# APPROXIMATION AND SHAPE-PRESERVING PROPERTIES OF Q-STANCU OPERATOR 

Lianying Yun and Rongwei Wang<br>(Taizhou Vertical and Technical College, China)

Received Sept. 1, 2009
(C) Editorial Board of Analysis in Theory \& Applications and Springer-Verlag Berlin Heidelberg 2011


#### Abstract

We introduce the definition of $q$-Stancu operator and investigate its approximation and shape-preserving property. With the help of the sign changes of $f(x)$ and $L_{n}=f(f, q ; x)$ the shape-preserving property of $q$-Stancu operator is obtained.


Key words: q-Stancu operator, shape-preserving property, sign change
AMS (2010) subject classification: 41A10

## 1 Introduction

Suppose $q>0$. For $k=0,1,2, \cdots$, the $q$-integer $[k]$ and $q$-factorial $[k]$ ! are defined as

$$
\begin{gathered}
{[k]=\left\{\begin{array}{c}
\frac{1-q^{k}}{1-q}, q \neq 1, \\
k, \quad q=1
\end{array}\right.} \\
{[k]!=\left\{\begin{array}{c}
{[k][k-1] \ldots[1], k \geq 1,} \\
1, \quad k=0
\end{array}\right.}
\end{gathered}
$$

For integers $n, k, n \geq k \geq 0, q$-binomial coeffcients are defined naturally as

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!}
$$

We present the definition of $q$-Stancu operator as follows.

[^0]Definition 1. Suppose $s$ is an integer and $0 \leq s<-$ fracn $2, q>0, n>0$. For $f \in C[0,1]$, the operator

$$
\begin{equation*}
L_{n}(f, q ; x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right) b_{n, k, s}(q ; x) \tag{1.1}
\end{equation*}
$$

is called $q$-Stancu operator, where

$$
b_{n, k, s}(q ; x)= \begin{cases}\left(1-q^{n-k-s} x\right) p_{n-s, k}(q ; x), & 0 \leq k<s \\ \left(1-q^{n-k-s} x\right) p_{n-s, k}(q ; x)+q^{n-k} x p_{n-s, k-s}(q ; x), & s<k \leq n-s \\ q^{n-k} x p_{n-s, k-s}(q ; x), & n-s<k \leq n\end{cases}
$$

$p_{n-s, k}(q ; x), p_{n-s, k-s}(q ; x)$ are the basis functions of $q$-Bernstein operator,

$$
p_{n, k}(q ; x)=\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \prod_{l=0}^{n-k-1}\left(1-q^{l} x\right)
$$

It is not difficult to notice that on one hand for $s=0$ or $s=1, q$-Stancu operator is just the $q$-Bernstein operator which was introduced first by G.M. Phillips in 1997, on the other hand for $q=1, q$-Stancu operator recoveres the Stancu operator. The $q$-Berstein operator possesses many remarkable properties which have made it an intensive area, seen [1-8]. While the study of Stancu operator is also a focus of many authors since 1981, after D.D. Stancu has defined this operator, see [9-12]. Both $q$-Bernstein operator and Stancu operator are some generalizations of the classical Bernstein operator which are specific cases of $q$-Bernstein operator when $q=1$ or Stancu operator when $s=0, s=1$.

It is worth mentioning that the $q$-Stancu operator we defined here difier essentially from that in [13]. The $q$-Stancu operator in [13] just generalizes the control points of the Stancu operator based on the $q$-integers leaving alone the basis functions. While in our definition of $q$-Stancu operator both the control points and the basis functions are the $q$-analogue of those in Stancu operators. As a result, it is not a strange thing that these two $q$-Stancu operators behave quite difierent property, especially in the approximation problem.

