TOPOLOGICAL ENTROPY AND IRREGULAR RECURRENCE

Lenka Obadalová
(Silesian University, Czech Republic)

Received Dec. 9, 2010

Abstract

This paper is devoted to problems stated by Z. Zhou and F. Li in 2009. They concern relations between almost periodic, weakly almost periodic, and quasi-weakly almost periodic points of a continuous map f and its topological entropy. The negative answer follows by our recent paper. But for continuous maps of the interval and other more general one-dimensional spaces we give more results; in some cases the answer is positive.

Key words: topological entropy, weakly almost periodic point, quasi-weakly almost periodic point
AMS (2010) subject classification: 37B20, 37B40, 47D45, 37D05

1 Introduction

Let (X, d) be a compact metric space, $I=[0,1]$ the unit interval, and $\mathcal{C}(X)$ the set of continuous maps $f: X \rightarrow X$. By $\omega(f, x)$ we denote the ω-limit set of x which is the set of limit points of the trajectory $\left\{f^{i}(x)\right\}_{i \geq 0}$ of x, where f^{i} denotes the i th iterate of f. We consider the sets $W(f)$ of weakly almost periodic points of f, and $Q W(f)$ of quasi-weakly almost periodic points of f. They are defined as follows, see [11]:

$$
\begin{gathered}
W(f)=\left\{x \in X ; \forall \varepsilon \exists N>0 \text { such that } \sum_{i=0}^{n N-1} \chi_{B(x, \varepsilon)}\left(f^{i}(x)\right) \geq n, \forall n>0\right\}, \\
Q W(f)=\left\{x \in X ; \forall \varepsilon \exists N>0, \exists\left\{n_{j}\right\} \text { such that } \sum_{i=0}^{n_{j} N-1} \chi_{B(x, \varepsilon)}\left(f^{i}(x)\right) \geq n_{j}, \forall j>0\right\},
\end{gathered}
$$

[^0]where $B(x, \varepsilon)$ is the ε-neighbourhood of x, χ_{A} the characteristic function of a set A, and $\left\{n_{j}\right\}$ an increasing sequence of positive integers. For $x \in X$ and $t>0$, let
\[

$$
\begin{align*}
& \Psi_{x}(f, t)=\liminf _{n \rightarrow \infty} \frac{1}{n} \#\left\{0 \leq j<n ; d\left(x, f^{j}(x)\right)<t\right\} \tag{1}\\
& \Psi_{x}^{*}(f, t)=\underset{n \rightarrow \infty}{\limsup } \frac{1}{n} \#\left\{0 \leq j<n ; d\left(x, f^{j}(x)\right)<t\right\} . \tag{2}
\end{align*}
$$
\]

Thus, $\Psi_{x}(f, t)$ and $\Psi_{x}^{*}(f, t)$ are the lower and upper Banach density of the set $\left\{n \in \mathbf{N} ; f^{n}(x) \in\right.$ $B(x, t)\}$, respectively. In this paper we make of use more convenient definitions of $W(f)$ and $Q W(f)$ based on the following lemma.

Lemma 1. Lef $f \in \mathcal{C}(X)$. Then
(i) $x \in W(f)$ if and only if $\Psi_{x}(f, t)>0$, for every $t>0$,
(ii) $x \in Q W(f)$ if and only if $\Psi_{x}^{*}(f, t)>0$, for every $t>0$.

Proof. It is easy to see that, for every $\varepsilon>0$ and $N>0$,

$$
\begin{equation*}
\sum_{i=0}^{n N-1} \chi_{B(x, \varepsilon)}\left(f^{i}(x)\right) \geq n \text { if and only if } \#\left\{0 \leq j<n N ; f^{j}(x) \in B(x, \varepsilon)\right\} \geq n \tag{3}
\end{equation*}
$$

(i) If $x \in W(f)$ then, for every $\varepsilon>0$ there is an $N>0$ such that the condition on the left side in (3) is satisfied for every n. Hence, by the condition on the right, $\Psi_{x}(f, \varepsilon) \geq 1 / N>0$. If $x \notin W(f)$ then there is an $\varepsilon>0$ such that for every $N>0$, there is an $n>0$ such that the condition on the left side of (3) is not satisfied. Hence, by the condition on the right, $\Psi_{x}(f, t)<1 / N \rightarrow 0$ if $N \rightarrow \infty$. Proof of (ii) is similar.

