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Abstract. The present paper deals with the new type of Gamma operators, here we esti-
mate the rate of pointwise convergence of these new Gamma type operators M,, ;. for func-

tions of bounded variation, by using some techniques of probability theory.
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1 Introduction

Let BVy[0,00), (Y > 0) be the class of all functions defined on [0, ), being bounded variation
on every finite subinterval of [0,00) and satisfying the growth condition |f(z)| < Mt? for every
t > 0 and some constant M > 0.

For a measurable complex valued locally bounded function f defined on [0, ), Lupas and
Miiller!!l introduced and investigated some approximation properties of the sequence of linear

positive operators {G, } defined by

G120 = [ antxannf () au

+1
which is called Gamma operator, where g, (x,u) = —‘e_x”u”, x > 0. Some approximation

properties of these operators were studied by Chen and Guo? for functions in BV [0,00) and

recently for functions in BV [0,0) and DBV [0, ) by Zengl!.

In [4], Mazhar defined and studied some approximation properties of the following sequence
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of linear positive operators

Fn(f;x) = /Oocgn(x’M)du/owgnfl(u’t)f(t)dt

(Zn)!x"“ 0o 11
- n!(n—l)!/o (H[)m]f(f)dt’ n>1, x>0,

where g, (x,u) is the same function, which has been used by Lupas and Miiller in paper [1].
Recently, by using the techniques due to Mazhar, Izgi and Buyukyazici[s] and independently

Karslil® considered the following Gamma type linear and positive operators

Ln(f;x) = /Ooogn-i-Z(xvu)du/ooogn(uvt)f(t)dt

)
T nl(n+2)! /0 (x+t)zn+4f(f)df, x> 0.

For a very recent results on the local and global approximation results on L, ( f;x) see Karsli and

Ozarslan!!3),

In 2007 Maol'# defined the following gamma type operators

(Myrf) () = /0 " gn(e,0)du /0 " an (s 0) f(0)dt

Qn—k+ 1)t o gk
- n!(n—k)! /0 (x+t)2n—k+2f(t)dt’ x>0,

whose special cases are:
If k =1, then (M, 1 f) (x) = Fu(f3x),
If k =2, then (M, »f) (x) = Ly—2(f5x).

In addition, if f is right-side continuous at x = 0, we define
(Myxf)(0) == £(0), n,keN.

For the convenience we can rewrite the operators (M, «f) (x) as

M) 0) = [ Kuaten) flo)ar, (1)
0
where
(2n—k+ 1)t gk
n‘(n—k)‘ (x+t)2n7k+2’

The rate of approximation for functions of bounded variation is an interesting topic in ap-

Kmk(x,t) =

x,t € (0,00).

proximation theory, several researchers have studied on these subjects for three decades. We
mention the work of Bojanic-Vuilleumier and Cheng (see [9,10]) who estimated the rate of con-

vergence of bounded variation for Fourier- Legendre series and Bernstein polynomials by using
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different methods. We also mention some further articles devoted to this subject were written

for different operators, some of the important papers on this topic are due to Pych-Taberska'!l,

Guptam] and Gupta et al.l13),

In this paper, we shall estimate the rate of convergence of operators M, ; for functions of

bounded variation defined on [0,e0) at points x where f(x+) and f(x—) exist, we shall prove

that the operators (1) converge to the limit

fOt) + /()
5 :

2 Auxiliary Results

In this section we give some results, which are necessary to prove our main theorem.

Lemma 1", Forany pe N, p<n—k

(Myit?) (x) = %x”. )

where n,k € N and [x], :=x(x—1)---(x—p+1), [x]o := 1, x € R, is the falling difference

polynomial.

Proof. By (1) we can write

(Mypt?) (x) = /0 " Ky (e, 1)t

t
If we set u = ——, then we get
X+t

(M i2”) (x)

@n—k+mu“4/w kP "
0

n!(n—k)! X+1)2n—k+2
(2n—k+1)1x"+! /1 WP (1 —y)n=p
du
n!(n—k)! 0 xrtl=p
(2n—k+1)! ,

1
et R n—k+pc1 _  \n—p
TCEAY x /0 u (1 —u)"Pdu

(2n—k+1)! 1

T(n—p+ DT (n—k+1+p)xP
=0 Tn—kg2) o pH =kt 14p)x

F(n—p+l)r(n—k+l+p)xp

T(nt DT (n—k+1)