By means of direct computations, we can get the following representation of $q$-Stancu operator:

$$
\begin{equation*}
L_{n}(f, q ; x)=\sum_{k=0}^{n-s}\left\{\left(1-q^{n-k-s} x\right) f\left(\frac{[k]}{[n]}\right)+q^{n-k-s} x f\left(\frac{[k+s]}{[n]}\right)\right\} p_{n-s, k}(q ; x) \tag{1.2}
\end{equation*}
$$

To process our study we need to give some essential properties of $q$-Stancu operator.
Proposition 1. $q$-Stancu operator is a positive linear operator for $0<q<1$, while not for $q>1$.

Proposition 2. $\quad L_{n}(1, q ; x)=1, L_{n}(t, q ; x)=x$,

$$
L_{n}\left(t^{2}, q ; x\right)=x^{2}+\left(\frac{[1]}{[n]}+\frac{q^{n-s}[s]^{2}-q^{n-s}[s]}{[n]^{2}}\right) x(1-x) .
$$

Proposition 3. For $f(x) \in C[0,1], \quad L_{n}(f, q ; 0)=f(0), L_{n}(f, q ; 1)=f(1)$.
In the following the shape-preserving properties as well as the approximation properties of $q$-Stancu operators are considered when $0<q<1$.

By some elaborate computation, we get another vital representation of $q$-Stancu operator. The corresponding representation of Stancu operator has been ignored all the time, but one can see the efiect of this representation clearly.

Lemma 1. Suppose $0<q \leq 1$ and s is an integer such that $0<s<\frac{n}{2}$. For $f \in C[0,1]$, we have

$$
\begin{equation*}
L_{n}(f, q ; x)=\sum_{k=0}^{n-s+1}\left\{\frac{[n-s+1-k]}{[n-s+1]} f\left(\frac{[k]}{[n]}\right)+\frac{q^{n-s+1-k}[k]}{[n-s+1]} f\left(\frac{[s-1+k]}{[n]}\right)\right\} p_{n-s+1, k}(q ; x) . \tag{1.3}
\end{equation*}
$$

Note: the representation is disabled when $s=0$.

## 2 Approximation Theorem

For $0<q<1$, similar to the $q$-Bernstein operator $B_{n}(\cdot, q)$, the $q$-Stancu operator $L_{n}(\cdot, q)$ for continuous functions is convergent uniformly to the function itself and to certain limit, under some necessary condition for $s \in \mathbf{N}$. The limit function is defined as:

Definition 2. For any nonnegative integer $n$, and $f(x) \in C[0,1]$,

$$
B_{\infty}(f, q ; x)=\left\{\begin{array}{l}
\sum_{k=0}^{\infty} f\left(1-q^{k}\right) p_{\infty, k}(q ; x), \quad 0 \leq x<1  \tag{2.1}\\
f(1), \quad x=1
\end{array}\right.
$$

here $p_{\infty, k}(q ; x)=\frac{x^{k}}{(1-q)^{k}[k]!} \prod_{s=0}^{\infty}\left(1-q^{s} x\right)$.
In detail, we have the following theorem.
Theorem 1. Let $f(x) \in C[0,1]$ and $s$ is an integer such that $0 \leq s<\frac{n}{2}$, then we have

$$
\begin{equation*}
\left\|L_{n}(f, q, x)-B_{\infty}(f, q ; x)\right\|_{C} \leq\left(4-\frac{4 \ln (1-q)}{q(1-q)}\right) \omega\left(f, q^{n-s+1}\right) \tag{2.2}
\end{equation*}
$$

It can be seen from this theorem that for fixed integer $s$ or $s=s(n), n-s(n) \rightarrow \infty$, then $\lim _{n \rightarrow \infty}\left\|L_{n}(f, q ; x)-B_{\infty}(f, q ; x)\right\|_{C}=0$ holds for all $0<q<1$. This result ${ }^{[9]}$ has some slightly difierence from corresponding result of Stancu operator

For Stancu operator, the index $s=s(n)$ should satisfy $s=o(n)$ as $n \rightarrow \infty$ in order to index quarantce the convergence of the relevant Stancu polynomials. While for $q$-Stancu operator it only needs $n-s(n) \rightarrow \infty$. Hereby for $s=s(n)=\frac{n-1}{2}, \frac{n}{3}, \frac{n}{4}, \cdots$, we still have $\lim _{n \rightarrow \infty} \| L_{n}(f, q ; x)-$ $B_{\infty}(f, q ; x) \|_{C}=0$, but for Stancu operator it is not right.

