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1 Introduction and Nan Results

It is well known that to calculate the Hausdorff measure of fractal sets is very difficult,

even for simple sets, such as self-similar sets satisfying the open set condition(OSC,including

SSC) and so there are few concrete results about computation of Hausdorff measure, unless the

Hausdorff dimension is not larger than 1. Some authors have investigated the estimation and

calculation and got some upper and lower bounds of the Hausdorff measure for self-similar sets

satisfying OSC(see [6, 7, 8, 10, 11, 12, 14, 19]). A natural question is how to get the accurate

value of them? In this paper we only discuss the case of self-similar sets satisfying OSC and our

purpose is to establish a uniform theoretical framework for the calculation of Hausdorff measure

for such fractal sets. Let E ⊂ Rn be a self-similar set satisfying OSC with s = dimH E . We

have proved Hs(E ∩U) ≤ |U |s (which will be called the measure-diameter’s inequality) [12]

for any U ⊂ Rn. This inequality plays an important role for calculating the Hausdorff measure

of the self-similar set satisfying OSC. The calcutation of the Hausdorff measure of E will be
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transformed to look for a solution U with 0 < |U | such that the equality holds in the above

inequality, that is, Hs(E ∩U) = |U |s. In this paper, we prove such a set U exists. Here, our proof

is on existence behavior but not constructive and so in order to count genuinely the Hausdorff

measure of E , we also must determine wholly U , including its diameter, geometric shape and

location. We call this result the realization theorem with respect to the upper convex density

1. The upper convex density, introduced by Falconer [1], is an important notion giving rise to

a series of new problems and opening a gate to understand deeply the structure of self-similar

set and so far we work on it only a little. Our main results of this paper are as follows (for the

definitions, terminologies and notations, see the next paragraph).

In this paper, we always let E ⊂ Rn(n > 0) be a self-similar set satisfying OSC and denote

by s = dimH E its Hausdorff dimension and Hs(E) its s−dimensional Hausdorff measure.

Realization theorem. There exists a set U ⊂ Rn with 0 < |U | such that

Hs(E ∩U)
|E ∩U |s = 1.

Corollary 1. Hs(E) = |E ∩U |s/∑k>0 bk, where |U | > 0 satisfies

Hs(E ∩U)
|E ∩U |s = 1

and each bk depends on U.

Corollary 2. There exists an almost everywhere best covering of E, α = {Ui : i > 0}, such

that

Hs(E) = ∑
i>0

|Ui|s.

The proof of these results will be given later. Some discussions are given at the end of this

paper.

2 Basic Concepts and Upper Convex Density

For some basic definitions and notations in Fractal Geometry, we refer to [1, 2, 3].

Denote by d the usual metric of Rn(n > 0). Let D ⊂ Rn be a bounded closed region and

E a self-similar set yielded by m(m > 0) (linear) similarities Sj : D → D with ratios 0 < c j <

1, j = 1,2, . . . ,m, that is, |Sj(x)−Sj(y)| = c j|x− y|, ∀ x,y ∈ D, j = 1,2, · · · ,m and E satisfies

E =
⋃

j S j(E). We say that E satisfies the open set condition (OSC) if there is a non-empty

bounded open set V ⊂ Rn such that
⋃

j S j(V ) ⊂V and

Si(V )∩Sj(V ) = /0, 1 ≤ i < j ≤ m.
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Furthermore, we say that E also satisfies the strong separation condition (SSC),if

Si(E)∩Sj(E) = /0, 1 ≤ i < j ≤ m.

It is well known E ⊂V , where V is the closure of V , and s = dimH(E) is determined by
m

∑
j=1

cs
j = 1

and 0 < Hs(E) < ∞. So E is an s−set.

A covering α = {Ui : i > 0} of E is called a best covering of E, if Hs(E) = ∑
i>0

|Ui|s;
A covering α = {Ui : i > 0} is called an almost everywhere best covering of E if H(E −⋃

iUi) = 0 and Hs(E) = ∑
i>0

|ui|s.
Let S = {1,2, . . . ,m} be the state space with m symbols and

Σm = {i = (i1i2 · · · ) : in ∈ S,∀n > 0}

the one sided symbolic space on S [13]. Let k > 0 and denote by Jk the set of all k−sequences

on S.

