under widely con-
ditions. Because of the Orlicz Spaces is bigger than continuous function space and the
Lp space, so the results of this paper has a certain expansion significance.

Key Words: Muntz rational approximation, bounded variation function class, Sobolev function
class, Orlicz space.

AMS Subject Classifications: 41A25,43A90

1 Introduction

For any given real sequence {1, }$°_,, denote by [T,(A) the set of Muntz polynomials of
degree 1, that is, all linear combinations of {x*,x,---,x*}, and let R,,(A) be the Muntz
rational functions of degree 1, that is,

Ru(A) = {gn((’; ]‘[ H x)>0, x€[0, 1]}

If Q(0) =0, we assume that
P(x)

Jim, Q(x)

exists and is finite.

Study on the Muntz rational approximation rate is a new research field of rational ap-
proximation, see [5] is a pioneer in this work, he got a Jackson type theorem of continuous
function space in the first by using the method of construction, that is

*Corresponding author. Email addresses: 395796749@qq. com (R. F. Yu), garidiwu@163. com (G. Wu)

http:/ /www.global-sci.org/ata/ 20 (©2017 Global-Science Press



R.F. Yu and G. Wu / Anal. Theory Appl., 33 (2017), pp. 20-28 21

Theorem 1.1. Assume f(x) € C[0,1] and given M >0, if Ay 1—A, > Mn for all n > 1, then
there is a r(x) € R, (A) and a positive constant Cyg which only depend on M, such that

If—rl<Cue(fr).

Here w(f, L) is modulus of continuity of f(x) in normal sense.
Under the expanded condition of real sequence {A,}$_;, document [1] obtained fol-
lowing

Theorem 1.2. Assume f(x)€C[0,1], a > % and given M >0, if Ay11—A, > Mn® forall n>1,

then there is a r(x) € R,,(A) and a positive constant Cyy , which only depend on M and w, such
that

If =l < Cuaco(f1):

Document [2] considered Muntz rational approximation problem of bounded varia-
tion function class and Sobolev class, obtained following Jackson type estimate

Theorem 1.3. Assume f(x)€BV|[0,1], a> % and given M >0, if Ay 11— Ay > Mn® foralln>1,
then there is a r(x) € R,,(A) and a positive constant Cpy , which only depend on M and w, such

that CunV(F)
M,
If—rly < eV

where V (f) represents the total variation of f on [0,1].

Theorem 1.4. Assume f(x) € W; [0,1], > L and given M >0, if A1 — Ay >Mn® forall n>1,
then there is a r(x) € R,,(A) and a positive constant Cpy p , which only depend on M, P and «,
such that

7

Cm,p,
If—rlp < S4Pa) g1,

The purpose of this paper is to discuss the Muntz rational approximation problem of
bounded variation classes and Sobolev class in Orlicz spaces.

In this paper, M(u) and N(v) denote the mutually complementary N function, the
definition and properties of the N function can be seen [4]. The Orlicz Space L},[0,1]
generated by N function M(u) is all measurable functions {u(x)} that have a finite Orlicz

norm
[ul[m=sup , (1.1)
p(o,N)<1

/1u(x)v(x)dx

0

where p(v,N) = fOlN(v(x))dx is the modulus of v(x) with respect to N(v).
For f(x) € L},[0,1], define the best Muntz rational approximation as

Rn(f)MZre}zn{A)Hf—fHM-

Our main results are following;:
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Theorem 1.5. Assume f(x)€BV|[0,1], a > % and given A>0, if \yy1—Ay > An* foralln>1,
then there is a r(x) €R, (A) and a positive constant C 4 , which only depend on A, x and independ

on n, such that
1 —rllg < S22V

Theorem 1.6. Assume f(x) €WL[0,1], a >3 and given A>0, if Ayi1—Ay > An® forall n>1,
then there is a r(x) R, () and a positive constant C 4 , which only depend on A, a and independ

on n, such that
CA,ac

n

£ s,

1f=rllm <
where Wi,[0,1]={f: f€ AC[0,1], f' € L},[0,1]}.