Proof. Based on Proposition 2 and the linear property of the limit $B_{\infty}(\cdot, q)$ (see[3]), we can assume $f(0)=f(1)=0$ without loss of generality.

Then we have for all $x \in[0,1]$,

$$
\begin{aligned}
& \left|L_{n}(f, q, x)-B_{\infty}(f, q ; x)\right| \\
& =\left|\sum_{k=0}^{n-s+1}\left\{\frac{[n-s+1-k]}{[n-s+1]} f\left(\frac{[k]}{[n]}\right)+\frac{q^{n-s+1-k}[k]}{[n-s+1]} f\left(\frac{[s-1+k]}{[n]}\right)\right\} p_{n-s+1, k}(q ; x)-\sum_{k=0}^{\infty} f\left(1-q^{k}\right) p_{\infty, k}(q ; x)\right| \\
& \leq \left\lvert\, \sum_{k=0}^{n-s+1}\left\{\frac{[n-s+1-k]}{[n-s+1]}\left(f\left(\frac{[k]}{[n]}\right)-f\left(1-q^{k}\right)\right)+\frac{q^{n-s+1-k}[k]}{[n-s+1]}\left(f\left(\frac{[s-1+k]}{[n]}\right)\right.\right.\right. \\
& \left.\left.\quad-f\left(1-q^{k}\right)\right)\right\} p_{n-s+1}(q ; x)\left|+\left|\sum_{k=0}^{n-s+1}\left(f\left(1-q^{k}\right)-f(1)\right)\left(p_{n-s+1, k}(q ; x)-p_{\infty, k}(q ; x)\right)\right|\right. \\
& \quad+\left|\sum_{k=n-s+2}^{\infty}\left(f\left(1-q^{k}\right)-f(1)\right) p_{\infty, k}(q ; x)\right|:=I_{1}+I_{2}+I_{3}
\end{aligned}
$$

From the proof of Theorem 1 in [4], we know

$$
I_{2} \leq \frac{-4 \ln (1-q)}{q(1-q)} \omega\left(f, q^{n-s+1}\right), \quad I_{3} \leq \omega\left(f, q^{n-s+1}\right)
$$

Since for $0<\delta \leq \eta \leq 1, \frac{\omega(f, \eta)}{\eta} \leq 2 \frac{\omega(f, \delta)}{\delta}$ (see[14]), we have

$$
\begin{aligned}
I_{1} & \leq \sum_{k=0}^{n-s+1}\left\{\frac{[n-s+1-k]}{n-s+1]} \omega\left(f, \frac{[k]}{n]} q^{n}\right)+\frac{q^{n-s+k}[k]}{[n-s+1]} \omega\left(f, \frac{[s-1]}{[n]} q^{k}+\frac{[k]}{[n]} q^{n}\right)\right\} p_{n-s+1, k}(q ; x) \\
& \leq \sum_{k=0}^{n-s+1} \omega\left(f, \frac{[k]}{[n]} q^{n}\right) p_{n-s+1, k}(q ; x)+\sum_{k=0}^{n-s+1} \frac{q^{n-s+1}[k]}{[n-s+1]} \frac{[s-1]}{[n]} \frac{\omega\left(f, \frac{[s-1]}{[n]} q^{k}\right)}{\frac{[s-1]}{n]} q^{k}} p_{n-s+1, k}(q ; x) \\
& \leq \omega\left(f, q^{n}\right)+\sum_{k=0}^{n-s+1} \frac{q^{n-s+1}[k]}{[n-s+1]} \frac{[s-1]}{[n]} \frac{2 \omega\left(f, \frac{s-1]}{[n]} q^{n-s+1}\right)}{\frac{[s-1]}{[n]} q^{n-s+1}} p_{n-s+1, k}(q ; x) \\
& \leq \omega\left(f, q^{n}\right)+2 \omega\left(f, \frac{[s-1]}{[n]} q^{n-s+1}\right) \sum_{k=0}^{n-s+1} \frac{[k]}{[n-s+1]} p_{n-s+1, k}(q ; x) \\
& \leq \omega\left(f, q^{n}\right)+2 x \omega\left(f, \frac{[s-1]}{[n]} q^{n-s+1}\right) .
\end{aligned}
$$

