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Abstract. In this note, we discuss a class of so-called generalized sampling functions.
These functions are defined to be the inverse Fourier transform of a family of piece-
wise constant functions that are either square integrable or Lebegue integrable on the
real number line. They are in fact the generalization of the classic sinc function. Two
approaches of constructing the generalized sampling functions are reviewed. Their
properties such as cardinality, orthogonality, and decaying properties are discussed.
The interactions of those functions and Hilbert transformer are also discussed.
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1 Introduction

In signal processing, the classic sinc function is fundamentally significant due to the Shan-
non sampling theorem [1,9,10]. Recall that the classic sinc function is defined at a number
t in the set R of real numbers by the equation

sinc(t) :=
sint

t
.

The Shannon sampling theorem enables to reconstruct a bandlimited signal from trans-
lates of sinc functions weighted by the uniformly spaced samples of that signal. It is
natural to ask whether similar sampling theorem exists for non-bandlimited signals. To
that end, recently many efforts have been made to extend the classic sinc to generalized
sampling functions, for example, in [3–5]. One kind of generalized sampling functions
given in [3], denoted by sincH, is defined as the inverse Fourier transform of a so-called
symmetric cascade filter, denoted by H. Let N be the set of natural numbers, Z be the set

∗Corresponding author. Email address: ywang2@aum.edu (Y. Wang)

http://www.global-sci.org/ata/ 82 c©2014 Global-Science Press



Y. Wang / Anal. Theory Appl., 30 (2014), pp. 82-89 83

of integers, and Z+ := {0}∪N. Let Z be a subset of Z, a sequence y :=(yk : k∈Z) is said
to be in lq(Z) if and only if

‖y‖q,Z :=
(

∑
k∈Z

|yk|q
)1/q

<∞.

The symmetric cascade filter H is a piecewise constant function whose value at ξ∈R

is given by

H(ξ) := ∑
n∈Z+

bnχIn(ξ), (1.1)

where the sequence b=(bn : n∈Z+) is in l2(Z+), χI is the indicator function of the set I,
and the interval In, n∈Z+, is the union of two symmetric intervals given by the equation

In :=(−(n+1),−n]∪[n,(n+1)).

Let X be a subset of R, and for q∈N, we say a function f is in Lq(X) if and only if

‖ f‖q,X :=
(

∫

X
| f (t)|qdt

)1/q
<∞.

Thus the generalized sampling function sincH is defined by the equation

sincH :=

√

π

2
F
−1H, (1.2)

where for any signal f ∈L2(R) and ξ∈R the Fourier transform of f is given by

(F f )(ξ) :=
1√
2π

∫

R

f (t)e−iξtdt.

Of course, we have that H∈L2(R) because b=∈ l2(Z+). The function H∈L2(R) implies
that sincH ∈L2(R) since the Fourier operator is closed in L2(R).

The primary purpose of this note is to introduce to interested readers the basic con-
cepts, approaches, properties of the generalized sampling functions, and their potential
applications. For the remainder of the note, in Section 2, we review two approaches that
lead to generating the generalized sampling functions. In Section 3, we discuss the prop-
erties such as cardinality, orthogonality, decaying property of the generalized sampling
functions. In Section 4, a sampling formula is discussed concerning non-bandlimited
functions in the shift-invariant space of the generalized sampling functions. In Section 5,
we explore the interaction of the generalized sampling functions and the Hilbert trans-
form operator.
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2 Two approaches to generate the generalized sampling

function

Let us first review the approaches to obtain an explicit form of sincH. The symmetric
cascade filter H can be associated with an analytic function F on the open unit disk

∆ :={ζ∈C : |ζ|<1},

in the complex plane C. The value of F at z∈∆ is defined by

F(z) := ∑
n∈Z+

bnzn. (2.1)

Definition (2.1) is well-defined for z∈∆ by the Cauchy-Schwartz inequality as b∈ l2(Z+).
Recall that the Hardy space H2(∆) consists of all functions f analytic in ∆, with norm
given by

‖ f‖2
H2(∆)= sup

r∈(0,1)

1

2π

∫

[−π,π]
| f (reit)|2dt.

Since, by hypothesis, b∈ l2(Z+), we have that F∈H2(∆). Consequently its extension to
the boundary ∂∆ of ∆ is in L2(∂∆).

