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1 Introduction

Recently, non-convex analysis has found some applications in optimization theory, and so

there have been some investigations about non-convex analysis, especially ordered normed

spaces, normal cones and topical functions. Huang and Zhang[5] have replaced the real num-

bers by an ordering Banach space and define cone metric spaces. They have proved some fixed

point theorems of contractive mappings on cone metric spaces.

Let (E,‖.‖) be a real Banach space and P be a subset of E , then P is called a cone whenever

(1) P is closed, non-empty and P 6= {0}.

(2) ax+ by ∈ P for all x,y ∈ P and non-negative real numbers a,b.

(3) P∩ (−P) = {0}.

For a given cone P ⊆ E , we can define a partial ordering � with respect to P by x � y if

and only if y− x ∈ P. We write x ≺ y if x � y and x 6= y and write x ≪ y if y− x ∈ int P, where

intP denotes the interior of P. The cone P is normal if there is a number M > 0 such that for all

x,y ∈ E

0 � x � y =⇒‖x‖ ≤ M‖y‖.
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The least positive number M satisfying the above inequality is called the normal constant of P.

Rezapour and Hamalbarani[8] proved that there are no normal cones with normal constant M < 1

and for each k > 1 there are cones with normal constant M > k. The cone P is called regular

if every increasing sequence which is bounded from above is convergent, that is, if {xn}n∈N is

sequence in E such that x1 � x2 � ·· · � xn � y for some y ∈ E , then there is x ∈ E such that

limn→∞ ‖xn − x‖ = 0. Equivalently, the cone P is called regular if every decreasing sequence

which is bounded from below is convergent.

A subset F ⊆ E is called bounded if there exists u ∈ E such that x � u for every x ∈ F , in

this case we say u is an upper bound of F . Similarly the lower bounds can be defined for F . The

set F is said to be bounded if F is bounded from both below and above. We say that E has the

supremum property, if every non-empty above bounded subset of E has a least upper bound in

E . It is easy to see that if E has the supremum property, then E is regular.

The concept of 2-Metric space as a generalization of metric space was first defined by

Gahler[4] in 1963, but some other authors proved that there is no relation between these two

concepts. Dhage[3] defined D-metric space as a generalization of the metric space, later Mustafa

and Sims[7] showed that most of the claims concerning fundamental topological properties of

D-metric spaces are incorrect and reintroduced a new structure of generalized metric spaces,

called G-metric space. Recently Beg et, al. [2] introduced the G-cone metric space and proved

some common fixed point theorems in this space.

Throughout this paper we suppose that (E,‖.‖) is a real Banach space and P is a normal cone

with a constant M and the supremum property in E and intP 6= /0. The purpose of this paper is to

generalize and unify a version of Banach contraction principle and Kannan fixed point theorem

on complete generalized cone metric spaces. First we briefly recall the definitions and basic

properties of generalized cone metric spaces. For more information we refer to the articles by

Mustafa and Sims[7] and Beg et al[2].

Definition 1.1. Let X be a non-empty set, then the mapping G : X ×X ×X → E is called

a generalized cone metric or simply a G-cone metric on X if it satisfies the following axioms:

(G1) G(x,y,z) = 0 if x = y = z.

(G2) G(x,x,y) ≻ 0, whenever x 6= y, for all x,y ∈ X .

(G3) G(x,x,y) � G(x,y,z), whenever y 6= z.

(G4) G is a symmetry function of its three variables.

(G5) G(x,y,z) � G(x,y,u)+ G(u,u,z) for all x,y,z,u ∈ X .
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If G is a G-cone metric on X , then (X ,G) is called G-cone metric space. A G-cone metric

space (X ,G) is called symmetric if G(x,y,y) = G(x,x,y), for all x,y ∈ X .

In the following we give examples of the symmetric and nonsymmetric G-cone metric space.

