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1 Introduction

Fractional differential equations have gained considerable importance due to their vari-
ous applications in visco-elasticity, electro-analytical chemistry and many physical prob-
lems [1–3]. So far there have been several fundamental works on the fractional derivative
and fractional differential equations, written by Miller and Ross [4], Podlubny [5] and
others in [6–8]. Mathematical aspects of fractional order differential equations have been
discussed in details by many authors [9–17].

Consider the Volterra integral equation of the second kind of the form:

u(t)=λ
∫ t

0
K(t,s)ds+ f (t),

where f , K are given functions, λ is a parameter and u is the solution. This equation arises
very often in solving various problems of mathematical physics, especially in describing
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physical processes after effects [23, 24]. Rabha W. Ibrahim and Shaher Momani [25] dis-
cussed the upper and lower bounds of solutions for fractional integral equations of the
form:

um(t)= a(t)Iα{b(t)u(t)}+ f (t), m≥1,

where a(t), b(t), f (t) are real positive functions in C([0,T],R) and α∈ (0,1). Jinhua Wang
et al. have investigated the existence and uniqueness of positive solution to nonzero
boundary valued problem for a coupled system of nonlinear fractional equation and the
reader is referted to [18]. A. Arara et al. [19] have considered a class of boundary valued
problems involving Caputo fractional derivative on the half line by using the diagonal-
ization process.

In this paper, we investigate the existence of solution for the coupled system of non-
linear fractional differential equation:

cDαx(t)= tIγ f (t,y(t))+ f (t,y(t)), t∈ (0,∞), (1.1a)

cDβy(t)= tIη g(t,x(t))+g(t,x(t)), t∈ (0,∞), (1.1b)

x(0)= x0, y(0)=y0, x(t) and y(t) are bounded on [0,∞), (1.1c)

where 1<α,β≤2, cDα and cDβ are the Caputo fractional derivatives, γ,η are real positive
numbers, Iγ and Iη are Riemann-Liouville fractional integral and f ,g : [0,∞)×R→R are
given continuous functions.

2 Basic definitions and preliminaries

We begin in this section to recall some notations, definitions and results for fractional
calculus which are used throughout this paper [4, 5, 7, 20].

Let In=[0,n], L1(In,R) denote the Banach space of functions x:In→R that are Lebesgue
integrable with the norm

‖x‖L1 =
∫ n

0
|x(t)|dt.

Recall that C(In,R) is the Banach space of continuous functions from In into R endowed
with the uniform norm,

‖x‖n =max
{

|x(t)| : t∈In

}

,

and C2=C×C is the Banach space of continuous functions from Jn into R endowed with
the uniform norm

‖(x,y)‖n =max
{

‖x‖n, ‖y‖n : (x,y)∈C2, t∈In

}

.

The Arzela-Ascoli theorem and Schauder fixed point theorem are recalled in the fol-
lowing. They play important roles in this article and the reader is referred to [20, 21].

Theorem 2.1. (Arzela-Ascoli Theorem). Let U be a compact metric space and Ω any subset of
C(U). Then the following statements are equivalent:
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(i) Ω is a compact subset of the metric space C(U) equipped with the uniform metric.

(ii) Ω is closed, bounded, and equicontinuous.

Corollary 2.1. If {xn} is a sequence in C[a,b] and the functions in {xn} form a bounded
equicontinuous subset of C[a,b], then {xn} has a subsequence which converges uniformly
to some function in C[a,b].

Theorem 2.2. (Schauder Fixed Point Theorem). Let K be a closed, bounded and convex subset
of a Banach space. If F : K→K is a compact mapping, then F has a fixed point.

Definitions of Caputo and Riemann-Liouville fractional derivative/integral and their
relation are given bellow.

Definition 2.1. For a function x defined on an interval [a,b], the Riemann-Liouville frac-
tional integral of f of order α>0 is defined by

Iα
a+x(t)=

1

Γ(α)

∫ t

a
(t−s)α−1x(s)ds, t> a,

and the Remann-Liouville fractional derivative of x of order α>0 is defined by

Dα
a+x(t)=

dn

dtn

{

In−α
a+ x(t)

}

,

where n−1< α≤ n, while the Caputo fractional derivative of x of order α> 0 is defined
by

cDα
a+x(t)= In−α

a+ {x(n)(t)}.