Obviously, $W(f) \subseteq Q W(f)$. The properties of $W(f)$ and $Q W(f)$ were studied in the nineties by Z. Zhou et al, see [11] for references. The points in $\operatorname{IR}(f):=Q W(f) \backslash W(f)$ are irregularly recurrent points, i.e., the points x such that $\Psi_{x}^{*}(f, t)>0$ for any $t>0$, and $\Psi_{x}\left(f, t_{0}\right)=0$ for some $t_{0}>0$, see [7]. Denote by $h(f)$ the topological entropy of f and by $R(f), U R(f)$ and $A P(f)$ the set of recurrent, uniformly recurrent and almost periodic points of f, respectively. Thus, $x \in R(f)$ if for every neighborhood U of $x, f^{j}(x) \in U$ for infinitely many $j \in \mathbf{N} ; x \in U R(f)$ if for every neighborhood U of x there is a $K>0$ such that every interval $[n, n+K]$ contains a $j \in \mathbf{N}$ with $f^{j}(x) \in U$; and $x \in A P(f)$ if for every neighborhood U of x, there is a $k>0$ such that $f^{k j}(x) \in U$ for every $j \in \mathbf{N}$. Recall that $x \in R(f)$ if and only if $x \in \omega(f, x)$, and $x \in U R(f)$ if and only if $\omega(f, x)$ is a minimal set, i.e., a closed set $\emptyset \neq M \subseteq X$ such that $f(M)=M$ and no proper subset of M has this property. Denote by $\omega(f)$ the union of all ω-limit sets of f. The next relations follow by definition:

$$
\begin{equation*}
A P(f) \subseteq U R(f) \subseteq W(f) \subseteq Q W(f) \subseteq R(f) \subseteq \omega(f) \tag{4}
\end{equation*}
$$

The next theorem will be used in Section 2. Its part (i) is proved in [9] but we are able to give a simpler argument, and extend it to part (ii).

Theorem 1. If $f \in \mathcal{C}(X)$, then
(i) $W(f)=W\left(f^{m}\right)$,
(ii) $Q W(f)=Q W\left(f^{m}\right)$,
(iii) $\operatorname{IR}(f)=\operatorname{IR}\left(f^{m}\right)$.

Proof. Since $\Psi_{x}(f, t) \geq \frac{1}{m} \Psi_{x}\left(f^{m}, t\right), x \in W\left(f^{m}\right)$ implies $x \in W(f)$ and similarly, $Q W\left(f^{m}\right) \subseteq$ $Q W(f)$. Since (iii) follows by (i) and (ii), it suffices to prove that for every $\varepsilon>0$ there is a $\delta>0$ such that for every prime integer m,

$$
\begin{equation*}
\Psi_{x}\left(f^{m}, \varepsilon\right) \geq \Psi_{x}(f, \delta) \text { and } \Psi_{x}^{*}\left(f^{m}, \varepsilon\right) \geq \Psi_{x}^{*}(f, \delta) \tag{5}
\end{equation*}
$$

For every $i \geq 0$, denote $\omega_{i}:=\omega\left(f^{m}, f^{i}(x)\right)$ and $\omega_{i j}:=\omega_{i} \cap \omega_{j}$. Obviously, $\omega(f, x)=\bigcup_{0 \leq i<m} \omega_{i}$, and $f\left(\omega_{i}\right)=\omega_{i+1}$, where i is taken mod m. Moreover, $f^{m}\left(\omega_{i}\right)=\omega_{i}$ and $f^{m}\left(\omega_{i j}\right)=\omega_{i j}$ for every $0 \leq i<j<m$. Hence

$$
\begin{equation*}
\omega_{i} \neq \omega_{i j} \text { implies } \omega_{j} \neq \omega_{i j}, \text { and } f^{i}(x), f^{j}(x) \notin \omega_{i j} \tag{6}
\end{equation*}
$$