Example 1.2. Let (X ,d) be a cone metric space. For all x,y,z ∈ X define

(1) G1 : X ×X ×X → E by G1(x,y,z) = d(x,y)+ d(x,z)+ d(y,z).

(2) G2 : X ×X ×X → E by G2(x,y,z) = max{d(x,y),d(x,z),d(y, z)}.
Clearly (X ,Gi) for all i = 1,2 is a symmetric G-cone metric space.

Example 1.3. Let X = {a,b}, E = R3 and P = {(x,y,z) ∈ R3| x,y,z ≥ 0}. Define G : X3 →
E by

G(a,a,a) = G(b,b,b) = (0,0,0),

G(a,b,b) = G(b,b,a) = G(b,a,b) = (0,1,1),

G(a,a,b) = G(b,a,a) = G(a,b,a) = (0,1,0).

Then (X ,G) is a nonsymmetric G-cone metric space.

Definition 1.4. Let {xn}n∈N be a sequence in G-cone metric space (X ,G). Then

(1) We say that {xn}n∈N converges to x ∈ X , if for every c ∈ E with c ≫ 0 there is N ∈ N

such that for all m,n > N, G(xm,xn,x) ≪ c. In this case we write lim
n→∞

xn = x or xn → x.

(2) {xn}n∈N is said to be a Cauchy sequence if for every c ∈ E with c ≫ 0 there is N ∈ N

such that for all m,n,k > N, G(xm,xn,xk) ≪ c.

(3) A G-cone metric space (X ,G) is said to be complete if every Cauchy sequence in X is

convergent in X .

The following results are studied by Beg et al. in [2].

Proposition 1.5. Let (X ,G) be a G-cone metric space and {xn}n∈N be a sequence in X.

Then the following conditions are equivalent

(1) {xn}n∈N is converges to x.

(2) G(xn,xn,x) → 0 as n → ∞.

(3) G(xn,x,x) → 0 as n → ∞.

(4) G(xm,xn,x) → 0 as n,m → ∞.

Proposition 1.6. Let (X ,G) be a G-cone metric space and {xn}n∈N be a sequence in X.

Then

(1) If x,y ∈ X and if {xn}n∈N converges to x,y, then x = y.

(2) {xn}n∈N is a Cauchy sequence if and only if G(xn,xm,xk) → 0 as n,m,k → ∞.
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(3) Every convergent sequence in X is a Cauchy sequence.

Proposition 1.7. Let (X ,G) be a G-cone metric space and let {xn}n∈N,{yn}n∈N , {zn}n∈N

be sequences in X such that xn → x, yn → y, zn → z. Then G(xn,ym,zk)→G(x,y,z) as n,m,k →∞.

From the definition we have

1

2
G(x,y,y) � G(x,x,y) � 2G(x,y,y), ∀x,y ∈ X . (1)

2 Fixed Point Theorems

In this section we study some fixed point theorems which are generalizations of the Banach

contraction principle and Suzuki fixed point theorem[9]. The following theorem is referred to as

the Banach contraction principle[1] .

Theorem 2.1. Let (X ,d) be a complete metric space and let T be a contraction on X, i.e.,

there exists r ∈ [0,1) such that d(T x,Ty) ≤ rd(x,y) for all x,y ∈ X. Then T has a unique fixed

point.

Let (X ,G) be a G-cone metric space, then a mapping T : X → X is called a G-contraction

mapping if there exists a real number r ∈ [0,1) such that

G(T x,Ty,T z) � rG(x,y,z), ∀x,y,z ∈ X .

The following theorem is a generalization of Theorem 2.1 in G-cone metric spaces.

Theorem 2.2. Let (X ,G) be a complete G-cone metric space and let T : X → X be a G-

contraction mapping on X, that is, there exists r ∈ [0,1) such that

G(T x,Ty,T z) � rG(x,y,z)

for all x,y,z ∈ X. Then there exists a unique fixed point z ∈ X for T . Moreover,

lim
n→∞

T nx = z

for all x ∈ X.