Thus, from Eqs. (1.2), (1.1) and (2.1) an explicit form of sincH(t), t∈R can be found as

sincH(t)=sinc
( t

2

)

Re
{

F(eit)e
1
2 it
}

, a.e., (2.2)

where Re(z) is the real part of a complex number z.
We observe that if b∈ l1(Z+) then H∈L1(R) and F is continuous on the boundary of

∆, which in turn implies sincH is continuous and bounded.
A very interesting fact, as discovered in the paper [2], is that the function sincH can

be generated alternatively through a function, denoted by G, that is analytic in a neigh-
borhood of the closed unit disc, real on the real axis and normalized so that G(1)=1 and
G′(1) 6=0. This requires F be analytic in a neighborhood of the closed unit disc. We point
out that if b∈ l1(Z+), that is, H∈L1(R), then F must be analytic in a neighborhood of the
closed unit disc. The function G is linked to F by the equation

F(z) :=
G(z)−1

z−1
. (2.3)

Using the function G, a real-valued function φG whose value at t ∈ R is then defined
through the imaginary part of the values of G on the unit circle. Let

G(eit)=C(t)+iS(t). (2.4)

The function φG is given by

φG(t) :=
S(t)

t
. (2.5)
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Applying Eq. (2.2) to compute sincH by using Eqs. (2.3) and (2.5) yields for all t∈R,

sincH(t)=φG(t). (2.6)

Let us look at two important examples that demonstrate the two construction approaches
of sincH. When G=z, i.e., F=1, we have sincH=φG=sinc. For the second example, let G
be the Blaschke product of order n∈N with parameters a :=(aj : j∈Zn)∈ (−1,1)n, that is,

G(z)=Ba(z) := ∏
j∈Zn

z−aj

1−ajz
.

Then sincH(t)=φG(t)=sinθa(t)/t, where θa is determined by at t∈R by the equation

eiθa(t)=Ba(e
it).

3 Properties of the generalizes sampling functions

Surprisingly the function sincH has many properties that are similar to the classic sinc,
such as cardinal, orthogonal properties and decaying properties. We next list some prop-
erties of the function sincH.

Proposition 3.1. Let the generalized function sincH be defined by Eq. (2.2) such that b∈
l2(Z+). Then

1.

FsincH =

√

π

2
H. (3.1)

2. sincH ∈L2(R).

3. The set {sincH(·−nπ) : n∈Z} is an orthogonal set, that is

〈sincH,sincH(·−nπ)〉=π‖b‖2
l2(Z+)

δn,0, (3.2)

where 〈u,v〉=
∫

R
u(t)v∗(t)dt denotes the usual inner product of the two functions

u,v∈L2(R), and v∗ is the complex conjugate of v.

4. If b∈ l1(Z+), sincH(nπ)=F(1)δn,0, where δn,0=1 if n=0 and δn,0=0 if n∈Z\{0}.

5. If b∈ l1(Z+), sincH is even, bounded and continuous, and

|sincH(t)|≤
4‖b‖l1(Z+)

2+|t| ,

for t∈R.
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Proof. The first two statements follow immediately from (1.2). The third statement is a
special case of Corollary 3.2 of [3]. For the convenience of readers, we provide a direct
proof here. By Parseval’s theorem and Eq. (1.2) we have

∫

R

sincH(t)sincH(t−nπ)dt=
π

2

∫

R

H2(x)einπxdx=
π

2

∫

R
∑

k∈Z+

b2
kχIk

(x)einπxdx

=
π

2 ∑
k∈Z+

b2
k

∫

Ik

einπxdx=π
(

∑
k∈Z+

b2
k

)

δn,0,

where, in the last equality we have used the orthogonality of the set {e−inπξ : n∈Z} on
Ik, k∈ Z+. The interchange of the integral operator and the infinite sum is guaranteed
by the convergence of the series. The fourth statement follows from Eq. (2.2). The fifth
statement follows from Eq. (2.2) and noticing sinc(t)≤2/(1+|t|) for any t∈R.

4 Perfect reconstruction sampling formula

With the generalized function sincH, a perfect reconstruction sampling theorem was es-
tablished in [3] for the purpose of reconstructing non-bandlimited signals. This kind
of reconstruction sampling theorem may be very useful to study signals with polyno-
mial decaying Fourier spectra that arise in evolution equations and control theories [7,
8]. In [3], a Shannon-type sampling theorem is given concerning functions in the shift-
invariant space

VH :=
{

∑
n∈Z

cnsincH(·−nπ) : F(1)=1, c=(cn : n∈Z)∈ l2(Z)
}

.

The Shannon-type sampling theorem is the direct result of the properties in the previous
proposition. We record it here.

Theorem 4.1. A signal f ∈VH if and only if

f = ∑
n∈Z

f (nπ)sincH(·−nπ). (4.1)

Eq. (4.1) necessarily implies that the sampling sequence ( f (nπ) :n∈Z)∈ l2(Z) by the
orthogonality of the set {sincH(·−nπ) : n∈Z}. The above equation of course is true in
L2(R) norm. However, if b∈ l1(Z+), Eq. (4.1) holds true pointwise, because by Cauchy-
Schwartz inequality series on the right side of Eq. (4.1) converges uniformly, hence the
limiting function f is continuous.

We remark that, as pointed out in [3], a function f ∈VH can be characterized by its
spectrum. Specifically, a function f ∈VH if and only if

F f (ξ)=

√

π

2

(

∑
n∈Z

f (nπ)e−inπξ
)

H(ξ). (4.2)
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Eq. (4.2) holds true in L2(R) if b∈ l2(R), and a.e. pointwise if f ∈ L1(R) and the sample
sequence ( f (nπ) : n∈Z)∈ l1(Z).