Set

Ei1···ik = Si1 · · ·Sik(E), ∀i = (i1 · · · ik) ∈ Jk;

Ei1i2··· =
∞⋂

k=1

Ei1i2···ik =
∞⋂

k=1

Si1 · · ·Sik (E) =
∞⋂

k=1

Si1 · · ·Sik(V ) = {xi}, ∀i = (i1i2 · · ·) ∈ Σm.

Namely, the second term above is a singleton and i = (i1i2 · · · ) is called a representation of

xi ∈ E . Obviously, each point in E has a representation but unlikely unique. If, for each k > 0, xi

is always an interior point of Si1 · · ·Sik(V ), we will call xi to be an interior point of E . It is easy

to see that each interior point has unique representation. Consider the continuous mapping⎧⎪⎨
⎪⎩

ζ : Σm → E

ζ (i) = xi, ∀i = (i1i2 · · · ) ∈ Σm.

It is easy to see that if E satisfies SSC, the mapping is one-to-one and if E only satisfies OSC, it

is many-to-one.

It is also easy to prove Hs(∂V ) = 0,where ∂V denotes the boundary of V . So we have

Hs

⎛
⎝ ∞⋃

k=1

⋃
(i1···ik)∈Jk

Si1 · · ·Sik
(
∂V
)⎞⎠= 0,

and the set consisting of all interior points is of Hs−full measure. We need the following simple

Claim 1. If xi is an interior point of E , then there is at least k > 0 such that Si1 · · ·Sik(V )⊂V .
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Let A ⊂ Rn and denote by |A| the diameter A. Denote Ux ⊂ Rn a set containing x and δ a

positive number.

Define

Ds
c(E,x) = lim

δ→0

{
sup

0<|Ux|≤δ

Hs(E ∩Ux)
|Ux|s

}
≥ 0

and call it the upper convex density of E at x (see [1]). Evidently, here Ux may be taken to be

convex. According to Hs(E ∩U) ≤ |U |s, (see [12]), there holds always Ds
c(E,x) ≤ 1,∀x ∈ E .

The computation and estimation of the upper convex density is more difficult than the case for

the Hausdorff measure. Set E1 = {x ∈ E : Ds
c(E,x) = 1}.

Theorem A[1]. E1 is a measurable set and Hs(E1) = Hs(E).

It is easy to see that there is an interior point x of E with Ds
c(E,x) = 1.

3 Hausdorff Metric and Measure Convergence

Let A ⊂ Rn be non-empty and δ > 0. Set V (A,δ ) = {x ∈ Rn : d(A,x) < δ} and denote by

C the set consisting of all compact subsets of Rn. Suppose A,B ∈ C and define

ρ(A,B) = inf{δ : B ⊂V (A,δ ), A ⊂V (B,δ )} .

It is not hard to prove that ρ is a complete metric on C and it is called the Hausdorff metric(see

[1]).

Theorem B[1]. Any uniformly bounded infinite set in C has convergent subsequence.

Denote Fi
H−→ F if {Fi} tends to F on C under Hausdorff metric and it is easy to see that

Fi
H−→ F implies |Fi| → |F| and furthermore, if x ∈ Fi,∀i > 0,then x ∈ F .

Suppose m is a finite measure on Rn with compact support and so is regular(see [9]).

Proposition 1. Fi
F−→ F ⇒ limsup

i→∞
m(Fi) ≤ m(F).

Proof. Given r > 0, according to the definition, for sufficient large i > 0, we have Fi ⊂
V (F,r) and hence m(Fi) ≤ m(V (F,r)). By the regularity of the measure m, lim

r→0
m(V (F,r)) =

m(F). So it is easy to see that limsup
i→∞

m(Fi) ≤ m(F). We are done.

Let 0 < ε < 1 and B =
{

U ⊂ Rn :
Hs(E ∩U)
|E ∩U |s > 1− ε

}
. By the definition, it is easy to see

that B is not empty and for given ε > 0, d = sup{|U | : U ∈ B} exists.

Proposition 2. There is a compact set V ⊂ Rn with |E ∩V | = d > 0 and Hs(E∩V)
|E∩V |s ≥ 1− ε .

Proof. By the definition, for each integer l > 0, there is a compact Vl ∈ B such that |E ∩
Vl| > d − 1

l
and

Hs(E ∩Vl)
|E ∩Vl|s > 1− ε . Obviously, {E ∩Vl} is uniformly bounded. Taking a
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subsequence if necessary, we may assume that E ∩Vl
H−→V (l → ∞). Clearly, liml→∞ |E ∩Vl| =

|V | = d and by Proposition 1,

limsup
l→∞

Hs(E ∩Vl)
|E ∩Vl|s ≤ Hs(E ∩V)

|E ∩V |s

and hence
Hs(E ∩V )
|E ∩V |s ≥ Hs(E ∩V )

|V |s ≥ 1− ε .