Proof. For each u ∈ X define the sequence {un}n∈N in X by un = T nu, then for all n > m

we have

G(um,um,un) � G(um,um,um+1)+ G(um+1,um+1,un)

� ·· · �
n−1

∑
k=m

G(uk,uk,uk+1) � G(u,u,Tu)
n−1

∑
k=m

rk

� rm

1− r
G(u,u,Tu) → 0, as m → ∞.
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This shows that {un}n∈N is a Cauchy sequence in (X ,G). Since (X ,G) is complete, there exists

z ∈ X such that un → z. Thus for all c ∈ E with c ≫ 0 and m ∈ N there exists N ∈ N such that

G(un,un,z) ≪
c

3m
, for all n ≥ N. Hence we have

G(z,z,T z) � G(z,z,un)+ G(un,un,T z) � 2G(un,un,z)+ rG(un−1,un−1,z) ≪
c

m
.

This shows that
c

m
− G(z,z,T z) ∈ P. Since

c

m
− G(z,z,T z) → −G(z,z,T z) and P is closed,

−G(z,z,T z) ∈ P, but G(z,z,T z) ∈ P. Therefore G(z,z,T z) = 0 and so T z = z. Now if x is

another fixed point of T , then

G(z,z,x) = G(T z,T z,T x) � rG(z,z,x).

Hence G(z,z,x) = 0 which implies z = x. Therefore the fixed point of T is unique.

The following theorem introduces a new type of mappings which generalizes Theorem 2.2.

Theorem 2.3. Let (X ,G) be a complete G-cone metric space and let λ : [0,1) → (
1

6
,1] be

a non-increasing and onto function defined by

λ (r) =



























1, 0 ≤ r ≤
√

3−1
2

,

1−2r
2r2 ,

√
3−1
2

≤ r <
1√
5
,

1
4+2r

,
1√
5
≤ r < 1.

Suppose that T : X → X is a mapping on X and there exists r ∈ [0,1) such that

λ (r)G(x,x,T x) � G(x,y,z) =⇒ G(T x,Ty,T z) � rG(x,y,z)

for all x,y,z ∈ X. Then there exists a unique fixed point z ∈ X of T . Moreover,

lim
n→∞

T nx = z

for all x ∈ X.

Proof. Since λ (r) ≤ 1 hence λ (r)G(x,x,T x) � G(x,x,T x). Using the hypothesis we have

G(T x,T x,T 2x) � rG(x,x,T x),

so G(T nx,T nx,T n+1x) � rnG(x,x,T x) for all n ∈ N, x ∈ X . Choose u ∈ X and define the se-

quence {un}n∈N in X by un = T nu. As in the proof of Theorem 2.2, we can prove that {un}n∈N

converges to some z ∈ X . Thus for all x ∈ X −{z} there exists N ∈ N such that for all n ≥ N

G(un,un,z) �
G(x,x,z)

4
.
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We also have

λ (r)G(un,un,Tun) � G(un,un,un+1) � G(un,un,z)+ G(z,z,un+1)

� 3

4
G(x,x,z) = G(x,x,z)− 1

4
G(x,x,z)

� G(x,x,z)−G(un,un,z) � G(x,x,un)

which implies G(T x,T x,un+1) � rG(x,x,un). If n → ∞ we obtain

G(T x,T x,z) � rG(x,x,z) (2)

for all x 6= z. Arguing by contradiction, assume T kz 6= z for all k ∈ N. By (2) we have

G(T k+1z,T k+1z,z) � rkG(T z,T z,z), ∀k ∈ N. (3)

By the hypothesis for r have three cases: If 0 ≤ r ≤
√

3−1

2
, then 2r2 + 2r−1 ≤ 0 and 3r2 < 1.

