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1 Introduction

The generalized translation operators are introduced by Delsarte and Levitan (see [4], [9])
and an interesting harmonic analysis for them is developed, since they permit to define the
convolution and this concept allows to introduce the so called hypergroups (see [2]) and signed
hypergroups (see [13], [12]).

A natural question arises : how the translation of the product of two functions may be repre-
sented in the framework of signed hypergroups?

We begin by the following remark. If we consider even functions on R, the appropriate

translation in this situation is given by
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In this case, we have

T(f9)(0) = Tf W) + 71/ +y) — fe— gty —gle—y)). ()

We observe that in contrast with the group situation, we do not have

T,(f8)(x) = T,/ (x)T;8(x),

and we remark the appearance of other terms. In [10] the authors have given analogous of the

representation (1) in the context of Bessel-Kingman and Jacobi hypergroups on the half real line.
The aim of this paper is to extend analogous of the representation given in [10] in the con-

text of signed hypergroups. More precisely, we are interested in establishing representations of

T,(fg), where Ty is the generalized translation operator defined in the Bessel-Dunkl and Jacobi-

Dunkl signed hypergroups.

The structure of these signed hypergoups is derived from differential-difference operators on R

of the form

The Dunkl operator on R corresponds to the function A(x) = |x[?**!, a > —%. The Jacobi-
Dunkl operator corresponds to the function A (x) = 22° (sinh |x|)2**! (coshx)*2*!, p =+ B + 1.

M. Rosler!!], resp. N. Ben Salem and A. Ould Ahmed Salem!!!, have established a product
formula for the eigenfunctions of the Dunkl operator, ( resp. the Jacobi-Dunkl operator), which
leads to generalized translations and uniformly bounded convolutions of point measures and
generate structures of signed hypergroup on R.

The paper is organized as follows.

The first part is devoted to the study of the representation of the translation of product of two
functions for the translation associated to the Dunkl operator.

The second part deals with a similar study for the translation associated to the Jacobi-Dunkl

operator.

2 Representation of Translation of the Product of Two Functions for
Bessel-Dunkl Signed Hypergroup

2.1 Preliminary
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In this subsection, we recall the basic notions and we give a summarized background for
Bessel-Kingman and Bessel-Dunkl signed hypergroups which we need in this study.
First of all, we introduce the following notations.

1
LetaxeR, o > —> the Bessel operator noted A, is defined by

d?> 2a+1d

Ag= L 20714
“T dx2 x dx

For A € C, the normalized Bessel function j, given by

Ja(x)=T(a+1 i #)2” xeR 2)
“nTn+a+1)’
is the eigenfunction of Ay, satisfying
Agit = —A%u,
u(0) =1, u'(0)=0

1
For o0 > — > the functions j, satisfy the following product formula

T
Ja(X)ja(y) = ca/ ja(\/x2+y2 — 2xycos Q)Sinzo‘ 0 do, x,y>0,
0

where
INa+1)
r(Hr(e+1)
This product formula permits to define the translation for the Bessel-Kingman hypergroup de-

noted oy f which is defined by

Coq —

T
Gyo‘f(x)zca/ F(v/x* 432 —2xycos 0)sin>* 6 d6, x, y>0. (3)
0

Notations We denote by
20+1
S
2¢T(a+1)
T
Gy(m’a)f(x) = (—1)’”(:,,1705/0 F(v/x2 432 — 2xycos 0)C%(cos 0) sin>* 6 d6),

dmgy(x) = x>0,

where
B MNa)(a+)I(m+1)
me = T e gD (m + 20)
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C}, the Gegenbauer polynomial of degree m and of index .
It is well known that these polynomials verify the following proprieties (see [14], (7.33.1),
(7.33.2), (7.33.3)):

1) For y > 0, we have

['(m+2y)
Y R S St VA
max G = oy @
1
ii) For —5 <y <0, we have
e If m is even,
e If m is odd,
L Ty+it
(0] < 2 Cmbm+2) e ©)
T T2
iii) For all m, n € N (see [5], p. 177), we have
T
/ C7(cos 0)CY(cos 0)(sin0)*Y dO =0, if m#n,
0
n 21727 (m+2y)
CY(cos0))*(sinB)* do = . if —n. 7
| (Chteos )7 sino) e T me )