Combining the estimates for $I_{1}, I_{2}, I_{3}$ we complete the proof of Theorem 1.
More properties of this $q$-Stancu operator will be investigated in the next section.

## 3 Shape-preserving Property

The shape-preserving property is important to the study of both $q$-Bernstein and Stancu operator. Of course we consider this problem for the $q$-Stancu operator only.

The above Lemma 1 suggests that for any convex function on $[0,1]$ the inequality

$$
\begin{equation*}
L_{n}(f, q ; x) \geq B_{n-s+1}(f, q ; x) . \tag{3.1}
\end{equation*}
$$

holds.
As we see the complexity of the derivative of $q$-Bernstein operator in the study of shapepreserving property the following theorem plays an important role.

Let $v$ be any finite-dimensional vector. We use $S^{-}(v)$ for its strict sign change, namely, the times of the sign change from the first component to the last one. Thus for the vector $f=\left(f\left(x_{0}\right), \cdots, f\left(x_{m}\right)\right)$,

$$
S^{-}(f)=\sup _{0 \leq x_{0}<\cdots<x_{m} \leq 1 ; m \in N} S^{-}\left(f\left(x_{0}\right), \cdots, f\left(x_{m}\right)\right)
$$

means the sign change of $f$ on $\left\{x_{0}, \cdots, x_{m}\right\} \subset[0,1]$.
Theorem $\mathbf{A}^{[2]}$. Suppose $0<q \leq 1$. For $f \in C[0,1]$, we have

$$
S^{-}\left(B_{n}(f, q)\right) \leq S^{-}(f) .
$$

However, the following figure shows clearly that Theorem A can no longer hold for Stancu and $q$-Stancu operator.


Fig. 1

Remark 1. In Figure-1, one curve is $L_{5}(f, x)$ for $s=3$, while the other is $L_{5}(f, 0.95 ; x)$ for $s=3$, here the continuous function $f(x)$ is a linear spline joining up the points $(0,1),(0.2,1)$, $(0.4,14),(0.6,-17),(0.8,-1),(1,-1)$.

Evidently, $S^{-}(f)=1 \leq 3=S^{-}\left(L_{5}(f)\right)=S^{-}\left(L_{5}(f, 0.95)\right)$. However, we still get the shapepreserving theorem for $q$-Stancu operator:

Theorem 2. Let $0<q \leq 1$, s be an integer satisfying $0 \leq s<\frac{n}{2}$ and $f(x)$ be a continuous and increasing (decreasing) function on $[0,1]$, then $L_{n}(f, q ; x)$ is increasing (decreasing) on $[0,1]$.

Proof. We consider the increasing function $f$ at first. For $s=0$, one can know from [2] that the result of Theorem 1 holds. In the following we consider the case of $s>0$. For $0<q \leq 1$

$$
\left(p_{n-s+1,0}(q ; x), p_{n-s+1,1}(q ; x), \cdots, p_{n-s+1, n-s+1}(q ; x)\right)
$$

is totally positive (see[2]). This means for any sequence satisfying $0 \leq x_{0},<x_{1}<\cdots<x_{m} \leq 1$,
The corresponding matrix $T=\left\{p_{n-s+1, j}\left(x_{i}\right) \mid i=0,1, \cdots, m ; j=0,1, \cdots, n-s+1\right\}$ is totally positive.