Also if we assume G(T 2z,T 2z,z) ≺ G(T 2z,T 2z,T 3z), then we have

G(T z,T z,z) � G(T z,T z,T 2z)+ G(T 2z,T 2z,z) ≺ rG(z,z,T z)+ G(T 2z,T 2z,T 3z)

� rG(z,z,T z)+ r2G(z,z,T z)

= (r2 + r)G(z,z,T z) � (2r2 + 2r)G(T z,T z,z) � G(T z,T z,z)

which is a contradiction. Hence we have

λ (r)G(T 2z,T 2z,T 3z) = G(T 2z,T 2z,T 3z) � G(T 2z,T 2z,z).

By the hypothesis and (3) we obtain

G(T z,T z,z) � G(T z,T z,T 3z)+ G(T 3z,T 3z,z) � 2G(T 3z,T 3z,T z)+ G(T 3z,T 3z,z)

� 2rG(T 2z,T 2z,z)+ r2G(T z,T z,z) � 3r2G(T z,T z,z) ≺ G(T z,T z,z).

This is a contradiction. In the second case, if

√
3−1

2
≤ r <

1√
5

, then 3r2 < 1. If we assume

G(T 2z,T 2z,z) ≺ λ (r)G(T 2z,T 2z,T 3z), then we obtain

G(T z,T z,z) � G(T z,T z,T 2z)+ G(T 2z,T 2z,z) ≺ rG(z,z,T z)+ λ (r)G(T 2z,T 2z,T 3z)

� rG(z,z,T z)+ r2λ (r)G(z,z,T z) � (2r + 2r2λ (r))G(T z,T z,z) = G(T z,T z,z),
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which is a contradiction. Thus λ (r)G(T 2z,T 2z,T 3z) � G(T 2z,T 2z,z). As in the previous case

we obtain

G(T z,T z,z) � 3r2G(T z,T z,z) ≺ G(T z,T z,z).

This is a contradiction. In the third case, let
1√
5
≤ r < 1, then for all x,y ∈ X , either

λ (r)G(x,x,T x) � G(x,x,y) or λ (r)G(T x,T x,T 2x) � G(T x,T x,y).

Because if

G(x,x,y) ≺ λ (r)G(x,x,T x) and G(T x,T x,y) ≺ λ (r)G(T x,T x,T 2x),

then we get

G(T x,T x,x) � G(T x,T x,y)+ G(y,y,x)

� G(T x,T x,y)+ 2G(x,x,y) ≺ λ (r)G(T x,T x,T 2x)+ 2λ (r)G(x,x,T x)

� rλ (r)G(x,x,T x)+ 2λ (r)G(x,x,T x) � (2r + 4)λ (r)G(T x,T x,x) = G(T x,T x,x)

which is a contradiction. Therefore for all n ∈ N either

λ (r)G(u2n,u2n,u2n+1) � G(u2n,u2n,z) or λ (r)G(u2n+1,u2n+1,u2n+2) � G(u2n+1,u2n+1,z).

This yields

G(u2n+1,u2n+1,T z) � rG(u2n,u2n,z) or G(u2n+2,u2n+2,T z) � rG(u2n+1,u2n+1,z).

Since un → z, there exists a subsequence {unk
}k∈N such that unk

→ T z. This shows T z = z which

is a contradiction. Thus there is some j ∈ N so that T jz = z. Using the Cauchy property of

{un}n∈N we obtain T z = z. That is, z is a fixed point of T . The uniqueness of fixed point follows

from (2). This completes the proof.

Theorem 2.4. Let (X ,G) be a complete G-cone metric space and let λ : [0,1) → (
1

3
,1] be

a non-increasing and onto function defined by

λ (r) =



























1, 0 ≤ r ≤
√

2−1,

1−2r
r2 ,

√
2−1 ≤ r <

1√
5
,

1
2+r

,
1√
5
≤ r < 1.
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Suppose that T : X → X is a mapping on X and there exists r ∈ [0,1) such that

λ (r)G(T x,T x,x) � G(x,y,z) =⇒ G(T x,Ty,T z) � rG(x,y,z)

for all x,y,z ∈ X. Then there exists a unique fixed point z ∈ X of T . Moreover,

lim
n→∞

T nx = z

for all x ∈ X.