For f € L'((0,0),dmg(x)), the Bessel transform noted H (f) is defined by

ol = [ 1)) dma(a),

For f € L'((0,00),dm (x)) and H (f) € L' ((0,00),dmg (x)), the inversion formula for the Bessel

transform is given by
400
0= [ Hal)0a(2r) dma(x), e a. e

1
It is shown in [10] that for all & > 5 o # 0, under some conditions imposing on functions

f and g that

a _ a o & (m+o)L(m+2a) _(ma)
o a)) = ot fafiate)+ 3 ot 2o

f@o" g, @®)

We denote by

d.u'OC(x) = m|x|2a+l dx, x€eR.
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1
The Dunkl operator on R of index o, ¢ > ) is defined by

1 x)— f(—x
Daf() = /00 + (ot )TN e om) ©)
For A € C, the function
.. X . .
ea(x) :]a(lX)+m]a+1(lX), xeR

is the eigenfunction of D, satisfying

Douu=Au,

u(0) =1

It was shown in [11] that the functions eq(A.), A € C, satisfy on R, the product formula

ea(Ax)ea(Ly) = /R ea(A2)duc, (2). (10)
where
wa (x,,2) dlig(2) , ifxy#0,
dug,(2) =4 &, , ify=0,
5 . ifx=0
and wy(x,y,z) is a continuous function on | — |x| — |y|, —||x| — [y[|[[U]l|x| — |||, |x| + ||[, uni-

formly bounded, with support [—|x| — |y[, —[|x[ — [y[|] U [|x] = [y], |x] + [y]].

The formula (10) can be written in the following form
T T
ea(Ax)eq(Ly) = cal / ¢, (AZs 5 () (x,y, 6) sin®* 6 d6 + / ¢ (AZ5,(8))1(x,y, 6) sin* 6 d6),
0 0 :

where e, is the even part of e, namely, we have

(4

€q(2) = jaliz),

and e, is the odd part of ey, it is given by

%@zﬁiﬁywwm

Z:y(0) = /x> 4 y> —2|xy|cos 0,

h(x,y,0) = 1—sgn(xy)cos 6
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and

(x4y)(1—sgn(xy) cos 0) i (x
) 7y) 7& 0 )
h°(x,y,0) = 2 6)

0, if (x,y) =0.

The product formula (10) permits to define the generalized translation operator 7;* associated

with Dy, y € R, by
T f(x) = /R f(2) dgy(2)
— ol [ £Ziy (0D (03, 0)5in™ 0 06+ [ £,(21,(6) x (. 0)5in* 6 06
0

where f, and f, are respectively the even and the odd parts of f.

The characteristic propriety of the translation Tyo‘ is that

T eq(x) = ea(x)eq(y).

This generalized translation provides the real line with a structure of signed hypergrouop and
the functions e, are the characters of this signed hypergroup.

For f € L'(R,dy(x)), the Dunkl transform on R is defined by
Taf(A) = [ fWea(-i23) duale). A €C
= Ha(£2) () +AH (I () (A). (1
where J is the integral operator defined on L' (R, dug (x)) by
Jf(x) = /:of(t) &,  xeR
For f € L'(R, duy(x)), we have the following propriety:
Fo(TE1)A) = Faf (Meality).

Let f € L'(R, dug(x)) such that Fof € L'(R, dug (1)), then we have the following inversion

formula :

Fx) = /R Fof Vea(irx) dua(A) o a. . (12)

2.2 Representation of Translation of the Product of Two Functions for

Dunkl Transform
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It is clear that if x = 0 and f and g are two functions having translation, 7,*(fg)(0) =
f(»)g(y), then we will consider in the following that x # 0.

In the following we suppose that o # 0, the case @ = 0 will be studied earlier.

To derive an explicit formula of T,*(f g) under some conditions imposing on f and g, we

define the following transforms:

T f(x) = (—1)" e /oﬂ[fxzx,y(e)he(x,y, 0) + f,(Zey (0))1° (x,,0)]CZ (cos 0) sin’* 6 d6,

(13)
m,o m ”ZX, 9 o e
T f(x) = (—1) Cm,a+1/0 yx( )[fe(zx,y(e)h (4,3, 0) + fo(Zyy(8))h° (x,y,0)]
xC%1(cos ) sin** 6 d6. (14)

The orthogonality propriety of the Gegenbauer polynomials leads to get the following proposi-
tion.