Let k be the least period of ω_{0}. Since m is prime, there are two cases.
(a) If $k=m$ then the sets ω_{i} are pairwise distinct and, by (6), there is a $\delta>0$ such that $B(x, \delta) \cap \omega_{i}=\emptyset, 0<i<m$. It follows that if $f^{r}(x) \in B(x, \delta)$ then r is a multiple of m, with finitely many exceptions. Consequently, (5) is satisfied for $\varepsilon=\delta$, even with \geq replaced by the equality.
(b) If $k=1$ then $\omega_{i}=\omega_{0}$ for every i. Let $\varepsilon>0$. For every $i, 0 \leq i<m$, there is the minimal integer $k_{i} \geq 0$ such that $f^{m k_{i}+i}(x) \in B(x, \varepsilon)$. By the continuity, there is a $\delta>0$ such that $f^{m k_{i}+i}(B(x, \delta)) \subseteq B(x, \varepsilon), 0 \leq i<m$. If $f^{r}(x) \in B(x, \delta)$ and $r \equiv i(\bmod m), r=m l+i$, then $f^{m\left(l+1+k_{m-i}\right)}(x)=f^{r+m k_{m-i}+m-i}(x) \in f^{m k_{m-i}+m-i}(B(x, \delta)) \subseteq B(x, \varepsilon)$. This proves (5).

In 2009 Z. Zhou and F. Li stated, among others, the following problems, see [10].
Problem 1. Does $\operatorname{IR}(f) \neq \emptyset$ imply $h(f)>0$?
Problem 2. Does $W(f) \neq A P(f)$ imply $h(f)>0$?
In general, the answer to either problem is negative. In [7] we constructed a skew-product $\operatorname{map} F: Q \times I \rightarrow Q \times I,(x, y) \mapsto\left(\tau(x), g_{x}(y)\right)$, where $Q=\{0,1\}^{\mathbf{N}}$ is a Cantor-type set, τ the adding machine (or, odometer) on Q and, for every x, g_{x} is a nondecreasing mapping $I \rightarrow I$, with
$g_{x}(0)=0$. Consequently, $h(F)=0$ and $Q_{0}:=Q \times\{0\}$ is an invariant set. On the other hand, $I R(F) \neq \emptyset$ and $Q_{0}=A P(F) \neq W(F)$. This example answers in the negative both problems.

However, for maps $f \in \mathcal{C}(I), h(f)>0$ is equivalent to $\operatorname{IR}(f) \neq \emptyset$. On the other hand, the answer to Problem 2 remains negative even for maps in $\mathcal{C}(I)$. Instead, we are able to show that such maps with $W(f) \neq A P(f)$ are Li-Yorke chaotic. These results are given in the next section, as Theorems 2 and 3. Then, in Section 3 we show that these results can be extended to maps of more general one-dimensional compact metric space like topological graphs, topological trees, but not dendrites, see Theorems 4 and 5 .

2 Relations with Topological Entropy for Maps in $\mathcal{C}(I)$

Theorem 2. For $f \in \mathcal{C}(I)$, the conditions $h(f)>0$ and $\operatorname{IR}(f) \neq \emptyset$ are equivalent.
Proof. If $h(f)=0$ then $U R(f)=R(f)$ (see, e.g., [2], Corollary VI.8). Hence, by (4), $W(f)=Q W(f)$. If $h(f)>0$ then $W(f) \neq Q W(f)$; this follows by Theorem 1 and Lemmas 2 and 3 stated below.

Let $\left(\Sigma_{2}, \sigma\right)$ be the shift on the set Σ_{2} of sequences of two symbols 0,1 equipped with a metric ρ of pointwise convergence, say, $\rho\left(\left\{x_{i}\right\}_{i \geq 1},\left\{y_{i}\right\}_{i \geq 1}\right)=1 / k$ where $k=\min \left\{i \geq 1 ; x_{i} \neq y_{i}\right\}$.