Proof. Since λ (r) ≤ 1, we have λ (r)G(T x,T x,x) � G(T x,T x,x) for all x ∈ X . Using the

hypothesis we have

G(T 2x,T 2x,T x) � rG(T x,T x,x).

This shows G(T n+1x,T n+1x,T nx) � rnG(T x,T x,x) for all n ∈ N. Choose u ∈ X and define the

sequence {un}n∈N in X by un = T nu. As in the proof of Theorem 2.2, we can prove that {un}n∈N

converges to some z ∈ X . Thus for all x ∈ X −{z} there exists N ∈ N such that for all n ≥ N

G(un,un,z) �
G(x,x,z)

4
.

We also have

λ (r)G(Tun,Tun,un) � G(un+1,un+1,un) � G(un+1,un+1,z)+ G(z,z,un)

� G(un+1,un+1,z)+ 2G(un,un,z)

� 3

4
G(x,x,z) = G(x,x,z)− 1

4
G(x,x,z)

� G(x,x,z)−G(un,un,z) � G(x,x,un).

Using the hypothesis we have

G(T x,T x,Tun) � rG(x,x,un).

Let n → ∞, we get

G(T x,T x,z) � rG(x,x,z) (4)

for all x 6= z. Arguing by contradiction, assume T kz 6= z for all k ∈ N. By (4) we have

G(T 2z,T 2z,z) � rG(T z,T z,z).

Hence for all k ∈ N we obtain

G(T k+1z,T k+1z,z) � rkG(T z,T z,z).



256 M. S. Asgari et al : Generalizations of Suzuki and Kannan Fixed Point Theorems

By the hypothesis for r have three cases. In the first case, let 0 ≤ r ≤
√

2− 1, then r2 + 2r ≤ 1

and 3r2 < 1. Also if we assume

G(T 2z,T 2z,z) ≺ G(T 3z,T 3z,T 2z).

Then we have

G(T z,T z,z) � G(T z,T z,T 2z)+ G(T 2z,T 2z,z) ≺ 2G(T 2z,T 2z,T z)+ G(T 3z,T 3z,T 2z)

� 2rG(T z,T z,z)+ r2G(T z,T z,z)

= (2r + r2)G(T z,T z,z) � G(T z,T z,z)

which is a contradiction. Hence we have

G(T 3z,T 3z,T 2z) � G(T 2z,T 2z,z).

Since λ (r) = 1, we have

λ (r)G(T 3z,T 3z,T 2z) = G(T 3z,T 3z,T 2z) � G(T 2z,T 2z,z).

By the hypothesis we obtain

G(T 3z,T 3z,T z) � rG(T 2z,T 2z,z).

This yields

G(T z,T z,z) � G(T z,T z,T 3z)+ G(T 3z,T 3z,z)

� 2G(T 3z,T 3z,T z)+ G(T 3z,T 3z,z)

� 2rG(T 2z,T 2z,z)+ r2G(T z,T z,z)

� 2r2G(T z,T z,z)+ r2G(T z,T z,z)

= 3r2G(T z,T z,z) ≺ G(T z,T z,z).