We are done.

4 Proof of Realization Theorem

First of all, we introduce a class of similar enlargements as follows.

Let x ∈ E be an interior point with Ds
c(E,x) = 1 and i = (i1 · · · il · · · ) its representation. An

element ( j1 · · · jl) ∈ Jl (l > 0) is called an l−tuple of x, if there is some m > 0 such that j1 =

im+1, · · · , jl = im+l and denote it by ( j1 · · · jl) ≺ x.

∀l > 0, it is easy to see that

(Si1 · · ·Sil )
−1 : Si1 · · ·Sil (V ) →V

is a similar enlargement from Si1 · · ·Sil (V ) onto V with the similar ratio 1
ci1 ···cil

and

(Si1 · · ·Sil )
−1 (Si1 · · ·Sil (E)) = E.

Define a linear similar enlargement Tl : V → Rn such that the restriction of Tl on Si1 · · ·Sil (V )

coinciding with (Si1 · · ·Sil )
−1, that is, Tl|Si1 ···Sil (V) = (Si1 · · ·Sil )

−1 or Tl is the linear extension of

(Si1 · · ·Sil )
−1 : Si1 · · ·Sil (V ) →V

from Si1 · · ·Sil (V ) to V . Obviously, Tl is well defined and so we get a series of similar enlarge-

ments: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Tl : V → Rn

Tl(y) = (Si1 · · ·Sil )
−1(y), ∀y ∈ Si1 · · ·Sil (V )

Tl(Si1 · · ·Sil (V )) = (Si1 · · ·Sil )
−1(Si1 · · ·Sil (V )) = V .

For convenience, sometimes write Tl = (Si1 · · ·Sil )
−1 and T−1

l = Si1 · · ·Sil . From the above defini-

tion, it is easy to see that there holds always Tl(x) = (Si1 · · ·Sil )
−1(x) ∈ E ⊂V ⊂ Tl(V ) and Tl(x)

is always an interior point of E . We call Tl(V ) an l−order enlargement of V . For (i1 · · · il) ≺ x

and ( j1 · · · jl jl+1 · · · jk) ≺ x, the following Claim is simple.
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Claim 2. Tl(V ∩ Tl+h(V ) = Tl(V ) ⇔ (i1 · · · il) = ( j1+h · · · jl+h), ∀ h > 0, ∀l > 0, where

Tl = (Si1 · · ·Sil )
−1 and Tl+h = (Sj1 · · ·Sjl+h)

−1.

We call Tl(V ) the l−order enlargement of V contained in Tl+h(V ). Especially, it is not hard

to see

(Si2 · · ·Sil )
−1(V ) ⊂ (Si1 · · ·Sil )

−1(V ), ∀i1 = 1,2, . . . ,m.

In the following, we assume always that x ∈ E is an interior point with Ds
c(E,x) = 1 and the

unique representation (i1i2 · · · ) and define Tl by using (i1i2 · · · ) as the above. Noting that Tl(E)

is also a self-similar set and Hs(Tl(E)) = (ci1 · · ·cil )
−s Hs(E). The following Claim is simple.

Claim 3. If U ⊂ V , then Hs(Tl(E)∩U) = Hs(E ∩U). In general, if U ⊂ Tl(V ) and so

T−1
l (U) ⊂V , then

Hs(Tl(E)∩U) = Hs(E ∩T−1
l (U)).

According to the Scaling property [2, p.27], the following Claim is simple.

Claim 4. Let U ⊂ Rn, then

Hs(E ∩U)
|E ∩U |s =

Hs(Tl(E ∩U))
|Tl(E ∩U)|s =

Hs(T−1
l (E ∩U))

|T−1
l (E ∩U)|s , ∀l ≥ 0.

Proposition 3. Let F ⊂ Rn be any compact subset, then there is the least integer l > 0 such

that F ⊂ intTl(V ), where int Tl(V ) denotes the interior of Tl(V ).

Proof. As x ∈ E ⊂V is an interior point, so d = d(x,∂V ) > 0. By the definition, it is easy

to see that

d(Tl(x),Tl(∂V ) = d(x,∂V )(ci1 · · ·cil )
−1 .