Proposition 2.1. For an arbitrary polynomial f of degree < m — 1, we have ]}f?’a) f=0
and Y}E?’a)f =0.

1
Proposition 2.2. For o > —5 o # 0 and f a convenient function, we have

T ()] < em™ O (6 (| £])(1x]) + o (£ ) (1)

and
, <[ + [yl
15 1) < P (0 el + o Lol (),
where c is a positive constant.
Proof. It s clear that
|h®(x,y,0)] <2, x, y€R, 6 € [0,7]

and it is shown in [11] that
|h’(x,y,0)] <2, x, y€R, 0 €[0,x].
If a > 0, from (4) we deduce that
Cm,a|C(cos0)] < cq
and if —% < o <0, from (5) and (6), we have

Cm,a|Cor(cos0)] < cm™%cq,
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where c is a positive constant which may change from line to line throughout this paper.

1
Then, for o > —5 we obtain

T T
T ()] < em™™ O @y ( /0 fo(Zy(8))sin®* 6 d6 + /0 fo(Zyy(0))sin** 6 d6)

= em™ O (ol (| £ ) (1x]) + o (| £o]) ().

1
On the other hand, if o > ) then

and

Cm,at1 |C,‘31‘Jrl (cos0)| < ceq,

Zy(6) i+
x N

then we obtain

I ()]

IN

C—M D (/Onfo(zx,y(e))sinza 0 d6 + /Oﬂfe(Zx,y(e))sz“ 6 d0)

x| + 1yl
]

The main purpose of this section is to show, under some conditions imposing on the functions

(a5 (1Fo D) (1x) + o5 (1 fe D (1x1)-

f and g, the following representation of 7., (fg) :

& (m+o)(m+2a) 7(m.a)

T (fe)(x) =Y,

(m, )
L oT a1y e EWoT (k)
Feo ((X+%)F(m+2a+2)(m+a+1) (m.a)

+m§0 (a+1)2TQ2o+2)[(m+1)

gV (f,) (). (15)

. . . 1
Lemma 2.3. For arbitrary f having translations T.” f and o > —5 a # 0, we have

v Lim+2a)(m+a) ma) . (m,)
mZ:,O ar(za)r(m+1) Gy ](X()L’)(X)T%E f(x)

T (fea(A.))(x) =
(a+PT(m+20+2)(m+o+1) (o)

iAx ) (m,00)
+Z o+ @+)Tatoimen @ Jen)@ho /. (16)

Proof. From the definition of Tya we have

T (fea(ik.))(x) = cq /On[fe(Zx,y(G))Efx(ile,y(Q)) +o(Z:y(0))eq (IAZ:,(6))]

X (1,3,0) 502 0 0+ [ 1y (Zuy (0))eu(i2 22y (0)) + o1y (6)) e 132y (6))



Anal. Theory Appl., Vol. 28, No.3 (2012) 209

xh°(x,y,0)sin>* 0 de. (17)
Now
eq(iMZ:y(0)) = ja(AZy(0))
and
. iAZy\(0) .
e (ilZ:y(0)) = 2(Ocij_(l))]oc+1(7LZx,y(9))-
From ([10], p 118-119) we have
. S (im0 (e
jaAZey(0)) = ¥ (-1 A g 3 )8 cos 0), s
m=0
then
.. S (im0 ey .
& (iAZy(8)) = Y (—1) (’"a )oy< @ o (A.)(x)C% (cos §) (19)
m=0
and
. irZ,,(0) &= (m+a+1) (ma+). 1
e (iMZy(0) = —22 Y (—1)"———=0,""""jar1(X.)(x)CE (cos B).  (20)
ey 2(a+1) m§0 a+l o
On the other hand, we have
w w(M+0) (ma) .
Y11y D ol (2 ()G (c0s 0)| < cexp(i/Ta) 21
m=0

and

o nm+a+1) ot .
Y (=1 (T“)cy( D 1 (A) (X)CLH (cos 0)] < cexp(A/[xy]).
m=0

Now from (17), (19) and (20), the dominated convergence theorem allows integration term by
term and then gives the expression (16).

Theorem 2.4. Let o0 > —%, a#£0.

i) If f € L'(R, dug(x)), Fo(f) € LY(R, du(R)) and g is a polynomial, then formula (15)
holds.

i) If f € L"(R, dug(x)), Fo(f) has compact support and g has translation T;*g, then for-
mula (15) holds.