This is a contradiction. In the second case if

√
2−1 ≤ r <

1√
5
,

then λ (r) =
1−2r

r2
and 3r2 < 1. Let G(T 2z,T 2z,z) ≺ λ (r)G(T 3z,T 3z,T 2z), then we obtain

G(T z,T z,z) � G(T z,T z,T 2z)+ G(T 2z,T 2z,z)

≺ 2G(T 2z,T 2z,T z)+ λ (r)G(T 3z,T 3z,T 2z)

� 2rG(T z,T z,z)+ r2λ (r)G(T z,T z,z)

= (2r + r2λ (r))G(T z,T z,z) = G(T z,T z,z).
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Which is a contradiction. Thus λ (r)G(T 3z,T 3z,T 2z) � G(T 2z,T 2z,z). By the hypothesis we

have

G(T 3z,T 3z,T z) � rG(T 2z,T 2z,z),

consequently

G(T z,T z,z) � G(T z,T z,T 3z)+ G(T 3z,T 3z,z)

� 2G(3z,T 3z,T z)+ r2G(T z,T z,z)

� 2rG(T 2z,T 2z,z)+ r2G(T z,T z,z)

� 2r2G(T z,T z,z)+ r2G(T z,T z,z)

= 3r2G(T z,T z,z) ≺ G(T z,T z,z).

This is a contradiction. In the third case, if
1√
5
≤ r < 1 then by the proof of Theorem 2.3 we can

obtain a subsequence {un j
} j∈N of {un}n∈N such that unk

→ T z, and consequently T z = z, which

ia also a contradiction. Hence there is some j ∈ N so that T jz = z. Using the Cauchy property

of {un}n∈N we obtain T z = z, which implies that z is a fixed point of T . The uniqueness of fixed

point follows from (4). From this the proof is complete.

Definition 2.5. Let (X ,G) be a G-cone metric space, then a mapping T : X → X is called a

Kannan mapping if there exists a real number α ∈ [0,
1

3
) such that

G(T x,Ty,T z) � αG(x,x,T x)+ αG(y,y,Ty)+ αG(z,z,T z), ∀x,y,z ∈ X .

Also T is called a generalized Kannan mapping if there exists a real number r ∈ [0,1) such that

G(T x,Ty,T z) � r max{G(x,x,T x),G(y,y,Ty),G(z,z,T z)}, ∀x,y,z ∈ X .

Theorem 2.6. Let (X ,G) be a G-cone metric space and let T : X → X be a mapping on X.

Suppose that x ∈ X satisfies

G(T x,T x,T 2x) � r

2
G(x,x,T x)

for some r ∈ [0,1). Then for y ∈ X, either

1

1+ r
G(x,x,T x) � G(x,x,y) or

1

1+ r
G(T x,T x,T 2x) � G(T x,T x,y).

Proof. Let

1

1+ r
G(x,x,T x) ≻ G(x,x,y) and

1

1+ r
G(T x,T x,T 2x) ≻ G(T x,T x,y).
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Then we have

G(x,x,T x) � G(x,x,y)+ G(y,y,T x) � G(x,x,y)+ 2G(T x,T x,y)

≺ 1

1+ r
G(x,x,T x)+

2

1+ r
G(T x,T x,T 2x)

� 1

1+ r
G(x,x,T x)+

r

1+ r
G(x,x,T x) = G(x,x,T x),

which is a contradiction. Therefore we obtain the desired result.

The following theorem is a Kannan version of Theorem 2.3 (See [6]).

Theorem 2.7. Let (X ,G) be a complete G-cone metric space and let ϕ : [0,1) → (
1

3
,1] be

a non-increasing and onto function defined by

ϕ(r) =















1, 0 ≤ r <
1√
3
,

1

1+ r
,

1√
3
≤ r < 1.

Suppose T : X → X is a mapping on X and there exists α ∈ [0,
1√
5
) and r =

4α

1−α
∈ [0,1) such

that

ϕ(r)G(x,x,T x) � G(x,y,z) =⇒ G(T x,Ty,T z) � αG(x,x,T x)+ αG(y,y,Ty)+ αG(z,z,T z)

for all x,y,z ∈ X. Then there exists a unique fixed point z ∈ X of T . Moreover,

lim
n→∞

T nx = z

for all x ∈ X.