Because Tl(x) ∈ E ⊂ V and 0 < ci < 1 (l > 0, i = 1,2, . . . ,m), obviously, the bounded set F ⊂
int Tl(V ) if l is sufficient large. We are done.

Proof of the realization theorem. Next, using Ux,Ux,k ⊂V ⊂ Rn (∀k > 0), denote the com-

pact sets containing x and set

Bx,k =
{

Ux :
Hs(E ∩Ux)
|E ∩Ux|s > 1− 1

k

}
, ∀k > 0.

According to Proposition 2, we may set 0 < rx,k = sup{|E ∩Ux| : Ux ∈ Bx,k}. Take Ui
x in Bx,k

such that

|E ∩Ui
x| → rx,k (i → ∞).

By Theorem B and Proposition 1, taking a subsequence if necessary, we may assume that

E ∩Ui
x

H−→ E ∩Ux,k ⊂ E (i → ∞).
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It is easy to see that |E ∩Ux,k| = rx,k and

Hs(E ∩Ux,k)
|E ∩Ux,k|s ≥ limsup

i→∞

Hs(E ∩Ui
x)

|E ∩Ui
x|s

≥ 1− 1
k
.

Suppose that rx,k → 0 (k → ∞) is not true. Taking a subsequence if necessary, we may assume

rx,k → r > 0 (k → ∞). Using Theorem B and Proposition 1, we may prove easily that there is

U ⊂V such that |E ∩U |= |U | = r and Hs(E∩U)
|E∩U |s = 1.

Next, suppose rx,k → 0 (k → ∞).

For each k ≥ 0, there is an integer l(k)≥ 0 depending on k such that (to stipulate: Si0(V ) =V )

E ∩Ux,k ⊂ Si1 · · ·Sil(k) (V )

and E ∩Ux,k not contained in Si1 · · ·Sil(k)+1(V ), that is, l(k) is the greatest integer such that

Tl(k)(E ∩Ux,k) =
(

Si1 · · ·Sil(k)

)−1
(E ∩Ux,k) ⊂V .

Setting Fl(k) = Tl(k)(E ∩Ux,k), then we have

rk = |Fl(k)| = rx,k

(
ci1 · · ·cil(k)

)−1
, ∀k > 0.

We have two cases as follows.

Firstly, suppose rk → 0 (k → ∞) is not true. Taking a subsequence if necessary, we may

assume that rk → r > 0 (k → ∞). By Theorem B and Proposition 1, we may prove that there is a

compact subset U ⊂V such that |U | = r and Hs(E∩U)
|E∩U |s = 1.

Next, suppose rk → 0 (k → ∞). Set c = min{c1,c2, . . . ,cm} > 0 and arbitrarily given d > 0.

For each k > 0, there is a unique integer h(k) > 0 depending on k such that

rx,k

(
ci1 · · ·cil(k)+h(k)

)−1
< d ≤ rx,k

(
ci1 · · ·cil(k)+h(k)+1

)−1
< dc−1

il(k)+h(k)+1
≤ d

c

or

rk

(
cil(k)+1 · · ·cil(k)+h(k)

)−1
< d < rk

(
cil(k)+1 · · ·cil(k)+h(k)+1

)−1
< dc−1

il(k)+h(k)+1
≤ d

c

As a clear consequence, noting that (Tl(k)+h(k)+1(E ∩Ux,k)∩V �= /0, we have

Proposition 4. Tl(k)+h(k)+1(E ∩Ux,k) is uniformly bounded for all k > 0.

Thus, taking a subsequence if necessary, without loss of generality, we may assume, by The-

orem B, that Tl(k)+h(k)+1(E ∩Ux,k) is convergent under the Hausdorff metric, say Tl(k)+h(k)+1(E∩
Ux,k)

H−→F (k→∞), where F is compact and Tl(k)+h(k)+1(x) is also convergent, say Tl(k)+h(k)+1(x)→
x0 ∈ E (k → ∞). Note that Tl(k)+h(k)+1(x) is an interior point for all k > 0 and x0 is unlikely.
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By Proposition 3,there is at least l > 0 such that F ⊂ (int Tl)(V ) and hence T−1
l (F)⊂ intV .