Proof. Itis noted that, under the conditions in (i) or in (ii) on f, we have Fo(f) € L' (R, dug(A))

and then the inversion formula

10 = [ Faf(A)ealirs) dia(2)
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holds, so that we can write

/f 2)dpgy (2)

= [1] Faf@ealinz) dua(2)le@) duis (). @2)
R JR

From Fubini’s theorem and Lemma 2.3 we obtain

0) = [ Taf QT (gealin) ) dalA)

_ Lim+20)(m+a) (ma) . (m.c0)
/:’:Faf [mo ocF(2oc)F(m+l) Oy JO‘()L')(X)Y}-E g(x)

(0+35)C(m+20+2)(m+a+1) (ari

Ax : (m.a)
+Z oc+1 (a+1)T2a+2)Im+1) Jar1(A) ()T g(x) | dpa(2).

(23)

If g is a polynomial, then by Proposition 2.1, Y}Ef’a)g =0 and Ty(f’a)

g = 0 for sufficient large
m, and hence, using Lemma 2.3, 7;%(g.€¢ (i4))(x) has the expression (16) with finite terms only.

Integration term-by-term for (23) shows that

+oo m m mOC ]
[C(m+2a)(m+ @) /?oc ) Ja(A.)(x) dug(A)

LA (fe)) = EO al(2o)(m+ 1)

JLm+2a+2)(m+o+1) na

+mZO a+1 Pra ol 1) oo 8™
X T A" a3 (3) dpa(A) 4)
R2(0+1) a Ja+1 Ha(A).
Using Fubini’s theorem in the last integrals above, we find
S T(m+20)(m+a), (1.0) 33 @)
a —
VD0 = L raarme b (| Fal£)(2)ja(2) dua(2)@

2 (a4 H0(m+200+2)(m+ 0+ 1) (o) (x) ™t

+
G’
+mZ:,0 (a+ )T 2o+2)T(m+1) 2 S

iAx .
, (/R mga(f)(x)]aﬂ(x.) dua(l)> (x)-
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From (11) we have

| TP duad) = [ Hal£)A) () ditad)
+ [ AU (A)ja(R) dHa(2)
R

_ /R Ho(£.)(A) ju (%) dia(2)

+o0
= Ha(fe)(A)ja(Ax)dme (L)
= fe(x)
due to the inversion formula for the Bessel transform.
On the other hand
X A s (Ax) dg(A) = VM) joest (Ax) dptee (A
/Rz(a+1) a(f)(A) jar1(Ax) dpa(d) = /2a+1 (M) jas1(Ax) dptg (1)
. iAx .
+ /R AHald o) (B3 gy a1 (24) ditalR)
+oo
= [ U R) pal) dma(2)
0
4o
= ([T ) A julAx) dma(2))
0
As in above

/Rizélil)?a(f)@)m“(k><>dua<> —J(f) (x) = fol).

Thus (15) follows readily from (24) under the conditions in (i).
Now we show (15) under the conditions of part (ii). We first note that 7, (g.eq(A.))(x) has

the same expression as (16), and by Proposition 2.2 and the expression (9) in [10] we have

v m m m m,o m,a) .
Zo| ocly(zoc;rl“z(i)ilja)n(’f g(x)5" ja(A.)) ()

oo mZammdx(O —-a) 22

< e(of(lseD (k) + o (5ol () X 7 o

m+o+1)2" 4

In the same way as (21), we have

y m n m m,o m,a) .
Z| al}ﬁ(Za—)i_Fz(Z)—f—l;—a)Tyge’ )g(x)Gy( 7 )]tx(l.)(x)|

m=0

< c(of(Isel) (1x]) + o (180]) (1x1)) exp(A /ey
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Also we have

= (=)@ HT(m+2a+2)(m+a+1) g

(m,o+1)
mgo| (OC—I— 1)21’*(2a+2)1—‘(m+ 1) Y0 g(x)Gy ]06+1()L )(x)|
< #1200 + o (1) D) exp(2-v D

Since F f has compact support, the integral in (23) is taken over a finite interval of A, on which
the function exp(A+/|xy|) is a bounded function of A. By the dominated convergence theorem,
integration term-by-term in (23), as we operate for (24), gives the formula (15).