Proof. Since ϕ(r) ≤ 1, ϕ(r)G(x,x,T x) � G(x,x,T x). Using the hypothesis we have

G(T x,T x,T 2x) � 2αG(x,x,T x)+ αG(T x,T x,T 2x). (5)

So G(T x,T x,T 2x) ≤ r

2
G(x,x,T x) which implies that G(T nx,T nx,T n+1x) ≤ rn

2n
G(x,x,T x) for

all n ∈ N. Choose u ∈ X and define the sequence {un}n∈N in X by un = T nu. As in the proof of

Theorem 2.3 we can prove that {un}n∈N converges to some z ∈ X , and for all x ∈ X −{z} there

exists N ∈ N such that ϕ(r)G(un,un,Tun) � G(x,x,un) for all n ≥ N. Using the hypothesis we

have

G(T x,T x,Tun) � 2αG(x,x,T x)+ αG(un,un,Tun). (6)
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If n → ∞ we have

G(T x,T x,z) = lim
n→∞

G(T x,T x,un+1) = lim
n→∞

G(T x,T x,Tun)

� lim
n→∞

(2αG(x,x,T x)+ αG(un,un,Tun))

= lim
n→∞

(2αG(x,x,T x)+ αG(un,un,un+1)) = 2αG(x,x,T x).

Hence for all x ∈ X and x 6= z we have

G(T x,T x,z) � 2αG(x,x,T x). (7)

By the hypothesis r have two cases: If 0≤ r <
1√
3

, and arguing by contradiction, assume T z 6= z.

By (7) we have G(T 2z,T 2z,z) � αrG(z,z,T z). Therefore we obtain

G(T z,T z,z) � G(T z,T z,T 2z)+ G(T 2
,T 2

,z) � r

2
G(z,z,T z)+ αrG(z,z,T z)

� rG(T z,T z,z)+ 2αrG(T z,T z,z)

= (r + 2αr)G(T z,T z,z) =
4r + 3r2

4+ r
G(T z,T z,z) ≺ G(T z,T z,z),

which is also a contradiction. In the second case,
1√
3
≤ r < 1, then by Theorem 2.6 and the

proof of Theorem 2.3 we can obtain a subsequence {un j
} j∈N of {un}n∈N such that

ϕ(r)G(un j
,un j

,un j+1) � G(un j
,un j

,z)

for all j ∈ N. From the assumption we have

G(z,z,T z) = lim
j→∞

G(un j+1,un j+1,T z)

� lim
j→∞

r max{G(un j
,un j

,un j+1),G(z,z,T z)} = rG(z,z,T z).

This shows that T z = z. Therefore z is a fixed point of T . The uniqueness of fixed point follows

from (7). This completes the proof.

Theorem 2.8. Let (X ,G) be a G-cone metric space and let T be a mapping on X. Suppose

that x ∈ X satisfies

G(T x,T x,T 2x) � rG(x,x,T x)

for some r ∈ [0,1). Then for y ∈ X, either

1

4+ 2r
G(x,x,T x) � G(x,x,y) or

1

4+ 2r
G(T x,T x,T 2x) � G(T x,T x,y)
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holds.

Proof. Suppose that

1

4+ 2r
G(x,x,T x) ≻ G(x,x,y) and

1

4+ 2r
G(T x,T x,T 2x) ≻ G(T x,T x,y).

Then we have

G(x,x,T x) � G(x,x,y)+ G(y,y,T x) � G(x,x,y)+ 2G(T x,T x,y)

≺ 1

4+ 2r
G(x,x,T x)+

2

4+ 2r
G(T x,T x,T 2x) � 1+ 2r

4+ 2r
G(x,x,T x) ≺ G(x,x,T x).

Which is a contradiction. Therefore we obtain the desired result.

The following theorem is a generalized Kannan version of Theorem 2.3.