Then by virtue of Theorem 3.3 in [2] we conclude that

$$
\begin{equation*}
S^{-}\left(L_{n}(f, q ; x)\right) \leq S^{-}\left(f(0), a_{n, 1}, \cdots, a_{n, n-s}, f(1)\right) \tag{3.2}
\end{equation*}
$$

where

$$
a_{n, k}=\frac{[n-s+1-k]}{[n-s+1]} f\left(\frac{[k]}{[n]}\right)+\frac{q^{n-s-k+1}[k]}{[n-s+1]} f\left(\frac{[s-1+k]}{[n]}\right), k=1,2, \cdots, n-s .
$$

By the continuity of $f(x)$, we see for $k=1, \cdots, n-s$ there exist $\xi_{n, k} \in\left(\frac{[k]}{[n]}, \frac{[n-1+k]}{[n]}\right)$, such that $a_{n, k}=f\left(\xi_{n, k}\right)$.

This together with the monotony of $f(x)$, implies

$$
\begin{aligned}
a_{n, k} & =\frac{[n-s-k]}{[n-s+1]} f\left(\frac{[k]}{[n]}\right)+\frac{q^{n-s-k}[1]}{[n-s+1]} f\left(\frac{[k]}{[n]}\right)+\frac{q^{n-s-k}[k]}{1-q^{n-s+1}} f\left(\frac{[s-1+k]}{[n]}\right) \\
& \leq \frac{[n-s-k]}{[n-s+1]} f\left(\frac{[k+1]}{[n]}\right)+\frac{q^{n-s-k}[1]}{[n-s+1]} f\left(\frac{[s+k]}{[n]}\right)+\frac{q^{n-s-k+1}[k]}{[n-s+1]} f\left(\frac{[s+k]}{[n]}\right) \\
& =a_{n, k+1}
\end{aligned}
$$

Therefore $\xi_{n, k} \leq \xi_{n, k+1}$, for $k=1, \cdots, n-s-1$.
Consequently we have

$$
\begin{align*}
& S^{-}\left(L_{n}(f, q ; x)\right) \leq S^{-}\left(f(0), a_{n, 1}, \cdots, a_{n, n-s}, f(1)\right)  \tag{3.3}\\
& \quad=S^{-}\left(f(0), f\left(\xi_{n, 1}\right), \cdots, f\left(\xi_{n, n-s}\right), f(1)\right) \leq S^{-}(f)
\end{align*}
$$

Since $f(x)$ is increasing on $[0,1]$, for any constant $c$, we have $S^{-}(f-c) \leq 1$. Otherwise, there exist a constant $c_{0}$ and $0<\eta_{1}<\eta_{2}<\eta_{3}<1$, such that

$$
f\left(\eta_{1}\right)<c_{0}, f\left(\eta_{2}\right)>c_{0}, f\left(\eta_{3}\right)<c_{0}
$$

which are paradoxical with the increasing property of $f(x)$.

Therefore, for any constant $c$, the following holds

$$
\begin{equation*}
S^{-}\left(L_{n}(f, q)-c\right)=S^{-}\left(L_{n}(f-c, q)\right) \leq S^{-}(f-c) \leq 1 \tag{3.4}
\end{equation*}
$$

Suppose $L_{n}(f, q)$ is not increasing on $[0,1]$, then with the help of Proposition 3, we get $L_{n}(f, q ; 0)=f(0) \leq f(1)=L_{n}(f, q ; 1)$. So we can assume without loss of generality that there exist $\zeta_{1}, \zeta_{2}, \zeta_{3}$ satisfying $0 \leq \zeta_{1}<\zeta_{2}<\zeta_{3} \leq 1$, such that

$$
L_{n}\left(f, q ; \zeta_{1}\right)<L_{n}\left(f, q ; \zeta_{2}\right) \quad \text { and } \quad L_{n}\left(f, q ; \zeta_{2}\right)>L_{n}\left(f, q ; \zeta_{3}\right)
$$