Remark. If oo =0, we denote

10109 = S [y (00 (5, 0) + o Zay (O (.3,8) cosmd a6,
1) = L [P0 () (10,0) + 12 (0 (1:2,0)1Ch (0 0) a6

o™ f(x) (Z:y(0)) cosm do,
eq(ilZcy(0)) =2 Z )"0y jo(A.)(x) cosmB,
e8(iAZ:,(8)) =2 Z Mo§ ) i (A (X)C (cos 6).

From this formula we get
o) ; (m,0) O AX _(m1) (m,0)
T2 (feolin.)) () =2 Z 0" jo(A )T f()+2 ¥ Zo™ ! jy () ()T f ().
m=0
Then from this formula and the inversion formula, we obtain the following representation :
—+oo

() x) =2 Y " f.(0)T3, +zch"‘f0> g (x).

m=0

3 Representation of Translation of the Product of Two Functions for

Jacobi-Dunkl Transforms

3.1 Preliminary
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First, we recall some results in Harmonic Analysis associated with the Jacobi operator.

1
Leta>p > —5 the Jacobi operator noted A, g is defined on (0,0) by

d? d
Agp = @[(206 + 1)cothx+ (28 + l)tanhx]a
1 d d
— —(A —
Aa_ﬁ’(x) dx( (X,ﬁ (x)dx)’
where
Aq p(x) = 2% (sinhx)** ™! (coshx) 2P !
and

p=o+p+1.

For A € C, the Jacobi function q)ia’ﬁ ) given by

—id p+il .
%%a’ﬁ)(X) = 2F (p 2l ’p 2l ;06+1;—sthX>

(2F7 denotes the Gauss hypergeometric function), is the eigenfunction of A, g satisfying

Agpu=—A*+pHu,

u(0)=1, u'(0)=0.

(a,B)

1
In the following, we suppose that o« > 8 > —5 The functions (pla’ satisfy the following

product formula

1 ¢
0P (1)l *P) (y) = /0 /0 O\ PN (Z, (W) dimg g (r, W), x,y20,

where

2 (a+1)
Val(a—B)L(B+3)

This product formula permits to define the translation for the Jacobi-Dunkl hypergroup denoted

1P £ which is defined by

dmg, g (r,y) = (1— )@ P=1,2B%1 (5in )P drdy.

1 T
7B f(x) = /0 /0 FZey (W) dmg g(rny),  x, y>0, (25)

where

Zyy(r, ) = argcosh(|coshxcoshy + rexp(iy) sinhxsinhy]).
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Notations. We denote by

dug g (x) = Ag g(|x]) dx, x €R,

2P AT (a4 1)T(iL)
c(A) = . . A € C\{iN},

1 _
dvaﬁ(l) = E‘C(A)‘ 2 d)L
1 rm
Ty(kJ.,Ot.ﬂ)f(x) — (_l)k—i-l/o /O f(Zx,y(r, W))Rl(:léﬁ)("a ") dmocﬁ (r,y),

where {R,((?’l’n), k, 1 € N\{0}, k > 1} is the orthogonal system on L?([0, 1] x [0, 7], dmy (1, y))
defined by

R () = R 02 AR (cos y) (26)

and Rfly’n)(x) are the Jacobi polynomials with Rﬁ,y’m(l) =1.
For k > [, R,E?;’n) verify the following propriety (see [7]),

RO (r )| < ok, 27)

where ¢ and d are nonnegative constants depending only on y and 7.
For f € L'((0,00),d1g g (x)), the Jacobi transform noted F(f) is defined by
TN = [ A0 3) dbp ().
For f € L'((0,00),dg g (x)) and Ff € L'((0,00),dV¢ g(A)), the inversion formula for the Jacobi

transform is given by

oo

f)= [ T M@ P dvapd),  Vapac

1
It is shown in [10] that for all &t > 8 > — 7 under some conditions imposing on the functions

f and g we have

+oo k
B (fg)(x) = £ () Z Y IR 0B p g eP) g ), (28)
k=11=0

where
lop) _ (Zk=20+2B)(k+1+a)(a—B)i(2B + Di—y(o+ 1

ki = (k—1+2B)(k+a)l!(k—1)!(B+ 1)

1
For o > f3 > 5 the Jacobi-Dunkl operator on R is defined by

](f(X)—f(—X))