Theorem 2.9. Let (X ,G) be a complete G-cone metric space and let λ : [0,1) → (
1

6
,1] be

as in Theorem 2.3. If T : X → X is a mapping on X and there exists r ∈ [0,1) such that

λ (r)G(x,x,T x) � G(x,y,z) =⇒ G(T x,Ty,T z) � r max{G(x,x,T x),G(y,y,Ty),G(z,z,T z)}

for all x,y,z ∈ X. Then there exists a unique fixed point z ∈ X of T . Moreover,

lim
n→∞

T nx = z

for all x ∈ X.

Proof. Since λ (r) ≤ 1 hence λ (r)G(x,x,T x) � G(x,x,T x). Using the hypothesis we have

G(T x,T x,T 2x) � r max{G(x,x,T x),G(T x,T x,T 2x)},

and so G(T x,T x,T 2x)� rG(x,x,T x) for all n ∈N, x∈ X . Choose u ∈ X and define the sequence

{un}n∈N in X by un = T nu. As in the proof of Theorem 2.3 we can prove that {un}n∈N converges

to some z ∈ X . Moreover, for all x ∈ X −{z} there exists N ∈ N such that for all n ≥ N

G(un,un,z) �
G(x,x,z)

4
.

We also have

λ (r)G(un,un,Tun) � G(un,un,un+1) � G(un,un,z)+ G(z,z,un+1)

� 3

4
G(x,x,z) = G(x,x,z)− 1

4
G(x,x,z) � G(x,x,z)−G(un,un,z) � G(x,x,un)

which implies G(T x,T x,un+1) � r max{G(x,x,T x),G(un,un,Tun)}. If n → ∞ we obtain

G(T x,T x,z) � rG(x,x,T x), ∀x ∈ X , x 6= z. (8)
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Now we show that z is a fixed point of T . In the case where 0 ≤ r <
1√
5

, we have λ (r)≤ 1−2r

2r2
.

First, by induction we show that

G(T nz,T nz,T z) � 2rG(z,z,T z), ∀n ≥ 2. (9)

Since for all x ∈ X we have

G(T 2x,T 2x,T x) � 2G(T x,T x,T 2x) � 2rG(x,x,T x),

hence (9) holds for n = 2. Suppose G(T nz,T nz,T z) � 2rG(z,z,T z) for some n ∈ N for n > 2.

Since

G(z,z,T z) � G(z,z,T nz)+ G(T nz,T nz,T z),

we obtain G(z,z,T z) � 1

1−2r
G(z,z,T nz), and hence

λ (r)G(T nz,T nz,T n+1z) � 1−2r

2r2
G(T nz,T nz,T n+1z) � 1−2r

2rn
G(T nz,T nz,T n+1z)

� 1−2r

2
G(z,z,T z) � 1

2
G(z,z,T nz) � G(T nz,T nz,z).

Therefore by the assumption we obtain

G(T n+1z,T n+1z,T z) � r max{G(T nz,T nz,T n+1z),G(z,z,T z)} � 2rG(z,z,T z).

It follows that (9) holds for n ≥ 2. Arguing by contradiction, assume T z 6= z. Then from (9)

T nz 6= z holds for all n ∈ N. By (8) we also have

G(T n+1z,T n+1z,z) � rG(T nz,T nz,T n+1z) � rn+1G(z,z,T z).

This shows that T n → z which contradicts to (9). Thus we obtain T z = z. If
1√
5
≤ r < 1 then by

Theorem 2.8 and the proof of Theorem 2.3 we can obtain a subsequence {un j
} j∈N of {un}n∈N

such that λ (r)G(un j
,un j

,un j+1) � G(un j
,un j

,z) for all j ∈ N. From the assumption we have

G(z,z,T z) = lim
j→∞

G(un j+1,un j+1,T z)

� lim
j→∞

r max{G(un j
,un j

,un j+1),G(z,z,T z)} = rG(z,z,T z).

Since r < 1 the above inequality implies T z = z. The uniqueness of fixed point follows from (8).

This completes the proof.
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