Lemma 2. $\operatorname{IR}(\sigma)$ is non-empty, and contains a transitive point.
Proof. Let

$$
k_{1,0}, k_{1,1}, k_{2,0}, k_{2,1}, k_{2,2}, k_{3,0}, \cdots, k_{3,3}, k_{4,0}, \cdots, k_{4,4}, k_{5,0}, \cdots
$$

be an increasing sequence of positive integers. Let $\left\{B_{n}\right\}_{n \geq 1}$ be a sequence of all finite blocks of digits 0 and 1. Put $A_{0}=10, A_{1}=\left(A_{0}\right)^{k_{1,0}} 0^{k_{1,1}} B_{1}$ and in general,

$$
\begin{equation*}
A_{n}=A_{n-1}\left(A_{0}\right)^{k_{n, 0}}\left(A_{1}\right)^{k_{n, 1}} \cdots\left(A_{n-1}\right)^{k_{n, n-1}} 0^{k_{n, n}} B_{n}, n \geq 1 . \tag{7}
\end{equation*}
$$

Denote by $|A|$ the lenght of a finite block of 0 's and 1's, and let

$$
\begin{equation*}
a_{n}=\left|A_{n}\right|, b_{n}=\left|B_{n}\right|, c_{n}=a_{n}-b_{n}-k_{n, n}, n \geq 1, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{n, m}=\left|A_{n-1}\left(A_{0}\right)^{k_{n, 0}}\left(A_{1}\right)^{k_{n, 1}} \cdots\left(A_{m}\right)^{k_{n, m}}\right|, 0 \leq m<n . \tag{9}
\end{equation*}
$$

By induction we can take the numbers $k_{i, j}$ such that

$$
\begin{equation*}
k_{n, m+1}=n \cdot \lambda_{n, m}, 0 \leq m<n . \tag{10}
\end{equation*}
$$

Let $N(A)$ be the cylinder of all $x \in \Sigma_{2}$ beginning with a finite block A. Then $\left\{N\left(B_{n}\right)\right\}_{n \geq 1}$ is a base of the topology of Σ_{2}, and $\bigcap_{n=1}^{\infty} N\left(A_{n}\right)$ contains exactly one point; denote it by u.

Since $\sigma^{a_{n}-b_{n}}(u) \in N\left(B_{n}\right)$, i.e., since the trajectory of u visits every $N\left(B_{n}\right), u$ is a transitive point of σ. Moreover, $\rho\left(u, \sigma^{j}(u)\right)=1$, whenever $c_{n} \leq j<a_{n}-b_{n}$. By (10) it follows that $\Psi_{u}(\sigma, t)=0$ for every $t \in(0,1)$. Consequently, $u \notin W(\sigma)$.

It remains to show that $u \in Q W(\sigma)$. Let $t \in(0,1)$. Fix an $n_{0} \in \mathbb{N}$ such that $1 / a_{n_{0}}<t$. Then, by (7),

$$
\#\left\{j<\lambda_{n, n_{0}} ; \rho\left(u, \sigma^{j}(u)\right)<t\right\} \geq k_{n, n_{0}}, n>n_{0},
$$