Agpf(x) = f/(x) +[(20 + 1) cothx + (2 + 1) tanh x 5 . fEC'(R). (29
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For A € C, the Jacobi-Dunkl kernel ‘Pi"ﬁ is the unique C”-solution on R of the differential-

difference equation

Agpu=idu, AeC,

(30)
u(0) =1
It is given by
PP~ g (), i A € C\{0}
PP (x) = dx Vx € R, (31)
1, ifA=0,
with 12 = p? + u2.
The function ‘I‘g’ﬁ can be written as follows
iA
\Pg’ﬁ (x) = (pl(ia’ﬁ)(x) + mcoshxsmhxq)aﬂ B+1( ).
We put
h(x,y,r,¥) = 14 rcos y.
8(x,y,r,w) = sinh(x + y)(coshxcoshy + rcos wcosh(x + y) 4 * sinhxsinh y).
5(x,y,r,l//) f _
1 (o) = 3 oMzl Z et ¥EY
0, ifx=—y.
It is shown in [1] that the functions \P;f’ﬁ , A € C, satisfy on R, the product formula
Vv o) = [ 9P ausf ), (32)
where )
K(Xﬁ ()C,y, M) d.uocﬁ (u) ) if Xy # O ’
duf ()= 5, ify=0, (33)

8, if x=0

and K, g is a continuous function on | — |x[ — [y, —||x[ — [y||[U]||x]| — [y||, [x| + y|[ with a support
in Iy, = [—|x| — |y, =|[x] = [y[[] U[||x| = [¥]|, |x| + |y]], which is not necessarily positive.

The formula (33) can be written in the following form

VP 0) = [ [P oy W) () 1)
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[ [ e ) ), G4

where ‘ng is the even part of ‘PA’B defined by
¥l ) = o ()
and ‘ng is the odd part of ‘Pg’ﬁ , it is given by

o.B —id
w0 = Lot

For f a convenient function, the product formula (35) allows to define the generalized translation

operator Tya'ﬂ associated with Ay 5, y € R, by

14 f) = [ £ dusyf (35)

1 rm
= [ ez () () dma )

1 T
+ /0 /0 FoZey (P (5,3, 7, W) dimg (1, ).

The characteristic propriety of the translation Tyoc’l3 is that
LPEP (x) = B3P (2P ().

This generalized translation provides the real line with the structure of signed hypergroup, and

the functions ‘Pi"ﬁ

are the characters of this signed hypergroup.
We denote by

Al
87\/A2 — p2|c(y/A2 —

For f € L'(R, di g(x)), the Jacobi-Dunkl transform on R is defined by

do(A) =

=513 5.1 ()02

ocﬁf /f d.u(x,/}( ) AeC.

For f € L'(R, dug, p(x)), we have the following propriety:

Fop(TIP LX) = Faf M ().

Let f € L'(R, dug g(x)) such that F, g f € L' (R, do(A)), then we have the following inversion

formula:

x) = /R FupfAPLP () do(R),  oa e (36)
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3.2 Representation of Translation of the Product of Two Functions for
Jacobi-Dunkl Transforms
It is clear that if x =0 and f, g are two functions having the translation, Ty‘x’l3 (fg)(0) =
f(»)g(y), then we will consider in the following that x # 0.
Analogously to those in Section 2, to derive an explicit formula of Tyoc’l3 (fg) for given f and

g, we define the following transforms:
(kt.tB) wey [T ‘ 0
TP 1) = (<) [ Uy (9 (31 0) + ol 2oy (W) (13,5

X R,(ff’ﬁ '(nw) dmg, g (r, W), (37)

(kl,0,B) (1)) b (7 sinh(Zyy (r, ) cosh(Zey ()
T p) = (e [

: sinh xcosh x [fe(ZW(rv W)ho (x7y7 7, ‘I/)

+ foZey (W) (3, W) RGP (1, w0) dimg, g (W) (38)

1
Proposition 3.1. Let oo > 3 > 5 then we have the following inequalities

L6 "P) ()] < ok (2B (1 £ ) () + TP (1 fu]) ()

and

TP £(x)] < k| coth x| cosh? y(z%P (| ) (x) + TP (|, ) (),

where ¢ and d are nonnegative constants depending only on o, and 3.