Thus for any constant $c$ such that $\max \left\{L_{n}\left(f, q ; \zeta_{3}\right), L_{n}\left(f, q ; \zeta_{1}\right)\right\}<c<L_{n}\left(f, q ; \zeta_{2}\right)$, the relation

$$
\begin{equation*}
S^{-}\left(L_{n}(f, q)-c\right)=S^{-}\left(L_{n}(f-c, q)\right) \geq 2 \tag{3.5}
\end{equation*}
$$

holds, which is in contradiction with (3.4). Therefore $L_{n}(f, q ; x)$ is increasing on $[0,1]$.
For the decreasing case we can prove the theorem in the same way. Theorem 1 is proved.
For the convex-preserving property, we now can only prove the result in the case $0 \leq s \leq 2$. However, we believe the following theorem seems also to be true based on the Figure-2.

Theorem 3. Let $0<q<1,0 \leq s \leq 2, f(x)$ is a continuous and convex (concave) function on $[0,1]$, then $L_{n}(f, q)$ is also convex(concave) and $L_{n}(f, q ; x) \leq f(x)\left(L_{n}(f, q ; x) \geq f(x)\right)$.

Proof. For $s=0,1$ Theorem 3 holds, which is similar to the case of $q$-Bernstein operator. So we only focus on the case $s=2$. Since $f$ is convex, for any linear function $l(x), S^{-}(f-l) \leq 2$. Otherwise, there exist a linear function $l_{0}(x)$ and $0<\eta_{1}<\eta_{2}<\eta_{3}<\eta_{4}<1$ such that

$$
S^{-}\left(f\left(\eta_{1}\right)-l_{0}\left(\eta_{1}\right), f\left(\eta_{2}\right)-l_{0}\left(\eta_{2}\right), f\left(\eta_{3}\right)-l_{0}\left(\eta_{3}\right), f\left(\eta_{4}\right)-l_{0}\left(\eta_{4}\right)\right)=3
$$

From the convex property of $f(x)$, we know $f(x)-l_{0}(x)$ is still a convex function, so $f\left(\eta_{1}\right)-l_{0}\left(\eta_{1}\right)>0$.

Therefore,

$$
\begin{equation*}
k_{f-l_{0}}\left(\eta_{1}, \eta_{2}\right)<0, k_{f-l_{0}}\left(\eta_{2}, \eta_{3}\right)>0, k_{f-l_{0}}\left(\eta_{3}, \eta_{4}\right)<0 \tag{3.6}
\end{equation*}
$$

here we use $k_{f-l_{0}}\left(x_{0}, x_{1}\right)$ to denote the slope of the line between $\left(x_{0}, f\left(x_{0}\right)-l_{0}\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)-\right.$ $\left.l_{0}\left(x_{1}\right)\right)$.

The above statement is inconsistent with the convex property of $f(x)-l_{0}(x)$.
On the other hand, since $s, \xi_{n, k}, k=1, \cdots, n-s$ satisfy

$$
0<\xi_{n, 1}<\xi_{n, 2}<\cdots<\xi_{n, n-s}<1
$$

We see for any continuous function $f(x), S^{-}\left(L_{n}(f, q ; x)\right) \leq S^{-}(f)$.

