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Abstract. In this paper, we establish two weighted integral inequalities for commutators
of fractional Hardy operators with Besov-Lipschitz functions. The main result is that this
kind of commutator, denoted by Hy*, is bounded from L, (R+) to L’; (R+) with the bound
explicitly worked out.
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1 Introduction and Main Results

Let f be a non-negative integrable function on Ry = (0,0). The classical Hardy operator
and its adjoint operator are defined by

1 X
Hf() = - /0 Flo)dr, x>0

and

H* f(x) :z/j@dl, x> 0.

The following well-known integral inequalities is due to Hardy (cf.[5,6]).
Theorem A. If f is a non-negative measurable function on Ry and 1 < p < oo, then the
following two inequalities

p
|Hfllrr,) < ﬁ”f”m(m)
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and
IH* fllrr,) < PNy
hold, where the constants % and p are sharp.

For the n-dimensional case, Lul discussed the following Hardy operator defined on the

product space,

1 X1 Xn
_.X/O /O St stp)dty-odty, x = (x1,2,-,x) €ERE (1)
n

Hf(x) :=

X1

and the adjoint operator of the Hardy operator defined by
oo o flty. oot
f]{*f(x)iz/ / Mdﬁ---dm, X:(Xl,xz,---,xn)ERi, )
xi Xn I Iy

where R, = (0,0)" and f is a non-negative measurable function on R’;..

In [9], the following Theorem B is obtained.

Theorem B. Suppose that f is any non-negative measurable function on R, and 1 < p <
q < oo. Then the Hardy operator 3 defined by (1) is bounded from LP(R". ,x") to LI(R".,x%),
that is, the inequality

1

1 1
([, o) <c( [ )’ ®)
R" R
holds for some constant C, if and only if
y<p-1 and 5:%(}/+1)—1. )

Moreover, if the conditions in (4) are satisfied, then we have

(k

and the adjoint operator of the Hardy operator H* defined by (2) is also bounded from L” (R"_, x¥)
to L‘I(Ri,xa), that is, the inequality

(

holds for some constant C, if and only if

wff(x))‘fxﬁdx)‘l’ < (ﬁ ﬁ) ( A P ) g )

n .
+ i=1

1

<fH’7<x>>‘fx5dx)é sc( X fp@)ﬂdx)F ©)

n
+

y+1>0 and §=L(y+1)-1 7)

4
p

Furthermore, if the conditions in (7) are satisfied, then we have
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where L =141 =1y = (1 o 7). 1= (Lo 1) p = (piveep) and 8 = (81,85....8,),
Y< 8 means y; < O;,i=1,...,n, and)c”:x%xg2 xn,xeR”

The fractional Hardy operator on higher dimensional product space is defined by
HE f(x) = H( @) £(x) ;: 1 ey / / ftr,-- ty)dey - -dt, )
It immediately follows from the formula (9) that its adjoint operator is as follows
F f(x) = F0 00 / / {;11’ " d1'°'dfn, (10)
X .

where x = (x1,x2,--- ,x,) ERL, 0= (a1, ,@,),0< 0 < 1L,i=1,--- ,n

Obviously, if o =0,i = 1,...,n, then H* = H. This means that the Hardy operator is a
special case of the fractional Hardy operator.

Now let us consider the commutator of fractional Hardy operator and the commutator of
adjoint fractional Hardy operator on one-dimensional space.

The commutator of fractional Hardy operators with a function b and its adjoint commutator
are defined by

H () = a/ F(6)(b(x) — b(z))dr (11)

) :/x” f(t)(bt(f)a_b(t))dt, (12)

where b is a locally integrable function, x e Ry and 0 < o < 1.

and

The boundedness of commutators H* and H2* is worth deeply studying, consequently, re-
ceives considerable attention. In 2002, Long[g] proved that the two commutators of H and
HX* are bounded from L"(R+) to L7(R; ) with the function b in one sided dyadic CMO™*(P1'),
where | < p<g <o, -1l —qg+pBand i > T , = 1. Similarly, in 2006, Ful and Zheng“s]
showed that H* and H a: are bounded from LP (R+) to L4(R.) with b in Ag(R.), respectively.

In this paper, applying the results in Theorem B and combining the properties of the Besov-
Lipschitz function b, we show that both commutators H;* and H>* are bounded from L”(R})
to L4(R.) with a power weight, where b € Ag(R.). Moreover, the bounds of the commutators
HY and H}* are explicitly worked out. The proof is very concise.

We formulate our main results as follows.