Proof. It is clear that
|he (x,y,r,¥)| <2, x,yeR, rel0,1], wel0,n].
It is shown in [1] that
|1 (x,y,r,p)| <2, x,yeR, rel0,1], wyel0,n].

1
From (27), for all o > B > —> there exists ¢ and d two nonnegative constants depending only

on ¢ and B such that

R ()] < ek

RGP ()| < ek,
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then we obtain

1 rm

BP0 <l [Ty () dmag ()
1 rr

—|—/0 /o |[fol (Zey(r,w)) dma g (1, )

which gives the first inequality.

On the other hand, we have

sinh(Zy ,(r,y)) cosh(Z,,(r, ¥))

sinh xcoshx

' < 4| cothx| cosh?y,

then we obtain the second inequality.

Now by the orthogonality of R,(:lc’ﬁ ) on L*([0,1] x [0, 7], dmg g (r, ¥)), it is easy to prove the
following proposition.

Proposition 3.2. If f(x) = g(exp(x)), where g is a polynomial of degree < (k— 1), we have
15 %P) — 0 ana TP = 0.

We shall show that, under some conditions, Tya'ﬂ (fg) has the following representation:

+oo k
- S
k=01=
N Z ZH (o+1,8+1) kl.,OH-l7I3+1)f(x)]"yglg’l’a’ﬁ>g(x). (39)

Lemma 3.3. For arbitrary f having translations Tya’ﬁ |, we have

B(wePy( ZZH I k0) o (0B) () kLB g

+oo k 7L
n Z Z l+ coshxsmhxn(aH ﬁH)Ty(k’l’aH’ﬁH)(P,(laﬂ’ﬁﬂ)(X)Y}(,]é’l’a’ﬁ)f(x). (40)

a.p

Proof.  From the definition of 7}, we can write

Taﬁ f‘PaB / / [fe(Zey(r,w)) 17§(Zx,y(’? V) + fo(Zuy(r,w))¥ F(ny(”v v))]

1,z
<) dmap(w)+ [ 2 (v e w)

- FoZay (1,9)) % 5L (Ziy (1Y) (3,3, 7, W) dimg g (1, ). (41)
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Now
P (2 (nw) = 9P (Zey ()
and
B A (a+1,8+1)
¥ (Zey(rw)) = 200+ 1) sinh(Zyy (r, y)) cosh(Zey (r, ¥)) 9y (Zey(rw)).
From ([10], p 123), we have the following addition formula
(P;(la'ﬁ) Zey(r¥)) Z Z k+lT kla,ﬁ)(pl(ia,ﬁ)( )1 ](COIC B pla ’ﬁ)(r, V), 42)
then .
—+o0
\ng Zey (W) Z Z k+lT klaﬁ)(pilaﬁ)(x)nl(:lhﬁ) R\ ﬁ)( ) (43)
and
l
W (Zas (5 )) = 3y S (e (15 ) cosh (Zey 1, 9)
+oo k
Z Z k-HT (k1o+1, B—H)(pL(LOH_]ﬁ+l)(X)H]((?;+]7B+1)R]((f);+lﬁ+l)(r7 w) (44)
k=01=

From the absolute and uniform convergence of the series (43) and (44) with respect to (r,y) €
[0,1] x [0, 7] (see [7], Theorem 2.1), the dominated convergence theorem allows integration term

by term and then shows the lemma.

1
Theorem 3.4. Let a > f3 > —5

D) If feL'(R, dugp(x)), Fap(f) € L'(R, do(A)), g = h(expx), and h is a polynomial,
then the formula (39) holds.

ii) If f € L"(R, dpig g (x)), Fep(f) has compact support and g has translations Tyo“l3

the formula (39) holds.

g, then

Proof. From ([6], Cor. 9), [c(t)| 72 <c(1+p)?**! for 0 < p < oo, where c is a nonnegative
constant. Hence, if &4 g(f) has compact support, then F, g(f) € L' (R, do(2)). The inversion

formula
0= | Tapf ¥} (do(2)
holds. So that we can write
1)) = [ F@)e@au )
= [ | Faprug? @) do2)g)aust )
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From Fubini’s theorem and Lemma 3.3, we obtain

T (fg)(x / Fo g TP (gP2P) (x) do (1)