An important relation among Caputo fractional derivative and Riemann-Lioville frac-
tional derivative is the following expression

Dα
a+x(t)= cDα

a+x(t)+
n−1

∑
j=1

x(j)(a)

Γ(j−α+1)
(t−a)j−α . (2.1)

We denote cDα
a+ x(t) by cDα

a x(t) and Iα
a+x(t) by Iα

a x(t) simply. Further cDα
0+x(t) and

Iα
0+x(t) are referred to cDαx(t) and Iαx(t), respectively.

Theorem 2.3. Let y∈Cm([0,b],R) and α,β∈ (m−1,m), m∈N and x∈C1([0,b],R). Then

(1) cDα Iαx(t)= x(t);

(2) Iα Iβx(t)= Iα+βx(t);

(3) limt→0+{cDαy(t)}= limt→0+{Iαy(t)};

(4) cDαλ=0, where λ is a constant;

(5) Iα{cDαy(t)}=y(t)−∑
m−1
k=0

y(k)(0)
k! tk.
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Part (1) and (2) can be shown by using the semigroup properties of the Caputo deriva-
tive and Theorem 3.1 in [7]. For the proof of the last part, the reader is also referred to
Theorem 2.22 in [10].

Proposition 2.1. Let y∈C([0,∞),R), n∈N and α>0, β>0, then

(i) Iα(ty(t))= tIαy(t)−αIα+1y(t),

(ii) Iα{tIβy(t)}= tIα+βy(t)−αIα+β+1y(t).

Proof. (i) can be found in [pp. 53, [4]] and (ii) is an immediate consequence of (i) and
Theorem 2.5 (2).

Lemma 2.1. (Lemma 2.22 [7]). Let α > 0, then Iα(cDαx(t)) = x(t)+c0+c1t+c2t2+···+
cr−1tr−1 for some ci ∈R, i=0,1,··· ,r−1,r=[α]+1.

3 Main result

Let n∈N, γ>0, η>0 and 1<α,β≤2 . Consider the system of boundary value problem

cDαx(t)= tIγ f (t,y(t))+ f (t,y(t)), t∈In, (3.1a)

cDβy(t)= tIη g(t,x(t))+g(t,x(t)), t∈In, (3.1b)

x(0)= x0, x′(n)=0, y(0)=y0, y′(n)=0, (3.1c)

where f ,g : [0,∞)×R→R are given continuous functions.
In this section, we first discuss the system of nonlinear fractional differential equa-

tions (3.1) which has at least one solution.

Proposition 3.1. Assume that x,y∈C([0,n],R), then the system of boundary valued prob-
lem (3.1) is equivalent to the following system of Volterra fractional integral equation

x(t)=−c0−c1t+tIα+γ f (t,y(t))−αIα+γ+1 f (t,y(t))+ Iα f (t,y(t)),

y(t)=−c0−c1t+tIβ+ηg(t,x(t))−βIβ++η+1g(t,y(t))+ Iβ g(t,x(t)).

Proof. By integrating both sides of Eqs. (3.1a)-(3.1b) of order α, β, respectively and using
Proposition 2.1 together with Lemma 2.1, the lemma is proved.

The next lemma shows that the solvability of the system of boundary value problem
(3.1) is equivalent to the solvability of a system of the fractional integral equation.

Lemma 3.1. Assume that f ,g∈C(In×R,R) and consider the linear system of fractional order
differential equation

cDαx(t)= tIγ f (t,y(t))+ f (t,y(t)), t∈In, 1<α≤2, (3.2a)

cDβy(t)= tIη g(t,x(t))+g(t,x(t)), t∈In, 1<β≤2, (3.2b)

x(0)= x0, x′(n)=0, y(0)=y0, y′(n)=0. (3.2c)
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Then x,y∈C(In,R) is a solution (3.2a)-(3.2c) if and only if x,y is a solution of the system of the
fractional integral equation:

x(t)= x(0)+
∫ n

0
Gn(t,s) f (s,y(s))ds, (3.3a)

y(t)=y(0)+
∫ n

0
Hn(t,s)g(s,x(s))ds, (3.3b)

where Gn(t,s), Hn(t,s) are the Green’s functions defined by

Gn(t,s)=











t(t−s)α+γ−1

Γ(α+γ)
− α(t−s)α+γ

Γ(α+γ+1)
+
(t−s)α−1

Γ(α)
+G(t,s), 0≤ s≤ t≤n,

G(t,s), 0≤ t≤ s≤n,

(3.4)

with

G(t,s)=
−t(n−s)α+γ−1

Γ(α+γ)
− n(n−s)α+γ−2

Γ(α+γ−1)
+

αt(n−s)α+γ−1

Γ(α+γ)
− t(n−s)α−2

Γ(α−1)
, (3.5a)