hence, by (9) and (10),
$\lim _{n \rightarrow \infty} \frac{\#\left\{j<\lambda_{n, n_{0}} ; \rho\left(u, \sigma^{j}(u)\right)<t\right\}}{\lambda_{n, n_{0}}} \geq \lim _{n \rightarrow \infty} \frac{k_{n, n_{0}}}{\lambda_{n, n_{0}}}=\lim _{n \rightarrow \infty} \frac{k_{n, n_{0}}}{\lambda_{n, n_{0}-1}+a_{n_{0}} k_{n, n_{0}}}=\lim _{n \rightarrow \infty} \frac{n}{1+a_{n_{0}} n}=\frac{1}{a_{n_{0}}}$.
Thus, $\Psi_{u}^{*}(\sigma, t) \geq 1 / a_{n_{0}}$ and by Lemma $1, u \in Q W(\sigma)$.
Lemma 3. Let $f \in \mathcal{C}(I)$ have positive topological entropy. Then $\operatorname{IR}(f) \neq \emptyset$.
Proof. When $h(f)>0$, then f^{m} is strictly turbulent for some m. This means that there exist disjoint compact intervals K_{0}, K_{1} such that $f^{m}\left(K_{0}\right) \cap f^{m}\left(K_{1}\right) \supset K_{0} \cup K_{1}$, see [2], Theorem IX.28. This condition is equivalent to the existence of a continuous map $g: X \subset I \rightarrow \Sigma_{2}$, where X is of Cantor type, such that $g \circ f^{m}(x)=\sigma \circ g(x)$ for every $x \in X$, and such that each point in Σ_{2} is the image of at most two points in X ([2], Proposition II.15). By Lemma 2, there is a $u \in \operatorname{IR}(\sigma)$. Hence, for every $t>0, \Psi_{u}^{*}(\sigma, t)>0$, and there is an $s>0$ such that $\Psi_{u}(\sigma, s)=0$. There are at most two preimages, u_{0} and u_{1}, of u. Then, by the continuity, $\Psi_{u_{i}}\left(f^{m}, r\right)=0$, for some $r>0$ and $i=0,1$, and $\Psi_{u_{i}}^{*}\left(f^{m}, k\right)>0$ for at least one $i \in\{0,1\}$ and every $k>0$. Thus, $u_{0} \in \operatorname{IR}\left(f^{m}\right)$ or $u_{1} \in \operatorname{IR}\left(f^{m}\right)$ and, by Theorem $1, \operatorname{IR}(f) \neq \emptyset$.

Recall that $f \in \mathcal{C}(X)$ is Li-Yorke chaotic, or $L Y C$, if there is an uncountable set $S \subseteq X$ such that for every $x \neq y$ in $S, \liminf _{n \rightarrow \infty} \rho\left(\varphi^{n}(x), \varphi^{n}(y)\right)=0$ and $\lim \sup _{n \rightarrow \infty} \rho\left(\varphi^{n}(x), \varphi^{n}(y)\right)>0$.

Theorem 3. For $f \in \mathcal{C}(I), W(f) \neq A P(f)$ implies that f is Li-Yorke chaotic, but does not imply $h(f)>0$.

Proof. Every continuous map of a compact metric space with positive topological entropy is Li-Yorke chaotic [1]. Hence to prove the theorem it suffices to consider the class $\mathcal{C}_{0} \subset \mathcal{C}(I)$ of maps with zero topological entropy and show that
(i) for every $f \in \mathfrak{C}_{0}, W(f) \neq A P(f)$ implies $L Y C$, and
(ii) there is an $f \in \mathcal{C}_{0}$ with $W(f) \neq A P(f)$.

For $f \in \mathfrak{C}_{0}, R(f)=U R(f)$, see, e.g., [2], Corollary VI.8. Hence, by (4), $W(f) \neq A P(f)$ implies that f has an infinite minimal ω-limit set $\widetilde{\omega}$ possessing a point which is not in $A P(f)$. Recall that for every such $\widetilde{\omega}$ there is an associated system $\left\{J_{n}\right\}_{n \geq 1}$ of compact periodic intervals such that J_{n} has period 2^{n}, and $\widetilde{\omega} \subseteq \bigcap_{n \geq 1} \bigcup_{0 \leq j<2^{n}} f^{j}\left(J_{n}\right)$ [8]. For every $x \in \widetilde{\omega}$ there is a sequence $\imath(x)=\left\{j_{n}\right\}_{n \geq 1}$ of integers, $0 \leq j_{n}<2^{n}$, such that

$$
x \in \bigcap_{n \geq 1} f^{j_{n}}\left(J_{n}\right)=: Q_{x} .
$$

For every $x \in \widetilde{\omega}$, the set $\widetilde{\omega} \cap Q_{x}$ contains one (i.e., the point x) or two points. In the second case $Q_{x}=[a, b]$ is a compact wandering interval (i.e., $f^{n}\left(Q_{x}\right) \cap Q_{x}=\emptyset$ for every $n \geq 1$) such that $a, b \in \widetilde{\omega}$ and either $x=a$ or $x=b$. Moreover, if, for every $x \in \widetilde{\omega}, \widetilde{\omega} \cap Q_{x}$ is a singleton then f restricted to $\widetilde{\omega}$ is the adding machine, and $\widetilde{\omega} \subseteq A P(f)$, see [3]. Consequently, $W(f) \neq A P(f)$ implies the existence of an infinite ω-limit set $\widetilde{\omega}$ such that

$$
\begin{equation*}
\widetilde{\omega} \cap Q_{x}=\{a, b\}, a<b, \text { for some } x \in \widetilde{\omega} . \tag{11}
\end{equation*}
$$

This condition characterizes $L Y C$ maps in \mathfrak{C}_{0} (see [8] or subsequent books like ${ }^{[11]}$) which proves (i).