—/ff ,ﬁf ZZHHJ} yklavﬁ)(p(aﬁ)() (klaﬁ)f(x)

k=01=

(a+1,/3+1)T(k,l,a+1,[3+1)

coshx smthkl y

~+oo
+
Lrs
(pl(i““’ﬁﬂ)(x)Ty(,lé’l’a’ﬁ)f(x)dU(l)- (45)

If g = h(expx), where & is a polynomial, then by Proposition 3.2, Ty(le( 1B) — 0 and Ty(]; )
for sufficient large k, and hence using Lemma 3.3, T, (g‘P/l P )(x) has the expression (40) with

finite terms only. Integration term-by-term for (45) shows that

Joo k
= Y YO o [ 3,501 P 9P () do(2)
k=01=0
+ Z ZH (a1, ﬁ“ kla ﬁ s1nhxcoshx
k=01= R 2(o

Using Fubini’s theorem to the last integrals above, we obtain

T (fe)w) = Zzn“‘* P gor D[ 5o p R do (1)

k=01=

+Z ZH (0+1,8+1) kla,ﬁ) 2(x )Ty(k,l,(erl,ﬁ+1)
k=01=

< /R TCEST smhxcoshxffaﬁf( Yot dc(l)) (x).

From [3] we have
f7'~oz,[3f(7t) - Z?fe(l) +2il?("f0)(2’)7

then

| Fap(N@@EP ) do(a) = 2 / F() M)l (x) do(2)
- [ stwel ’m()dva,ﬁ(u):fe(x)

due to the inversion formula for Jacobi transform.
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On the other hand
iA (a+1,8+1)
/Rmsmhxcoshxffaﬁf( ) + (x) do(A)
=2 |70 g ok @) do )
+2i A(T)g(f(fo))(u)afpﬁ“’ﬁ)(x) do(h)
= 2A?(Jfo)(u)%¢ﬁ“’ﬁ)(x) do (1)

- o+w?(f(fa))(u)£¢ﬁa’ﬁ)()€) dvep (1)

dx
= ST IO @R ) dvip ()
As in above
faarn ssinhxcosha f(R) k"G () () = LI (5) = fo(o)
R2(OC+ xcoshxdq g x_dx 0)(X) = fo(x).

Thus (39) follows readily from (46) under the conditions in (i).
Now we shall show (39) under the conditions of part (ii). From ([10], p 124) and Proposition

3.1, we have

VN (@) ko) (@ h) riklap)

IZZHH’ y Op () Tye " g(x)]

k=0[=

kl
(TP () () + 2B (1 fo]) (x szd“““rT PP ()]
k=01=0

and

k=01=

<C!<>0thX\008h2 (P (1)) 00+ 2P (1fol) (x)

+oo k
% Z de+2a+1 ’T (kla+1, [3+1)(p}(£a+17[3+1)(x)’
k=01=0

which converges uniformly for ¢t in compact subsets of R. Then by the dominated convergence
theorem, integration term-by-term for (45), as we operate for (46), gives the formula (39).
1 1
Remark. The two cases o = f§ > ) oro>f= ) are related by the quadratic trans-
formation
((X,* ] ) 5
Wi () = WY (),

then it suffices to study the representation of translation of two functions for one case.
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If a = B, from [8] we have

I'aox+1 )
dme o(r, ) = ﬁﬁ(l —r)sin®* y dr dy,
2
then
I(a+l)
T f(x) VaT(a+ 1) / Fo(Zey (L, w))HE (x,y, 1, W) sin?® y dyr

+ /0 fo(Zey (L, W))H° (x,3, 1, ) sin®* y dy]

and the addition formula (42) degenerates to a single series (I = 0), therefore

I(a+l) ,
B e MECRURILIR

FfoZey (L W)A? (2,3, 1,9)] < RGP (1, ) sin?® y dyr

T fx) = (-1)

and

[fE( ,y(l II/) (x,y,l,lll)

+fo(Zey (1, W) (x5, 1, W) IR (a+l aH)(l,l//)sinz“q/dq/,

,0

T(kvovava)f(x) _ (—l)k /On Sinh(zjﬂy(lv W)) COSh(Zx-,y(lv IV))

sinh xcosh x

finally we obtain the following representation

Tya,a( Z H k 0,0, a)f(x)T(lec,O,a,a)g(x)

)

n Z H a+l a+1) (k l’““’O‘H)f(x)]"yflg’o’a’a)g(X)-
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