Hn(t,s)=











t(t−s)β+η−1

Γ(β+η)
− β(t−s)β+η

Γ(β+η+1)
+
(t−s)β−1

Γ(β)
+H(t,s), 0≤ s≤ t≤n,

H(t,s), 0≤ t≤ s≤n,

(3.5b)

where

H(t,s)=
−t(n−s)β+η−1

Γ(β+η)
− n(n−s)β+η−2

Γ(β+η−1)
+

β(n−s)β+η−1

Γ(β+η)
− t(n−s)β−2

Γ(β−1)
. (3.6)

Proof. Let x,y ∈ C(In,R) be a solution of Eqs. (3.2a) and (3.2b) respectively. In view of
Proposition 3.1, we have

x(t)= tIα+γ f (t,y(t))−αIα+γ+1 f (t,y(t))+ Iα f (t,y(t))−c0−c1t, (3.7a)

y(t)= tIβ+η g(t,x(t))−βIβ++η+1g(t,x(t))+ Iβg(t,x(t))−d0−d1t, (3.7b)

for arbitrary constants c0 and c1. By differentiating (3.2a) and (3.2b), we get

x′(t)=
∫ t

0

{ (t−s)α+γ−1

Γ(α+γ)
+

t(t−s)α+γ−2

Γ(α+γ−1)

}

− α(t−s)α+γ−1

Γ(α+γ)
+
(t−s)α−2

Γ(α−1)

}

f (s,y(s))ds−c1, (3.8a)

y′(t)=
∫ t

0

{ (t−s)β+η−1

Γ(β+η)
+

t(t−s)β+η−2

Γ(β+η−1)
− β(t−s)β+η−1

Γ(β+η)
+
(t−s)β−2

Γ(β−1)

}

g(s,x(s))ds−c1. (3.8b)

Hence using the boundary conditions (3.2c) into (3.8a) and (3.8b), we obtain c0 =−x0,
d0=−y0 and

c1=
∫ n

0

{ (n−s)α+γ−1

Γ(α+γ)
+

n(n−s)α+γ−2

Γ(α+γ−1)
− α(n−s)α+γ−1

Γ(α+γ)
+
(n−s)α−2

Γ(α−1)

}

f (s,y(s))ds,

d1=
∫ n

0

{ (n−s)β+η−1

Γ(β+η)
+

n(n−s)β+η−2

Γ(β+η−1)
− β(n−s)β+η−1

Γ(β+η)
+
(n−s)β−2

Γ(β−1)

}

g(s,x(s))ds.
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Substituting the values c0 =−x0, d0 =−y0 and the above values of c1 and c2 into (3.7a)
and (3.7b), we get

x(t)=x0−
∫ n

0

{nt(n−s)α+γ−1

Γ(α+γ−1)
− αt(n−s)α+γ

Γ(α+γ)
− t(n−s)α−2

Γ(α−1)

}

f (s,y(s))ds

+
∫ t

0

{ (t−s)α−1

Γ(α)
+

t(t−s)α+γ−1

Γ(α+γ)
− (t−s)α+γ

Γ(α+γ+1)

}

f (s,y(s))ds, (3.9a)

y(t)=y0−
∫ n

0

{nt(n−s)β+η−1

Γ(β+η−1)
− βt(n−s)β+η

Γ(β+η)
− t(n−s)β−2

Γ(β−1)

}

g(s,x(s))ds

+
∫ t

0

{ (t−s)β−1

Γ(β)
+

t(t−s)β+η−1

Γ(β+η)
− (t−s)β+η

Γ(β+η+1)

}

g(s,x(s))(s)ds, (3.9b)

and then

x(t)=x0+
∫ n

t
G(t,s) f (s,y(s))ds+

∫ t

0

{

G(t,s)+
(t−s)α−1

Γ(α)
+

t(t−s)α+γ−1

Γ(α+γ)