(1—k+p)(n—k+p=D)(n—ktp-p+1) ,

n—k+pl, ,

(n—pF1)n

[n]p xP.
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Specially if we take p = 0,1, and 1 in (2) we get

(Mn,kl)(x) = 1
 I'mT'(n—k+2)  n—k+1
(Mpxt) (x) = Tt O (n—k+1)
 T-DT(n—k+3) , (n—k+2)(n—k+1)
(Mus®) () = F(n+1)F(n—k+1)xz_ n(n—1) -

From (2) we easily find the following equalities:

(Mot =) () =
(Muy(t —x)%) (x) = n(nl_l) (K —5k+2n+4)x*
< nilxz (n> (k—1)(k—4)). (3)

Note that in the paper [14] the inequality (3) is given for sufficiently large n as;
2

n—1

[\

(Mn’k(t —x)z) (x) < X )

But the inequality (4) of Mao is not correct for sufficiently large n. Indeed, for p =2, k =5, then
the last inequality will not correct for n € N.
Lemma 2. Forall x € (0,0) and n > (k—1)(k—4), we have

! 1 3
Ani(x,1) :/0 K e (o6, u)du < Wﬂsz, 0<1<x, 5)
1 Ao (x,2) /°°1<()d<1 d 2 x<z<
— D i (x D= xyu)du < ————x", x o,
n,k (X, 2 . n,k\ X, _(Z—X)Zn—l 5 <
Lemma 3!'2l,  For x € (0,) and | € N, we have
°° V1+x

bpi(x)=1 and by(x) <
lg(’) 1) 1) v 2enx

where b, ;(x) is the Baskakov basis defined by

n+l—1 X
bn1(x) = Ry

Lemma 4'2,  For x € (0,0) and o < 1, we have

R T B W g
(jgxbmj(X)) BETIE S
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By choosing o =1 in Lemma 4, we obtain;

Lemma 5. One has

x oo
/0 Kebr)de = Y bygens(1)

I=n+1
and /3
6v?2
M, t—x)x)| < ———=. 6
| ’k(Sgi’l( x) x)| \/m (6)

Proof. By direct calculation, we get

(M, gsgn(t —x)) (x) = /Ooo Ky, x(x,1)dt — Z/OXK,,,k(x,t)dt =1- Z/OXKmk(x,t)dt.

Integration by parts gives

n—k+1 x Mk
/Knkxtdt (2n— Jr)x’l“/idt
0

n!(n—k)! (x+1)2n-k+2
@n—k+1)! ., gk oy ok I N
= - X —
nl(n—k)! 2n—k+1)(x+0)2=+110 T 20 k1) (x+1)2n—k+1
0

2 _ ' 2n—k+1 2 _ ' X n—k—1
TN T B
n!(n—k)! (2x)2n—k+1 (n—k— 1)!n! 0 (x+[)2n—k+1
1 (2n=k)! n (2n—k)! n+1/x k-l o
2 pln—k) | (n—k— D" Jo (xt 02kl

By the same way, if we apply (n — 1) times partial integration, one has

x 1 (2n—k)! 1 (n—k+1)! 1
/K”"x’t)dt R e s T T S oy S TR TR S

= 1= [Dbpir10(1) +bpsrip1(1)+- -+ bpir1,1(1) +bpir10(1)]

= 1= bpir1(1)
=0
= Y bprrra(1)

I=n+1

Since

(Mygsgn(t —x) (x)] = |1-2 / Koy (c,1)dt| =
0

i bp—is1,(1) — %'

I=n+1

i bn—k10(1) — 5

[>n—k+1
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from Lemma 3 and Lemma 4, we reach the desired result.

Lemma 6. Let T, n(x) := (Mux(t —x)™) (x), m € Ny ( the set of non-negative integers ).
The central moments of order m € Ny, any fixed x € [0,0), then

e m \T'(n—m+I+1)'(n—k+1+m—1) "
T em (x) = l;)( 1! l F(n+1)F(n—k+1) .
Proof.
Toianl®) & = (Mualt=9") (0 = [ Kuxler) o —2)"ar

= /Knk(xt)f( O I P
=0

By (2), we reach the result.

Furthermore, the following recurrence relation holds:

(m+2 n— 2) nk,m+1 = (5+3m+k) nkm_zx ankm 1, m=>1.