To prove (ii) note that there are maps $f \in \mathfrak{C}_{0}$ such that both a and b in (11) are non-isolated points of \widetilde{a}, see [3] or [6]. Then $a, b \in U R(f)$ are minimal points. We show that in this case either $a \notin A P(f)$ or $b \notin A P(f)$ (actually, neither a nor b is in $A P(f)$ but we do not need this stronger property). So assume that $a, b \in A P(f)$ and U_{a}, U_{b} are their disjoint open neighborhoods. Then there is an even $m, m=(2 k+1) 2^{n}$, with $n \geq 1$, such that $f^{j m}(a) \in U_{a}$ and $f^{j m}(b) \in U_{b}$, for every $j \geq 0$. Let $\left\{J_{n}\right\}_{n \geq 1}$ be the system of compact periodic intervals associated with $\widetilde{\omega}$. Without loss of generality we may assume that, for some $n,[a, b] \subset J_{n}$. Since J_{n} has period 2^{n}, for arbitrary odd $j, f^{j m}\left(J_{n}\right) \cap J_{n}=\emptyset$. If $f^{j m}\left(J_{n}\right)$ is to the left of J_{n}, then $f^{j m}\left(J_{n}\right) \cap U_{b}=\emptyset$, otherwise $f^{j m}\left(J_{n}\right) \cap U_{a}=\emptyset$. In any case, $f^{j m}(a) \notin U_{a}$ or $f^{j m}(b) \notin U_{b}$, which is a contradiction.

3 Generalization for Maps on More General One-dimensional Spaces

Here we show that the results given in Theorems 2 and 3 concerning maps in $\mathcal{C}(I)$ can be generalized to more general one-dimensional compact metric spaces like topological graphs or trees, but not dendrites. Recall that X is a topological graph if X is a non-empty compact connected metric space which is the union of finitely many arcs (i.e., continuous images of the
interval I) such that every two arcs can have only end-points in common. A tree is a topological graph which contains no subset homeomorphic to the circle. A dendrite is a locally connected continuum containing no subset homeomorphic to the circle. The proof of generalized results is based on the same ideas as that of Theorems 2 and 3 . We only need some recent, nontrivial results concerning the structure of ω-limit sets of such maps, see [4] and [5]. Therefore we give here only outline of the proof, pointing out only main differences.

Theorem 4. Let $f \in \mathcal{C}(X)$.
(i) If X is a topological graph then $h(f)>0$ is equivalent to $Q W(f) \neq W(f)$.
(ii) There is a dendrit X such that $h(f)>0$ and $Q W(f)=W(f)=U R(f)$.

Proof. To prove (i) note that, for $f \in \mathcal{C}(X)$ where X is a topological graph, $h(f)>0$ if and only if, for some $n \geq 1, f^{n}$ is turbulent [4]. Hence the proof of Lemma 3 applies also to this case and $h(f)>0$ implies $\operatorname{IR}(f) \neq \emptyset$. On the other hand, if $h(f)=0$ then every infinite ω-limit set is a solenoid (i.e., it has an associated system of compact periodic intervals $\left\{J_{n}\right\}_{n \geq 1}, J_{n}$ with period 2^{n}) and consequently, $R(f)=U R(f)$ [4] which gives the other implication.
(ii) In [5] there is an example of a dendrit X with a continuous map f possessing exactly two ω-limit sets: a minimal Cantor-type set Q such that $h\left(\left.f\right|_{Q}\right) \geq 0$ and a fixed point p such that $\omega(f, x)=\{p\}$ for every $x \in X \backslash Q$.