− α(t−s)α+γ

Γ(α+γ+1)

}

f (s,y(s))ds

=x(0)+
∫ n

0
Gn(t,s) f (s,y(s))ds,

y(t)=y0+
∫ n

t
H(t,s)g(s,x(s))ds+

∫ t

0

{

H(t,s)+
(t−s)β−1

Γ(β)
+

t(t−s)β+η−1

Γ(β+η)

− β(t−s)β+η

Γ(β+η+1)

}

g(s,x(s))ds

=y(0)+
∫ n

0
Hn(t,s)g(s,x(s))ds,

where G(t,s) and H(t,s) are as before.
Conversely, suppose that x,y∈C(In,R) satisfying in (3.3a)-(3.3b), then x, y satisfying

in Eq. (3.9a) and Eq. (3.9b), thus x(0)= x0, y(0)= y0. By differentiating of Eq. (3.9a) and
Eq. (3.9b), we have

x′(t)=
∫ n

t

∂G(t,s)

∂t
f (s,y(s))ds−G(t,t−0)+G(t,t−0)

+
∫ t

0

{∂G(t,s)

∂t
+
(t−s)α−2

Γ(α−1)
− (t−s)α+γ−1

Γ(α+γ)

+
t(t−s)α+β−2

Γ(α+γ−1)
− α(t−s)α+γ−1

Γ(α+γ)

}

f (s,y(s))ds

=
∫ t

0

{ (t−s)α+γ−1

Γ(α+γ)
+

t(t−s)α+γ−2

Γ(α+γ−1)
− α(t−s)α+γ−1

Γ(α+γ)

}

f (s,y(s))ds

−
∫ n

0

{ (n−s)α+γ−1

Γ(α+γ)
+
(n−s)α+γ−2

Γ(α+γ−1)
− (n−s)α+γ−1

Γ(α+γ)

}

f (s,y(s))ds

+
∫ t

0

(t−s)α−2

Γ(α−1)
f (s,y(s))ds−

∫ n

0

(n−s)α−2

Γ(α−1)
f (s,y(s))ds.



A. Babakhani / Anal. Theory Appl., 29 (2013), pp. 47-61 53

And similarly,

y′(t)=
∫ n

t

∂H(t,s)

∂t
g(s,x(s))ds−H(t,t−0)+H(t,t−0)

+
∫ t

0

{ ∂H(t,s)

∂t
+
(t−s)β−2

Γ(β−1)
− (t−s)β+η−1

Γ(β+η)

+
t(t−s)β+η−2

Γ(β+η−1)
− β(t−s)β+η−1

Γ(β+η)

}

g(s,x(s))ds

=
∫ t

0

{ (t−s)β+η−1

Γ(β+η)
+

t(t−s)β+η−2

Γ(β+η−1)
− β(t−s)β+η−1

Γ(β+η)

}

g(s,x(s))ds

−
∫ n

0

{ (n−s)β+η−1

Γ(β+η)
+
(n−s)β+η−2

Γ(β+η−1)
− (n−s)β+η−1

Γ(β+η)

}

g(s,x(s))ds

+
∫ t

0

(t−s)β−2

Γ(β−1)
g(s,x(s))ds−

∫ n

0

(n−s)β−2

Γ(β−1)
g(s,x(s))ds.

Thus x′(n)=0, y′(n)=0 and

cDαx(t)=cDα−1x′(t)= cDα−1
∫ t

0

(t−s)α−2

Γ(α−1)
f (s,x(s))ds

+c Dα−1
∫ t

0

{ (t−s)α+γ−1

Γ(α+γ)
+

t(t−s)α+γ−2

Γ(α+γ−1)
− α(t−s)α+γ−1

Γ(α+γ)

}

f (s,x(s))ds

=cDα−1{I(α−1) f (t,y(t)
}

+cDα−1
{ d

dt

[c
Iα(tIα f (t,y(t))

]

}

= f (t,y(t))+tIα f (t,y(t)).

Hence cDαx(t)−tIγ f (t,y(t)) = f (t,y(t)) and similarly we have cDαy(t)−tIγg(t,x(t)) =
g(t,x(t)). The proof is therefore complete.