Though x0 is unlikely an interior point of E , but we have the following simple

Claim 5. There is some i with 0 < i ≤ m such that x0 ∈ Si(E) and Tl(k)+h(k)(x) ∈ Si(V ) for

infinitely many k and so Sl(k)+h(k)+1 is the same for infinitely many k. Furthermore, by induction,

there is a constant l−sequence

l(k)+ h(k)+ 1− l, l(k)+ h(k)+ 1− l + 1, . . . , l(k)+ h(k)+ 1 ∈ Jl

for infinitely many k > 0 and so Sl(k)+h(k)+1 is the same for infinitely many k.

Obviously, Tl(k)+h(k)+1(E ∩Ux,k) is in the same l−order enlargement of V for infinitely many

k and so
Hs(Tl(k)+h(k)+1(E ∩Ux,k))

|Tl(k)+h(k)+1(E ∩Ux,k|s
is defined well for infinitely many k. Taking a subsequence if necessary, without lose of gener-

ality, we may assume that it holds for all k. It is easy to see that

T−1
l = Sl(k)+h(k)+1−lSl(k)+h(k)+1−l+1 · · ·Sl(k)+h(k)+1

for all k > 0. Obviously, we have Tl(k)+h(k)+1(E ∩Ux,k) ⊂ Tl(V ) for sufficient large k > 0. Ac-

cording to Claims 3 and 4,

Hs(Tl(k)+h(k)+1(E ∩Ux,k))
|Tl(k)+h(k)+1(E ∩Ux,k)|s =

Hs(E ∩Ux,k)
|E ∩Ux,k|s ≥ 1− 1

k

for sufficient large k > 0. According to Proposition 1, it is easy to see that

1 = limsup
k→∞

Hs(Tl(k)+h(k)+1(E ∩Ux,k)
|Tl(k)+h(k)+1(E ∩Ux,k)|s ≤ Hs(Tl(k)+h(k)+1(E)∩F)

|E ∩T−1
l(k)+h(k)+1(F)|s = 1

and obviously,
Hs(Tl(k)+h(k)+1(E ∩F))
|Tl(k)+h(k)+1(E ∩F)|s =

Hs(E ∩T−1
l(k)+h(k)+1(F))

|E ∩T−1
l(k)+h(k)+1(F)|s = 1

and 0 < |E ∩T−1
l(k)+h(k)+1(F)|. We are done.

Remark. It is easy to see that we proved that the case rk → 0 is impossible and hence

rx,k → 0 (k → ∞) also is impossible in the above and hence we have proved that there is a set Ux

with |Ux| > 0 such that

Ds
c(E,x) =

Hs(E ∩Ux)
|Ux|s

for all interior point x ∈ E with Ds
c(E,x) = 1. In fact, by the same argument, we may prove that

this conclusion holds for all x ∈ E with Ds
c(E,x) = 1. Such a set Ux is called a best shape at x in
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[14]. But, to look for a best shape is very difficult, even for some special point if the Hausdorff

dimension is larger than 1.For example, so far we cannot determine a best shape at a vertex of

C×C, where C is the middle third Cantor set, even we cannot prove that it is symmetric with

respect to the diagonal of the square, passing the vertex, therein C×C is yielded (see [14]),but

we conjecture so.

5 Proof of Corollary 1

For convenience, we only prove a special case with c j = c = const., j = 1,2, · · · ,m. For the

general case, there is no any essential difference except more complecated.

Let the convex set U ⊂ V such that |U | > 0 and Hs(E∩U)
|E∩U |s = 1 as the above. Let k > 0 and

∀ (i1 · · · ik) ∈ Jk, we call Si1 · · ·Sik(V ) a k−th order copy of V . We have

Hs(Si1 · · ·Sik(V (E)) = c−ksHs(E), ∀ (i1 · · · ik) ∈ Jk, ∀k > 0.

Denote a1 the number of all first order copies of V contained in U and a2 the number of

all second order copies of V contained in U except those contained in some first order copy

contained in U . Inductively, denote by ak the number of all ak−th order copies of V contained

in U , except those contained in some (k−1)−th order copy contained in U , for all k > 0.