Proof of the Recurrence Relation. ~Alternatively we can rewrite the operators (M, f) (x)

as
(Mmkf) (x) = / Ky i (x, 0 f
2n k+ 1) xl’l-‘rl t’l—k
- n‘(n —k)‘ /0 (x+t)2n*k+2f(t)dt7 x> 07
where
2 — k1)1t =k
Ky i(x,1) = (2n L x,t € (0,00).

nl(n—k)!  (x+1)2nkt2’
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Here we differentiate the kernel function with respect to t, we get

PP Y [EVER S
ar " ot nl(n—k)!  (x+41)2nk+2
n—k+ 1) [(n—k)" =1 (2n—k+2)*
- n!(n—k)! [(x+t)2”—k+2_ (x4 1)2n—k+3 ]
Qn—k+1)"* [n—k "k 2n—k+2 7k
n!(n—k)! [t (x+1)27k+2 x4y (x—i—t)z'l—k”]
n—k 2n—k+2

— K, (x,1
¢ nk(%:1) X+t

n—k 2n—k+2
r x+t ]
nx —kx—nt —2t

t(x+t) ]

Kmk(x,t)

= Kux(x,1) {

= Kui(x,1) [

Hence we have P
t(x+1)5-Kni(x,1) = Ky i (x,1) [nx — kx — nt — 21].

ot
Since
nx—kx—nt —2t = — (2x+kx) — (t —x) (n+2)
and
tx41) = (t —x+x)(t —x+2x) = (1 —x)> + 3x(r — x) + 242,
we obtain

/0 " ix+1) [%Kmk(x,t)] (t —x)"dr

= /Ow [(t —x)% +3x(t — x) +2x°] [%Kmk(x,t)] (t —x)"dt

)
— / [—Kn_k(x,t)} (t —x)""2dr +
0 ot
* a m+1 2 * a m
+3x/ 2 Kk e | (7= ) dt+2x/ L K1) | (¢ —x)mdr.
o |dt " o |dt
Using partial integration to the right handside of the last equality, we have

| e [%Kn,k(x,z)] (=0 = —m+2) [ Koulen)e—x)"as
“3x(m+1) /0 " Ko (1) (1 — x)"dr
_2x2m/0°° Ky i (x,1)(t —x)™'dt

= —(m + Z)Tn7k7m+1 — 3x(m + I)Tn7k7m — 2x2an7k7m_1 .
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On the other hand
/w (x+1) [a Koy (x, z)] (1 —x)"dr
0 ot
_/ Kog (1) [— (2x+ kx) — (1 — x) (n+2)] (¢ — x)"dr.
Thus we have

_ / Ko (x,1) (1 — )" dr — (24 k) / Ko (x,1)(t — x)"dt
0
- _( +2) nkm+1 — (2x—|—kx) n,k,m-

Consequently we obtain the following recurrence relation;

(n+2) nkm+1_(2x+kx) n,k,m
(m+2) nkm+1_3x(m+1) nkm — 2)Czl/”Tn,k,mfl
or

m+2—n—=2)Timr1 = [-3x(m+1)—=2x—kx] T pom— 2x2mT,,,k,m_1
= —x(543m+k)Typm—2°mTy g1

This completes the proof of the Lemma.

It follows from the recurrence relation by using the principle of mathematical induction that

X"

Tn,k,m (X) < A(m’ k) m’

n— oo, x €[0,00), m € Ny,

where A(m, k) is a constant depending only on m and k and [a] denotes the integral part of a.

3 Main Result

The main theorem of this paper is stated as:
Theorem. Let f € BVy[0,), ¥ > 0. Then for every x € (0,e0), for r € N (2r > ) and for

n sufficiently large, we have

yar) () - LTI
X+
6 &\ 6vV2 | f(x+) = fx)
Sn—llzix_\%(fX)+\/n—k+l‘ 2 ‘

+M2% A(2r, k)?, (7)
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where
f@)=flx+) , x<t<oo

filt) = 0 L t=x , ®)
ft)=fx=) , 0<r<x

b
V(fy) is the total variation of f, onla,b| and A(2r,k) is a constant depending on r and k.

a

Proof. Fort € [0,00), it is known that from (8)

fly = L) g St —f)

2
#8501t - TS

1, x=t
b¢(1) =
0,x#t.
If we use (9) in (1), we have the following expressions.

fot) + (=)
2

sgn(t — x)
©)

where

(M f) (x) = (M i 1) (x) + (Mg fr) (x)

flt) = f(x=)