Remark 3.1. For each t∈In, denote the functions

gn(t)=
∫ n

0
|Gn(t,s)|ds, hn(t)=

∫ n

0
|Hn(t,s)|ds.

Then gn,hn are continuous on In and hence bounded. Let

∗
Gn=max

{

gn(t) : t∈In

}

,
∗

Hn=max
{

hn(t) : t∈In

}

.

Theorem 3.1. Assume that f (t,·) and g(t,·) are continuous on [0,∞)×R→R and there exist
four continuous and nondecreasing functions ω,σ,υ,µ : [0,∞)→R+ such that

(H1) | f (t,u)|≤ω(t)σ(|u|), |g(t,u)|≤υ(t)µ(|u|) for each t∈ [0,∞) and u∈R,

(H2) There exist two positive constants r, ρ such that

r≥|x0|+
∗

ωn σ(r)
∗

Gn, ρ≥|y0|+
∗

υn µ(ρ)
∗

Hn, (3.10)

where
∗

ωn=max{ω(t) : t∈In} and
∗

υn=max{υ(t) : t∈In}.
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Then the system (1.1a)-(1.1c) has at least one solution (x(t),y(t)) on [0,∞) such that |x(t)|≤ r
and |y(t)|≤ρ.

Before starting the proof of Theorem 3.1 we need to prove the following lemma.

Lemma 3.2. Assume that f (t,·) and g(t,·) are continuous on [0,∞)×R→R and there exist four
continuous and nondecreasing functions ω,σ,η,µ : [0,∞)→R+ such that (H1)-(H2) hold.

Let

C=C(In,R)×C(In,R) and Ω=
{

(x,y)∈C :‖(x,y)‖n <R
}

,

where

‖(x,y)‖n =max
{

‖x(t)‖n , ‖y(t)‖n , t∈In

}

and R=max{r,ρ},

so that r, ρ are the constants from (H2). Consider the operator F :C→C defied by

(F(x,y))(t)=
(

(Tx)(t),(Uy)(t)
)

,

where

(Tx)(t)= x(0)+
∫ n

0
Gn(t,s) f (s,y(s))ds, (3.11a)

(Uy)(t)=y(0)+
∫ n

0
Hn(t,s)g(s,x(s))ds. (3.11b)

Then the following statements hold:

(I) Ω is a closed, convex sub set of C,

(II) F is continuous,

(III) F maps Ω into a bounded set of C,

(IV) F maps Ω into an equicontinuous set of C,

(V) F is completely continuous,

(VI) F(Ω)⊂Ω.

Proof. (I) is clear so we try to prove (II). Let {(xl ,yl)}∈C be a sequence such that {(xl ,yl)}→
(x,y)∈C and let L=max{‖xl‖<L1,‖yl‖<L2,‖x‖<L3 and ‖y‖<L4}, then for each t∈In,
it is sufficient to show that ‖Txl−Tx‖n →0 and ‖Uyl−Uy‖n →0 as l→∞. For each t∈In

by (H1) we have

|(Txl)(t)−(Tx)(t)|≤
∫ n

0
|Gn(t,s)|| f (s,xl (s))− f (s,x(s))|ds

≤
∫ n

0
ω(s)|Gn(t,s)|[σ(|xl (s)|)+σ(|x(s)|)]ds

≤2
∗

ωn σ(R)
∫ n

0
|Gn(t,s)|ds≤2

∗
Gn σ(R)

∗
ωn,
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where ‖m‖=max{|ω(t)| : t ∈ In}. Thus the Lebesgue dominated convergence theorem
implies that ‖Txl−Tx‖n →0 as l→∞. The proof of continuity of U is similar to that of T
which was done in above.

(III) Let (x,y)∈Ω then ‖F(x,y)‖n=max{‖Tx‖n , ‖Uy‖n} and for each t∈In, using (H1)
we have

|(Tx)(t)|≤|x0|+
∫ n

0
|Gn(t,s)|| f (s,x(s))|ds

≤|x0|+
∫ n

0
|Gn(t,s)|ω(s)σ(|x(s)|)ds

≤|x0|+
∗

ωn σ(‖x‖n)
∫ n

0
|Gn(t,s)|ds= |x0 |+

∗
ωn σ(‖x‖n)

∗
Gn:=M1,

and

|(Uy)(t)|≤ |y0 |+
∫ n

0
|Hn(t,s)||g(s,y(s))|ds≤|y0 |+

∗
υn µ(‖x‖n)

∗
Hn:=M2.