This together with Proposition 2 implies for any linear function $l(x)$ the relation

$$
\begin{equation*}
S^{-}\left(L_{n}(f, q)-l\right)=S^{-}\left(L_{n}(f-l, q)\right) \leq S^{-}(f-l) \leq 2 \tag{3.7}
\end{equation*}
$$

holds.
Suppose $L_{n}(f, q ; x)$ is not convex on $[0,1]$, then from $f(x)$ is convex on $[0,1]$ we conclude that for any $x \in[0,1]$,

$$
f(x)-((1-x) f(0)+x f(1)) \leq 0
$$

This combining with Proposition 1-3 implies for all $x \in[0,1]$,

$$
\begin{gather*}
L_{n}(f(t)-((1-t) f(0)+t f(1)), q ; x) \\
=L_{n}(f, q ; x)-((1-x) f(0)+x f(1)) \\
=L_{n}(f, q ; x)-\left((1-x) L_{n}(f, q ; 0)+x L_{n}(f, q ; 1)\right) \leq 0 . \tag{3.8}
\end{gather*}
$$

The above result shows $f(x)$ is not concave on $[0,1]$. Consequently, there exist $0<\zeta_{1}<$ $\zeta_{2}<1$ such that there exist $\theta_{2}<\theta_{3}$ on $\left[\zeta_{1}, \zeta_{2}\right]$ fulfilling

$$
\begin{align*}
& L_{L_{n}(f, q)}\left(\zeta_{1}, \zeta_{2}\right)\left(\theta_{2}\right)>L_{n}\left(f, q ; \theta_{2}\right)  \tag{3.9}\\
& L_{L_{n}(f, q)}\left(\zeta_{1}, \zeta_{2}\right)\left(\theta_{3}\right)<L_{n}\left(f, q ; \theta_{3}\right) \tag{3.10}
\end{align*}
$$

and exist $0<\theta_{1}<\zeta_{1}, \zeta_{2}<\theta_{4}<1$ (the existence can be insured by the modification of $\zeta_{1}$ and $\zeta_{2}$ ) satisfying

$$
\begin{align*}
& L_{L_{n}(f, q)}\left(\zeta_{1}, \zeta_{2}\right)\left(\theta_{1}\right)<L_{n}\left(f, q ; \theta_{1}\right)  \tag{3.11}\\
& L_{L_{n}(f, q)}\left(\zeta_{1}, \zeta_{2}\right)\left(\theta_{4}\right)<L_{n}\left(f, q ; \theta_{4}\right) \tag{3.12}
\end{align*}
$$

We use $L_{L_{n}(f, q)}\left(\zeta_{1}, \zeta_{2}\right)(x)$ to denote the linear function joining the two points $\left(\zeta_{1}, L_{n}\left(f, q ; \zeta_{1}\right)\right)$ and $\left(\zeta_{2}, L_{n}\left(f, q ; \zeta_{2}\right)\right)$.

Then let $l_{0}(x)=L_{L_{n}(f, q)}\left(\zeta_{1}, \zeta_{2}\right)(x)$ we have

$$
\begin{aligned}
S^{-}\left(L_{n}(f, q)-l_{0}\right) \geq & S^{-}\left(L_{n}\left(f, q ; \theta_{1}\right)-l_{0}\left(\theta_{1}\right), L_{n}\left(f, q ; \theta_{2}\right)\right. \\
& \left.-l_{0}\left(\theta_{2}\right), L_{n}\left(f, q ; \theta_{3}\right)-l_{0}\left(\theta_{3}\right), L_{n}\left(f, q ; \theta_{4}\right)-l_{0}\left(\theta_{4}\right)\right)=3
\end{aligned}
$$

The above inequalities are in contradiction with (3.7). Hence $L_{n}(f, q)$ is convex on $[0,1]$.