Theorem 1.1. Suppose that 0 < a < 1, 0 < B < 1 and f is a non-negative measurable
function on R andbEAﬁ(RJr). Ifl<p<g<oo,y<p—1,and %—% = a+ B, then the
commutator HY is bounded from L”,(R..) to Lja (Ry), that is,

P
125 Nl ) < <m) 1611 Ay r 1/ 122, (R (13)
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where r satisfies
1 11

-—=14+-——.

r q9 p
Theorem 1.2. Suppose that 0 < a < 1, 0 < B < 1 and f is a non-negative measurable
function on R, andbEAB(R+). Ifl<p<g<o, y+1 >p(a+ﬂ),and%l—% =o+p,

then the commutator H>* is bounded from L”,(R..) to Lja (Ry), that is,

1
* p :
1 Plirymr < (o) Wyl me (14
where r satisfies
1 1 1
ol
r q P

2 Proofs of Main Theorems

To prove our theorems, we first provide some definitions and lemmas which will be used in
the sequel.
Definition 2.1.  Suppose 0 < B < 1. Besov-Lipschitz space is defined by

, h) —
AMR+%={f2%h€R+WﬂMMm): gg’f“+h£‘ﬂ”’<w}-

By Definition 2.1, it is clear that the following lemma holds.
Lemma 2.1. IfbeAg(Ry),0<pB <1, then

16(x) = b()] < =P 1Bl k.
holds for any x,y € R..

Proof of Theorem 1.1. By Lemma 2.1, it follows that

e [0 (b b)) a

1

|Hy' f (x)]

< = | SOl b0l

1 X
< g | SO Pl
<

1 X
W= WO

1 X
_ ) a+p ~
= Wllag, 2P [ r0

= bllay 2 PHI).
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We conclude

HH;f‘fHLza(Rg

</ow (1l (R+)Hf(X)x“+ﬁ>qx5dx> ;

= HbHAB (R.) (/O [H f(x)]?x a+ﬁ)+5dx> 1

160 g e I s oy
Set

+B)+

Since the conditions ¥ < p — 1 and Hl — %1 — o 4 B hold, simple calculation leads to

A

q
g(}/Jrl) 1.

Using the inequality (5) in Theorem B, we have
7 il P
- Y
il w = (so=i=r) ([ rmwe)

where r satisfies

Therefore we obtain

1
p r
15 Ay < (o) Polayon i (15)
This finishes the proof of Theorem 1.1.

Remark 2.1 For the special case, if y = 0 = 0, then

1 1
————a+p.
P q

It follows from the inequality (15) that

1—a—p
p—po—pp
1965 o < (22552 ) ol 1w

p—po—pp 1_“_ﬁ_c
p—1 -

195 Fllaryy < ClIbl Ay r Il

If we set

then we have
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which is the main result in Ful3!.
Proof of Theorem 1.2. It follows from Lemma 2.1 that

H f ()| =

< [Lope-bo,

/°° f(O)(t—x)P ||b||AB(R+)dt

tl—oc

= f()P||b]);
/ AE(R+)dt

tl*(x

= t‘”ﬁf(t)
Ry

t
= bl . H' 8 (), (16)

IN

where g(t) = 1**P (1), 1 € (0,00).
Thus we have

1
I sy = (7 (1Bl 7o) 220
= 1ol aymo) 1H 8l w,)- (17)
Set
A=y-pla+p).
Since the conditions Y+ 1 > p(a+ ) and § = %(}/—i— 1 —p(a+B)) — 1 hold, we have

A+1>0 and 5:%(/1“)—1.

This means that A, p and ¢ satisfy the condition (7) in Theorem B. Therefore, we conclude

* q
ey < (rp5rs) el mo
= (2 el
r(A+1) La(Re)
_ PN ([ arp o\
= () (f (et )
_ P
~ (s5r) Wl ime
p 7
- (o) W 8)
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where r satisfies L
=14-—-.
q p

, (17) with (18) yields that

N =

Thus, combining the inequalities (16

~—r

1

p ;
) 1ol I cn, (19)

y+1—-pa—ppB

I sy < (5

This finishes the proof of Theorem 1.2.
Remark 2.2. For the special case Yy = 8 = 0, then we have

1 1
———=0o+p.
P g

It follows from the inequality (19) that

p—pa—pp

I—o—p
1—pOC—pB> 161 Ay oy 1120 (-

VHE Flar) < (

Set 1
(p—pa—pﬁ>'ﬂ_ﬁzc
1—po—pp ’
then we have
1Hy " fllzaw,) < ClIbl Ay 1 o)

which obviously covers the main result in [15].
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