The following property is true for functions in the space VH that is similar to Parse-
val’s identity.

Proposition 4.1. If f ∈VH, then

‖ f‖2
L2(R)=π‖b‖2

l2(Z+) ∑
n∈Z

f 2(nπ). (4.3)

Proof. This is a direct result of Eq. (4.1) and Eq. (3.2).

5 Interaction with the Hilbert transformer

In this section we discuss the interactions between the generalized sampling functions
and the Hilbert transformer. We first review several basic properties of the Hilbert trans-
form which we will need later. These properties can be found, for example, in the
book [6]. First we recall that the Hilbert transform is an anti-involution, that is,

H
2=−I, (5.1)

where I is the identity operator. Second the operator H is anti-self adjoint, that is,

〈Hu,v〉= 〈u,−Hv〉. (5.2)

Third, for any f ∈ L2(R) and t ∈ R, the composition of the Fourier transform and the
Hilbert transform is given by

F(H f )(t)=−isgn(t)F f (t), (5.3)

where sgn(·) is the signum function having values defined by sgn(x)=1 if x∈R+ :={t∈
R : t>0}, sgn(x)=−1 if x∈R− :={t∈R : t<0}, and sgn(0)=0.

Theorem 5.1. The system

Φ :={sincH(·−2kπ),HsincH(·−2kπ) : k∈Z} (5.4)

is an orthogonal system in L2(R).

We remark that the translations in Eq. (5.4) is twice as many as that in Eq. (3.2).

Proof. By the third statement of Proposition 3.1, we have that

〈sincH,sincH(·−2kπ)〉=π‖b‖2
l2(Z+)

δ0k.
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Invoking Eqs. (5.1) and (5.2) yields

〈HsincH,HsincH(·−2kπ)〉=〈sincH,−H
2sincH(·−2kπ)〉

=〈sincH,sincH(·−2kπ)〉=π‖b‖2
l2(Z+)

δ0k.

By Parseval’s theorem and Eq. (3.1) we have
∫

R

sincH(t)HsincH(t−2kπ)dt=
πi

2

∫

R

H2(t)sgn(t)ei2kπtdt. (5.5)

Invoking expression (1.1) of H, Eq. (5.5) becomes
∫

R

sincH(t)HsincH(t−2kπ)dt

=
πi

2

∫

R
∑

n∈Z+

b2
nχIn(t)sgn(t)ei2kπtdt=

πi

2 ∑
n∈Z+

b2
n

∫

In

sgn(t)ei2kπtdt

=
πi

2 ∑
n∈Z+

b2
n

[

∫

[n,n+1)
ei2kπtdt−

∫

(−(n+1),−n]
ei2kπtdt

]

,

where the interchange of the integral and the infinite sum in the second equality is guar-
anteed by the absolute convergence of the series.

When k=0, the difference in the pair of brackets is zero, while when k∈Z\{0}, each
integral inside the pair of brackets is zero. Therefore we have

〈sincH,(HsincH)(·−2kπ)〉=0

for any k∈Z.

Next we compute the Hilbert transform of sincH. The computation makes use of the
function G in Eq. (2.3). Thus in what follows we assume that b∈l1(Z+). Note by Eq. (2.3)
we have G(z)=1+(z−1)F(z). Further invoking Eq. (2.1) and recalling (2.4), we obtain

C(t)=1−b0+ ∑
k∈N

(bk−1−bk)coskt (5.6)

and

S(t)= ∑
k∈N

(bk−1−bk)sinkt.

Observe that S(0)=0 and C(0)=1. Define the function at t∈R\{0},

cosincH(t) :=
1−C(t)

t
, (5.7)

and

cosincH(0)= lim
t→0

1−C(t)

t
. (5.8)

It will become clear later that this limit exists. We have the following theorem.
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Theorem 5.2. The function cosincH is continuous and bounded, and

HsincH =cosincH.

Proof. Substitute Eq. (5.6) into Eq. (5.7) we have

cosincH(t)=
1

t

[

b0− ∑
k∈N

(bk−1−bk)coskt
]

=
1

t

[

b0+ ∑
k∈N

(bk−1−bk)(1−coskt+1)
]

=
1

t

[

b0+ ∑
k∈N

(1−coskt)− ∑
k∈N

(bk−1−bk)
]

= ∑
k∈N

(bk−1−bk)
1−coskt

t
.

The last equation clear shows that the limit (5.8) exists and the function cosincH is contin-
uous and bounded. Since sincH(t)=S(t)/t, we have that the Hilbert transform of sincH

is given by

HsincH(t)=H
S(t)

t
= ∑

k∈N

(bk−1−bk)H
sinkt

t
= ∑

k∈N

(bk−1−bk)
1−coskt

t
,

in the last equality, we have used the identity Hsinct=(1−cost)/t and the property that
the Hilbert transformer commutes with the positive dilution operator. Thus we have
proved the theorem.
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