Using the Jessen inequality of convex function and Proposition 2, we get

$$
\begin{aligned}
L_{n}(f, q ; x) & =\sum_{k=0}^{n-s}\left\{\left(1-q^{n-k-s} x\right) f\left(\frac{[k]}{[n]}\right)+q^{n-k-s} x f\left(\frac{[k+s]}{[n]}\right)\right\} p_{n-s, k}(q ; x) \\
& \geq \sum_{k=0}^{n-s} f\left(\left(1-q^{n-k-s} x\right) f\left(\frac{[k]}{[n]}\right)+q^{n-k-s} x f\left(\frac{[k+s]}{[n]}\right)\right) p_{n-s, k}(q ; x) \\
& \geq f\left(\sum_{k=0}^{n-s}\left\{\left(1-q^{n-k-s} x\right) \frac{[k]}{[n]}+q^{n-k-s} x \frac{[k+s]}{[n]}\right\} p_{n-s, k}(q ; x)\right) \\
& =f(x) .
\end{aligned}
$$

For the case of concave functions, we can prove the theorem in the same way. The proof of Theorem 3 is complete.


Fig. 2

Remark 2. The function $f(x)$ is the linear spline joining the points $(0,0),(0.2,0.6),(0.6,0.8)$, $(0.9,0.7)$ and $(1,0)$. The others are $L_{15}(f, 0.7 ; x)$ for $s=3, L_{11}(f, 0.7 ; x)$ for $s=5, L_{7}(f, 0.7 ; x)$ for $s=3$ and $L_{20}(f, 0.5 ; x)$ for $s=3$ from top to bottom.

## References

[1] Phillips, G. M., Bernstein Polynomials Based on the, Ann. Numer. Math., 4(1997), 511-518.
[2] Goodman, T. N. T., Oruc, H. and Phillips, G. M., Convexity and Generalized Bernstein Polynomials, Pro. Edinburgh Math. Soc., 42:1(1999), 179-190.
[3] Il'inskii, A. and Ostrovska S., Convergence of Generalized Bernstein Polynomials, J. Approx. Theory, 116(2002), 100-112.
[4] Wang, H. P., The Rate of Convergence of $q$-Bernstein Polynomials for $0<q<1$, J. Approx. Theory, 136(2005), 151-158.
[5] Wang, H.P., Korovkin-type Theorem and Application, J. Approx. Theory, 132:2(2005), 258-264.
[6] Wang, H.P., Voronovskaya-tpye Formulas and Saturation of Convergence for $q$-Bernstein Polynomials for $0<q<1$, J. Approx. Theory, 145:2(2007), 182-195.
[7] Ostrovska, S., On the Improvement of Analytic Properties Under the Limit $q$-Bernstein Operator, J. Approx. Theory, 138(2006), 37-53.
[8] Wang, H.P. and Wu, X. Z., Saturation of Convergence for $q$-Bernstein Polynomials in the Case, J. Mathe. Anal. Appl., 337(2008), 744-750.
[9] Cao, F. L., The Approximation Theorems for Stancu Polynomials, Journal of Qufu Normal University, 24:3(1998), 25-30.
[10] Cao, F. L. and Yang, R. Y., Optimal Approximation Order and its Characterization for Multivariate Stancu Polynomials, Acta Mathematicae Applicatae Sinica 27:2(2004), 218-229.
[11] Cao, F. L., Multivariate Stancu Polynomials and Modulus of Continuity, Acta Mathematic Sinica 48:1(2005), 51-62.
[12] Cao, F. L. and Xu, Z. B., Stancu Polynomials Defined on a Simplex and Best Polynomial Approximation. Acta Mathematic Sinica 46:1(2003), 189-196.
[13] Li, F. J., Xiu, Z .B. and Zhen, K. J., Optimal Approximation Order for q-Stancu Operators Defined on a Simplex, Acta Mathematica Sinica, 51(2008), 135-144.
[14] Xie, T. F. and Zhou, S. P., Approximation of Real Function , Hangzhou: Hangzhou Uni- Versity Press, 1998, 63-65.(Chinese)

Taizhou Vertical and Technical College
Taizhou, 318000

## P. R. China

Liangying Yun
E-mail: tzyyy@126.com


[^0]:    *Supported by the Education Department of Zhejiang Province (20071078).