Note that constants C appeared in the paper in different places represent different
values.

2 Auxiliary lemmas
For any x €[0,1], let

x=1+cos#,

N[

<0<,

2n—2j+1 , n
=1 0, i=——"r1, :1/2/...,[_]‘
Xj=1l+cos i n T, ] >
For convenience, we denote, xo =0, X[1]41= 1.
Furthermore, set

P]-(x):foIlleA)”, re(x) = ) j:1,2,---,m, k:1,2,---,[f],
=1

where AA1 =Aq, AA =Ap— A1, k=2,3,---.
We construct the rational operator as following

3
La(f,x) =Y f(xe)re(x),

k=1

where

is evidently.
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Lemma 2.1 (see [1]). Let x € [xj_1,xj], j=1,2,---,[5]+1,if 1 <k <[5], then

re(x) SCA€7A|W7‘/H,

i—k|+1)%  |j—k|+1
,x_xk,§C<(|J n|2 )l n! V3),

where A is given in the above two theorems.

Lemma 2.2 (see [3]). Forany f € L},[0,1], we denote the Hardy-Littlewood maximum function

of f by

1 t
0(x)= sup — [ |f(w)du,
0<t<1,t#x x

then

181l <CI| £l -

Lemma 2.3 (Holder inequality, see [4]). For any u(x) €L}, v(x) € Ly, we have

[ u@edx<lulolly.

3 Proof of theorems

Proof of Theorem 1.5. We need only to prove

CA,/XV(f) )

1f =L ()l <

Applying Jordan decomposition, for any f(x) € BV[0,1], there exist two monotonically
increasing functions g(x), h(x), such that

f(x)=g(x)=h(x), V(f)=V()+V(h).

Furthermore, suppose g(0) =h(0) =0, define the monotonic function g, (x) as follows

0, 0<x<xy,
(%) =19 8(x)—8(xm), Xm<x<Xpyi1,
dm/ Xm+1 <x§1/
where
_ 2n—2m+1

n
An=8(Xm+1) —&(Xm), Xm=14cosbu, On m=0,1,---, [ﬂ +1.

s
2n !
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Set xo =0, x[%]ﬂ =1, then

[5]+1 [5]+1 [5]+1

Z gn(x), V(g)= ZOV(gm): ZO d,,.

Fist of all, we will show

C
lg=La()llm < ==V (g).
We have
[5]+ [5]+1
l§—La(g) M= Z < Y lgm—Lu(gm) -
m=0 m=0
M

Hence we will estimate ||y — Ly (gm) || M,

|gm—Ln(gm)llm=sup ‘/ gm(x Ln(gm,X))v(x)dx‘

o(v,N)<1
l§1+1
— sup 2/ ng — g ()i ()0 (x)dx
p(v,N)<1| j=1 7 *j-1k=
mo BT\ (8]
= sup S L+ L | [ L —gnm)nx)o(x
p(v,N)<1 j=1 j=m+2 ] /*-1k=1
Xm+1 [%}
+ [ Y (@) —gu ()r(x)o()dx
Ymo k=1

=: sup {Kl —|—K2—|—K3}
p(o,N)<1

< sup Ki;+ sup Ko+ sup Ks.
p(v,N)<1 p(v,N)<1 p(v,N)<1

From the representation of g, (x) and the process of proof of Theorem 3 in [6], we easy to
see