ORI st =) )+ 100 - 0D o) 0

For operators (M, xf) (x), it is obvious that (M, x0,) (x) =0 and (M,x1) (x). Hence we have

w W' (M gsgn(t —x)) (x)]

(10)
In order to prove the Theorem 1, we need the estimates for (M, fy) (x) and (M, sgn(f —x)) (x)
in (10).
We first estimate (M, x fy) (x) as follows:

(Mosf) (3) ' < (M) ()] + \

(M) ()] < 1 2.5)| - o n.0)| 4 1) (1)
where
] =| [ A0 Guate)|s 1] = | [ 08 Guat)],
ARG
(0] = [, F008 Gnat)




Anal. Theory Appl., Vol. 27, No.3 (2011) 297

and

t
Ak (x,1) ::/0 Ky jc(xx,u)du.

First we estimate I»(n,x). Fort € [x -

X X
— — e have
\/ﬁ,x—i—\/ﬁ] , W \Y

:I'—
x\x

x+ﬁ U n
B0 < [ A0 = A1 Gux(x.0) < Vs z (12)
x—ﬁ ﬁ =1

Next, we estimate /; (n,x). Using partial Lebesgue-Stieltjes integration, we have

h(n,2) = fi (x— 7) - (— 7) O haale0) [ A0 (£00)

fx(x—%)‘z fx(x—%>—fx(@ <V ()

=7
it follows that

( _%)'—l—/oxﬁ nk)Ct < \x/fx>_
ln7k<X,X—%>S%ix2'

)

B, (x). It follows that

<

X

|1 (n,x)| < \/

X

e

By (5), it is clear that

3
For simplicity we define 1x2 :

X ; x— 2 1 X
|11 (n,x)| < \/ fx (Bx > /O v ( _t)an()C)dt <_\/(fx)
x— % W t
* B, (x) v I | *
AL (=) +B0) [ Y
Vi vn
Integration by parts gives
x—% dz (_\):/(fx)> \):/(fx) x—ﬁ x—\% 2\?(][)()
A R = TR S e
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. X . .
Putting = x — —= in the last integral, we get

Ja

X

S 2\/(fx) X n x
X : _i n _i
A R SACCLRE WA

Consequently we have

el <80 | GV g X V@ | <5 Ve )
0 = xf\% = xfﬁ

Finally, we estimate |I3(n,x)| by setting

flo), 0<r<2x
gx(t) =
f(2x), 2x<t<eo

we rewrite |I3(n,x)| as

oo

Bl = [ a0 Gus(en) + [ 0= FR0]d Raslr)
* Vit 2x
= :hLi(n,x)+hLa(n,x).

I 1 (n,x) can be evaluated as follows:

Li(nx) = Jij?o{f<x+%) {1—xn,k(x,x+%>]+§x(a)[xn,k(x,a)_1]

_|_/2::f(t)d, (Mk(xvf))}-

Using (5), we obtain

X

TN B o ] ‘o
By = lim S\ (R [t V@)

n—lame| V (a—x) t—x)?

)

3x2

x+ﬁ n 2x 1 !
= 1 \x/ (fX);-'—/x—‘rﬁ mdz (\!(f))
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So

i x U x
2x X+Ln
1 n
= _2\/(fx)__2 \/ (fx)
X X X X
2x 2 X
+ dr
w2 (x—1)? \t/(fx)
Now, similarly to the previous case, again setting t = x + % then one has
u
t
w VR |
x m:—/ du=—
/f A AVACALTEE-D MAVATR
Further, we have
+ X
Tl I ey =N
Li(nx) < _2\/(fx) +3 \/ (fx)
n—1 X X = X
x (13)
x+ﬁ
Y VW
= X
n—1 =1 «x

Completing the estimation of |/5(n,x)

, we shall estimate 3 »(n,x). We note that there exists an

integer r (2r > ¥) such that
f(t)y=0(*), forevery t>0.

Since the function f satisfies the growth condition, i.e., | f(¢)| < M, ( for some y > 0, for some
constant M > 0) as t — oo and 2(¢ —x) > ¢ whenever ¢ > 2x, we obtain from [6]

2r
Ia(n,x) < M2 A(2rk) . (14)
n
Combining (13) and (14), we find
n x+\if 2r
|I3(n,x)| < le.ﬁ+Mﬁ%QM) (15)

Putting (11), (12), (15) in (10) and considering Lemma 5 we obtain the required result (8). Thus
the proof is completed.
Acknowledgments. The author is thankful to the referee for his/her valuable remarks and
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