Let M=max{M1,M2}, then ‖F(x,y)‖n ≤M. That is to say, F(Ω) is uniformly bounded.
(IV) Since Gn(t,s) and Hn(t,s) are continuous on In×In, they are uniformly continu-

ous on In×In. Thus, for fixed s∈ In and any ǫ> 0 there exists a constant δ> 0 such that
for any t1,t2∈In and |t1−t2|<δ,

|Gn(t1,s)−Gn(t2,s)|< ǫ

2
√

2nσ(R)
∗

ωn

,

and

|Hn(t1,s)−Hn(t2,s)|< ǫ

2
√

2nη(R)
∗

µn

.

Then

|(Tx)(t2)−(Tx)(t1)|≤
∫ n

0
|Gn(t2,s)−Gn(t1,s)|| f (s,x(s))|ds<

ǫ

2
√

2
. (3.12)

Similarly

|(Uy)(t2)−(Uy)(t1)|≤
∫ n

0
|Hn(t2,s)−Hn(t1,s)||g(s,y(s))|ds<

ǫ

2
√

2
. (3.13)

Using (H1), Eqs. (3.12), (3.13) and for the Euclidean distance d on R2, we have that if
t1,t2∈In are such that |t1−t2|<Ω, then

d
(

F(x,y)(t2)−F(x,y)(t1)
)

=

√

[

(Tx)(t2)−(Tx)(t1)
]2
+
[

(Uy)(t2)−(Uy)(t1)
]2

<

√
2
{

|(Tx)(t2)−(Tx)(t1)|+|(Uy)(t2)−(Uy)(t1)|
}

<ǫ.
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That is to say, F(Ω) is equicontinuous.
(V) It is a consequence of (I) - (III) together with Theorem 2.1 and combining Corollary

2.1.
(IV) Let (x,y)∈Ω, that is ‖(x,y)‖n <R with R=min{r,ρ}. We prove that F(x,y)∈Ω.

For each t∈In and using (H1)-(H2) we have

‖F(x,y)‖n =max{‖Tx‖n ,‖Uy‖n}

≤max
{

|x0|+
∫ n

0
|Gn(t,s)|| f (s,x(s))|ds,|y0 |+

∫ n

0
|Hn(t,s)||g(s,y(s))|ds

}

≤max
{ ∗

ωn σ(‖x‖n)
∗

Gn,
∗

υn µ(‖x‖n)
∗

Hn

}

≤max{r,ρ}=R.

We complete the proof of Lemma 3.2.

Proof of Theorem 3.1: Necessary conditions of Schauder’s fixed point theorem for the
operator F :C→C was obtained in Lemma 3.2, therefore F has fixed points (xn,yn) in Ω,
hence by Lemma 3.1, the fixed points of F are solutions of the system of the boundary
valued problem:

cDαx(t)= Iγ f (t,y(t))+ f (t,y(t)), t∈In, 1<α≤2, (3.14a)

cDβy(t)= Iη g(t,x(t))+g(t,x(t)), t∈In, 1<β≤2, (3.14b)

x(0)= x0, x′(n)=0, y(0)=y0, y′(n)=0. (3.14c)

Using diagonalization process, we prove the system (1.1a)-(1.1c) has a bounded solution
on [0,∞).

For k∈N, assume that (xk,yk) is a solution of the boundary valued problem (3.14a)-

(3.14c) on [0,nk] and {nk}k ∈
∗
N is a sequence satisfying 0 < n1 < n2 < ···< nk < ··· ↑ ∞.