Denote by M the union of all copies of V contained in U and Mk the union of all copies of

V contained in U whose order is not larger than k > 0. As U is convex, we may prove that the

Hausdorff dimension of E ∩ ∂U is strictly smaller than s and so Hs(E ∩ ∂U) = 0 (we refer to

[5]). It is easy to see that

E ∩ (int U −M) ⊂ E ∩
⎛
⎝ ∞⋃

k=1

⋃
(i1···ik)∈Jk

Si1 · · ·Sik(∂V )

⎞
⎠ ,

that is, there is no any interior point of E in E ∩ (int U −M), because if there is an interior point

in int U −M, then, noting that int U −M is an open set, it is easy to see that there is a copy

Si1 Si2 · · ·Sik(V ) of V in int U −M for some k > 0 and it contradicts the above construction. It is

easy to see

Hs(E ∩ (U −M)) = Hs(E ∩ (int U −M)) = 0

and

Hs(E ∩U) = Hs(E ∩M).
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But, obviously, Mk
H−→M (k →∞) and Hs(E∩Mk)→Hs(E∩M)= Hs(E∩U)= ∑k>0 akcksHs(E).

Hence

Hs(E ∩U)
|E ∩U |s = ∑

k>0
akcksHs(E)|E ∩U |−s = 1, or Hs(E) = |E ∩U |s

(
∑
k>0

akcks

)−1

.

Take bk = akc−ks and we are done.

Remark. If all of the ratios are not the same, then the different k−th copy has the different

Hausdorff measure and so the formula of bk is more complex, but the difficulty is not essential.

6 Proof of Corollary 2

Let U and Hs(E∩U)
|E∩U |s = 1 as the above. Obviously,

Hs(E ∩U)
|E ∩U |s =

Hs(E ∩Si1 · · ·Sik(U))
|E ∩Si1 · · ·Sik(U)|s = 1, ∀k > 0,∀(i1 · · · ik) ∈ Jk.

For convenience, we first introduce the following notations. Let A ⊂ Rn and ζ ,ξ be two sets

consisting of some subsets in Rn, respectively. Set

ζ ∪ξ = {C : C ∈ ζ or C ∈ ξ},

A∩ζ = /0 ⇔ Hs(E ∩A∩B) = 0, ∀B ∈ ζ .

Set

α0 = {U},
α1 = {Si(U) : Si(U)∩α0 = /0, 0 < i ≤ m},
α2 = {Si1 Si2(U) : Si1 Si2(U)∩ (α0 ∪α1) = /0, (i1i2) ∈ J2},

Inductively, let αk−1 be defined well for k > 2,set

αk = {Si1 · · ·Sik (U) : Si1 · · ·Sik(U)∩ (α0 ∪ ·· ·∪αk−1) = /0, (i1 · · · ik) ∈ Jk}.

Thus, we get {αi}∞
i=0 and set α =

⋃
i≥0 αi. From the above form, it is easy to see that for any

M ∈ α , we have
Hs(E ∩M)
|E ∩M|s = 1

and the intersection of any different two elements in α has Hs−zero measure. By the same

argument as in § 4, it is not hard to prove

Hs(E) = ∑
M∈α

Hs(E ∩M) = ∑
M∈α

|E ∩M|s.

It is easy to see that α is an almost everywhere best covering of E . We are done.
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7 Discussions

Let E ⊂ Rn and dimH(E) = s be the same as the above. In order to calculate the Hausdorff

measure of E, it suffices to look for U ⊂ Rn such that |U | > 0 and Hs(E∩U)
|E∩U |s = 1,because if U

(including its diameter, position and shape) is determined well, then the series in Corollary 1 is

also determined and the remainder is only some calculations. But, in general, it is very difficult

to look for such a set U . In fact, using our model, Refs [10, 11, 12] and [8] investigate the

computation of the Hausdorff measure for self-similar sets but there U satisfies only Hs(E∩U)
|E∩U |s < 1

and so the results obtained are only some upper limits of the corresponding Hausdorff measure

but not the exact values. Marion [4] has posed two conjectures about the exact values of the

Hausdorff measure of the Sierpinski gasket and Koch curve respectively and we have negated

them [11, 12]. In essence, the set U obtained by him does not satisfy the above equality and

so his results are only the upper limit and not the exact value of the corresponding Hausdorff

measure. Clearly, the smaller 1− Hs(E∩U)
|E∩U |s is, the better the corresponding upper limit is. When

the Hausdorff dimension is not larger than 1, we have some examples for that the corresponding

U have been obtained (see Ref. [17, 18]), but for the case of that the Hausdorff dimension is

larger than 1(non-integer), so far no any such examples have be found. It is why we can not get

any example for that the exact values of the Hausdorff measure is obtained when its Hausdorff

dimension is larger than 1(non-integer).Finally,we pose

A problem. To form a self-similar set with OSC and dimH > 1,whose a best shape (including

its diameter,geometric shape and location)is determined wholly.
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