Theorem 5. Let $f \in \mathcal{C}(X)$.
(i) If X is a compact tree then $W(f) \neq A P(f)$ implies LYC, but does not imply $h(f)>0$.
(ii) If X is a dendrit, or a topological graph containing a circle then $W(f) \neq A P(f)$ implies neither LYC nor $h(f)>0$.

Proof. (i) Similarly as in the proof of Theorem 3we may assume $h(f)=0$. Then every infinite ω-limit set of f is a solenoid and the argument with obvious modifications applies.
(ii) If X is the circle, take f to be an irrational rotation. Then obvioulsy $X=U R(f) \backslash A P(f)=$ $W(f) \backslash A P(f)$ but f is not LYC. On the other hand, let $\widetilde{\omega}$ be the ω-limit set used in the proof of part (ii) of Theorem 3. Thus, $\widetilde{\omega}$ is a minimal set intersecting $U R(f) \backslash A P(f)$. A modification of the construction from [5] yields a dendrite with exactly two ω-limit sets, an infinite minimal set $Q=\widetilde{\omega}$ and a fixed point q (see the proof of part (ii) of the preceding theorem). It is easy to see that f is not LYC.

Remark 1. By Theorems 4 and 5, for a map $f \in \mathcal{C}(X)$ where X is a compact metric space, the properties $h(f)>0$ and $W(f) \neq A P(f)$ are independent. Similarly, $h(f)>0$ and $\operatorname{IR}(f) \neq \emptyset$ are independent. Example of a map f with $h(f)=0$ and $\operatorname{IR}(f) \neq \emptyset$ is given in [7] (see also the
text at the end of Section 1), and any minimal map f with $h(f)>0$ yields $\operatorname{IR}(f)=\emptyset$.
Acknowledgments. The author thanks Professor Jaroslav Smítal for his heedful guidance and helpful suggestions.

References

[1] Blanchard, F., Glasner, E., Kolyada, S. and Maass, A., On Li-Yorke Pairs, J. Reine Angew. Math., 547 (2002), 51-68.
[2] Block, L.S. and Coppel, W.A., Dynamics in One Dimension, Springer-Verlag, Berlin Heidelberg, 1992.
[3] Bruckner, A. M. and Smítal, J., A Characterization of ω-limit Sets of Maps of the Interval with Zero Topological Entropy, Ergod. Th. \& Dynam. Sys., 13 (1993), 7-19.
[4] Hric, R. and Málek, M., Omega-limit Sets and Distributional Chas on Graphs, Topology Appl., 153 (2006), 2469-2475.
[5] Kočan, Z., Kornecká-Kurková, V. and Málek, M., Entropy, Horseshoes and Homoclinic Trajectories on Trees, Graphs and Dendrites, Ergodic Theory \& Dynam. Syst., 30 (2011), to appear.
[6] Misiurewicz M. and Smítal J., Smooth chaotic mappings with Zero Topological Entropy, Ergod. Th. \& Dynam. Sys., 8 (1988), 421-424.
[7] Obadalová, L. and Smítal, J., Distributional Chaos and Irregular Recurrence, Nonlin. Anal. A - Theor. Meth. Appl., 72 (2010), 2190-2194.
[8] Smítal, J., Chaotic Functions with Zero Topological Entropy, Trans. Amer. Math. Soc., 297 (1986), 269-282.
[9] Zhou, Z., Weakly Almost Periodic Point and Measure Centre, Science in China (Ser. A), 36(1993), 142-153.
[10] Zhou, Z. and Li, F., Some Problems on Fractal Geometry and Topological Dynamical Systems, Anal. Theor. Appl., 25 (2009), 5-15.
[11] Zhou, Z. and Feng, L., Twelve Open Problems on the Exact Value of the Hausdorff Measure and on Topological Entropy, Nonlinearity, 17 (2004), 493-502.

Mathematical Institute
 Silesian University

CZ-746 01 Opava
Czech Republic
E-mail: lenka.obadalova@math.slu.cz

[^0]: Supported in part by the grant SGS/15/2010 from the Silesian University in Opava.