Let

(Xk(t),Yk(t))=

{

(xk(t),yk(t)), t∈ [0,nk],

(x(nk),y(nk)), t∈ [nk,∞).
(3.15)

If we consider
S={(X1,Y1),(X2,Y2),···},

then for each t∈ [0,n1] and k∈N we have

‖(Xk,Yk)‖=max{‖Xk‖,‖Yk‖}
=max

{

max{|xk(t)| : t∈ [0,n1 ]}, max{|yk(t| : t∈ [0,n1 ]}
}

=max
{

‖xk‖,‖yk‖
}

≤max{r,ρ}=R,

and

Xnk
(t)= x0+

∫ n1

0
Gn1

(t,s) f (s,Ynk
(s))ds, (3.16a)

Ynk
(t)=y0+

∫ n1

0
Hn1

(t,s)g(s,Xnk
(s))ds. (3.16b)
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Thus, for each t,τ∈ [0,n1] and k∈N, from the system (3.16a)-(3.16b) and by (H1)-(H2) we
get

|Xnk
(t)−Xnk

(τ)|≤λ1

∫ n1

0
[Gn1

(t,s)−Gn1
(τ,s)]ds,

|Ynk
(t)−Ynk

(τ)|≤λ1

∫ n1

0
[Hn1

(t,s)−Hn1
(τ,s)]ds,

where

λ1=max{ ∗
ω1 σ(r),

∗
υ1 µ(ρ)}.

Hence the Arzela-Ascoli Theorem guarantees that there is a subsequence N1 of N and
two functions u1,v1 ∈ C([0,n1],R) such that (Xnk

,Ynk
)→ (u1,v1) ∈ C([0,n1],R) as k → ∞

through N1.

Let
∗
N1=N1−{1}. Notice that ‖(Xnk

,Ynk
)‖ ≤R for each t ∈ [0,n2] and k ∈ N. With

repetition of the above process on the interval [0,n2], that is for each t∈ [0,n2] and k∈N
from the system (3.16a)-(3.16b) and by (H1)-(H2), we have

|Xnk
(t)−Xnk

(τ)|≤λ2

∫ n1

0
[Gn1

(t,s)−Gn1
(τ,s)]ds,

|Ynk
(t)−Ynk

(τ)|≤λ2

∫ n1

0
[Hn1

(t,s)−Hn1
(τ,s)]ds,

where λ2=max{ ∗
ω2σ(r),

∗
υ2µ(ρ)}. Hence the Arzela-Ascoli Theorem guarantees that there

is a subsequence N2 of
∗
N1 and two functions u2,v2 ∈ C([0,n2],R) such that (Xnk

,Ynk
)→

(u2,v2)∈C([0,n2],R) as k→∞ through N2. It is clear that (u1(t),v1(t))=(u2(t),v2(t)) for

each t∈ [0,n1], as N2⊆
∗
N1.

Let
∗
N2=N2−{2}. Proceed inductively to obtain for m∈{3,4,···} a subsequence Nm of

∗
Nm−1 and two functions um,vm∈C([0,nm],R) such that (Xnk

,Ynk
)→(um,vm)∈C([0,nm],R)

as k→∞ through Nm.

Let
∗

Nm=Nm−{m}. We define two functions x,y on (0,∞) as follows.

Fix t∈ (0,∞) and let m∈N with s≤ nm. Then define x(t) = Xm(t) and y(t) =Ym(t).
Then x,y∈C([0,∞),R), x(0)= x0, y(0)= y0 and |x(t)|≤R, |y(t)|≤R for t∈ [0,∞). Again

fix t∈ [0,∞) and let m∈N with s≤nm. Then for n∈
∗

Nm we have

Xnk
(t)= x0+

∫ nm

0
Gnm(t,s) f (s,Ynk

(s))ds,

Ynk
(t)=y0+

∫ nm

0
Hnm(t,s)g(s,Xnk

(s))ds.
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Let nk →∞ through
∗

Nm to obtain

Xm(t)= x0+
∫ nm

0
Gnm(τ,s) f (s,Ym(s))ds,

Ym(t)=y0+
∫ nm

0
Hnm(τ,s)g(s,Xm(s))ds,

that is

x(t)= x0+
∫ nm

0
Gm(τ,s) f (s,y(s))ds,

y(t)=y0+
∫ nm

0
Hm(τ,s)g(s,x(s))ds.

We can use this method for each τ∈ [0,nm], and for each m∈N. Thus

cDαx(t)= Iγ f (t,y(t))+ f (t,y(t)), t∈ [0,nm ],

cDβy(t)= Iη g(t,x(t))g(t,x(t)), t∈ [0,nm ],

for each m ∈ N and α,β ∈ (1,2] and the constructed functions x,y are a solution of the
system (1.1). This completes the proof of the theorem.