- 13l

sup Ki= sup |} [ Y (u(2)~gn (v r(x)o(x)dx
p(o,N)<1 p(o,N)<1|j=1"%-1k=1

< su dmri(x)v(x)dx
p / Z

p(v,N)<1|j=1"%Y-1k=m+1
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=d,, sup
o(v,N)<1

j=17%j-1k=

<Cady sup Z/J ) e‘AHﬁ—mv(x)dx

p(o,N)<1|j=1"%-1k=m+1

m - X;
<Cady sup Z Z e AWi=VH ]v(x)dx.
p(v,N)<1|j=1k=m+1 Xj-1

Furthermore,

2n—2j+1 2n—2j+3
————— T —COS——F—TT
2n 2n
n—j+1 1
n

=|2sin

Tsin—r7t
2n

<ct<cn .
2n

Due to almost everywhere boundedness of v(x) and the
[5]

3y eV

j=1lk=m+1

is a part sum of a convergent series, hence we have

sup K1<&d
p(o,N)<1 "
Similarly,
(241 5 [3]
sup Ko= sup | Y, / (& () = &m (xic) )1 (x) 0 (x)dx
p(v,N)<1 o(v,N)<1|j=m+2"*j-1k=1
[1‘1]+1
< sup / derk(x)v(x)dx
o(v,N)<1|j=m+2”7*-1k=

<Cady sup Z /] Ze—A\\ﬂ—\mv(x)dx
p(o,N)<1|j=m+2"%j-1k=1

<Cady, sup Z Ze Ali- \/—|/

o(o,N)<1|j=m+2k=

Cag
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sup Ka= sup | [} (g ()~ g (v))re(x)0(x)dx

p(v,N)<1 p(o,N)<T|”*m k=1
Xm+1 [%]
= sup / (gm dmri(x ) x)dx
p(o,N)<1 | Xm k=m+1
X [5]
<d,, sup / +1<1+ Z ri(x > dx
p(o,N)<1 |7 *m k=m+1
Xm+1 [%]
<2d,, sup / v(x)dx rr(x)| <1
p(o,N)<11 Xm k=m+1
Sgdm.
n
To sum up above, we get
C
Hgm_Ln(gm)HMSfdmz
therefore
[3]+1 1 C
I8~ La()lm<Ca Y duor = “AV(g).
m=0

Since h(x) is also a monotonically increasing function, so we also have

[ L) < AV ()

Hence

Cav(p).

n

1f = La(H < lIg =L@l m+[1h =L () m < %(V(g)+V(h)) <

Theorem 1.5 is proved. 0
Proof of Theorem 1.6. Using Lemma 2.3, choosing {; € A; = [xj_1,x;], such that

Gf/(gj) :inf{Gf/(x) ZXGAj}.

Modifying the construction of L, (f,x) suitable

g
; (Cj)rj(x
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then we need only to show

1 =Li ()l < S21F

1(5]
If~Li(F)lm< sup /er F@))lrj(x)o(x)dx

p(v,N)<1

1[3] 1 b ,
— sup /0]§|x—gjym( [ @t x)ox)ax

p(v,N)<1

1[2]
= sup | 03 v=l16p () (el

p(o,N)<1

— ~
Il

13
2

|x—§]-r,?1j, INCGLZCECE

1
< sup /
p(le)Sl 0 =1

—.

Mm:

<Cn sup / ]x g]y/ |04 (t)|dtrj(x)v(x)dx

p(v,N)<1

\
I
—

(7] 1
<Cn sup E/A_yef/(t)mtfo ri(x) |2 —;lo(x)dx

p(v,N)<1|j=1

Using Lemma 2.1, we have

[ rlx-gloxx

o=
+
N

IN Il
= T
— —
|>\ %
=~ ~

ri(x)|x—Cilv(x)dx

y
=

1_ 2 ._ .
C<(|] K+1) +’] I:l’+1>CAe_A|\ﬂ_ﬁU(x)dx

n2

QI=
T
R

CAe*A|\ﬁ*ﬂ‘ v(x)dx

Ak

[\
(@)
S| =
7]

27
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from Lemma 2.3, we have

|:

y 4 c
IF-Li Nl =2 % [ lep(e)lar| =2
:] i

[ oot

Ca
<—l8pllmllLlly < —Hf -

Theorem 1.6 is proved. 0
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