Example 3.1. Consider the boundary value problem

cD
3
2 x(t)−tI

1
2

( 3
√

y(t)

1+t2

)

=
3
√

y(t)

1+t2
, t>0,

cD
4
3 y(t)−tI

1
3

(

√

x(t)

1+et

)

=

√

x(t)

1+et
, t>0,

x(0)=1, y(0)=1, x and y are bounded on [0,∞).

Here,

f (t,u)=
3
√

u

1+t2
, ω(t)=

1

1+t2
, σ(u)= 3

√
u,

g(t,u)=

√
u

1+et
, υ(u)=

1

1+et
, µ(u)=

√
u,

f and g are continuous for each (t,u)∈ [0,∞)×R. The four functions ω,σ,η and µ are con-
tinuous on [0,∞) and satisfying (H1), that is | f (t,u)|≤ω(t)σ(|u|) and |g(t,u)|≤υ(t)µ(|u|)
for each t∈ [0,∞) and u∈R. We have

∗
ωn=sup{ω(t) : t∈In}=1 and

∗
υn=sup{υ(t) : t∈In}=

1

2
.
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The Green functions for this example are by Eq. (3.4)

Gn(t,s)ds=







t(t−s)− α(t−s)2

2
+

√
t−s

Γ(3/2)
+G(t,s), 0≤ s≤ t≤n,

G(t,s), 0≤ t≤ s≤n,

where

G(t,s)=(α−1)t(n−s)−n− t

Γ(1/2)
√

n−s
.

Hence

Gn=sup
{

∫ n

0
|Gn(t,s)|ds, t∈In

}

exists. Since

lim
M→∞

M

1+
∗

ωn σ(M)
∗

Gn

= lim
M→∞

M

σ(M)
= lim

M→∞

M
3
√

M
=∞,

then there exists r>0 such that

r

1+
∗

ωn σ(r)
∗

Gn

≥1.

On the other hand, Eq. (3.5b) yields

Hn(t,s)ds=











t(t−s)
2
3

Γ( 5
3 )

− β(t−s)
5
3

Γ( 8
3 )

+
(t−s)

1
3

Γ( 4
3 )

+H(t,s), 0≤ s≤ t≤n,

H(t,s), 0≤ t≤ s≤n,

where

H(t,s)=
−t(n−s)

2
3

Γ( 5
3)

− n(n−s)
−1
3

Γ( 2
3)

+
βt(n−s)

2
3

Γ( 5
3)

− t(n−s)−
2
3

Γ(−1
4 )

.

Hence ∗
Hn=sup

{

∫ n

0
|Hn(t,s)|ds

}

exists. Since

lim
N→∞

N

1+
∗

υn µ(N)
∗

Hn

= lim
M→∞

N

µ(N)
= lim

M→∞

N√
N

=∞,

then there exists ρ>0 such that

ρ

1+
∗

υn µ(ρ)
∗

Hn

≥1.

Hence this example satisfies in (H2). Therefore by Theorem 3.1 the system of this example
has a bounded solution (x,y)∈Ω⊆C.
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Remark 3.2. Proposition 2.1 (i) can be generalized, that is, if p is nonnegative integrable,
then (see [5], pp. 53)

Iα(tpy(t))=
p

∑
k=0

(−α

k

)

[

D(k)tn
][

Iα+ky(t)
]

=
p

∑
k=0

(−α

k

)

Γ(p+1)tp−k

Γ(p−k+1)
Iα+ky(t).

Hence, using Theorem 2.3 (2) the above equation yields

Iα
{

tp Iβy(t)
}

=
p

∑
k=0

(−α

k

)

Γ(p+1)tp−k

Γ(p−k+1)
Iα+β+ky(t),

where
(−α

k

)

=(−1)k× α(α+1)···(α+k−1)

k!
=(−1)k× Γ(α+k)

k!Γ(α)
.

Therefore we can prove that the system of nonlinear fractional differential equation:

cDαx(t)= tp Iγ f (t,y(t))+ f (t,y(t)), t∈ (0,∞),

cDβy(t)= tp Iηg(t,x(t))+g(t,x(t)), t∈ (0,∞),

x(0)= x0, y(0)=y0, x(t) and y(t) are bounded on [0,∞),

under which the conditions (H1) and (H2) have at least one bounded solution on [0,∞),
where p is a nonnegative integer.
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