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Abstract. In the article, we discuss basic concepts of the residue theory of logarithmic
and multi-logarithmic differential forms, and describe some aspects of the theory, de-
veloped by the author in the past few years. In particular, we introduce the notion of
logarithmic differential forms with the use of the classical de Rham lemma and give an
explicit description of regular meromorphic differential forms in terms of residues of
logarithmic or multi-logarithmic differential forms with respect to hypersurfaces, com-
plete intersections or pure-dimensional Cohen-Macaulay spaces. Among other things,
several useful applications are considered, which are related with the theory of holo-
nomic D-modules, the theory of Hodge structures, the theory of residual currents and
others.
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1 Introduction

The purpose of the present notes is to sketch broad outlines of basic concepts of the
residue theory of logarithmic and multi-logarithmic differential forms, and to describe
some of little-known aspects of this theory, developed by the author in the past few years.
In particular, we introduce the notion of logarithmic differential forms with the use of
the classical de Rham lemma and then briefly review the theory of residue originated
by H. Poincaré, J. Leray, K. Saito and others in various settings. Then we construct the
sheaves of multi-logarithmic differential forms with respect to arbitrary reduced pure-
dimensional Cohen-Macaulay space and describe their residues. In a certain sense, the
set of all such forms could be viewed as the universal domain of definition of the residue
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map in the framework of the general residue theory. Among other things, we give an
explicit description of regular meromorphic differential forms in terms of residues of log-
arithmic or multi-logarithmic differential forms with respect to hypersurfaces, complete
intersections or pure-dimensional Cohen-Macaulay spaces.

It seems reasonable to say that further generalizations and interpretations of the no-
tion of logarithmic differential forms and their residues have a large number of interest-
ing applications in different contexts and settings, among which it should be mentioned
the theory of arrangements of hyperplanes and hypersurfaces, the theory of index of
vector fields and differential forms, deformation theory, tropical geometry, the theory of
resolutions of singularities, the theory of integral representations and residual currents,
etc. Moreover, in a certain sense the theory of b-functions can be considered as a non-
commutative analog or an extension of the theory of logarithmic differential forms to the
category of D-modules, etc.

The paper is organized as follows. In the first sections we discuss simple proper-
ties of logarithmic differential forms with poles along a reduced divisor. In particular,
we give an unorthodox definition of this notion with the use of a version of the classi-
cal de Rham lemma adopted to the case of singular hypersurfaces. Then we consider
some applications involving a logarithmic version of the classical Poincaré lemma and
the classification problem of integrable holonomic D-modules of Fuchsian and logarith-
mic type, etc. The basic concept of regular meromorphic differential forms is discussed
in Section 4. In the next three sections we describe an explicit construction of residues
for meromorphic forms with logarithmic poles along reduced divisors and for multi-
logarithmic forms with respect to complete intersections. As an application, in Section 8,
we show how to describe the weight filtration on the logarithmic de Rham complex di-
rectly, without the use of Hironaka’s resolution of singularities. In the final section quite a
general construction of multi-logarithmic differential forms with respect to reduced pure-
dimensional Cohen-Macaulay spaces is presented and some relations with the theory of
residue currents are discussed.

I would like to thank all the organizers of the Conference, especially Professor Liang-
wen Liao, for their complimentary invitation and hospitality in Nanjing. I am also deeply
indebted to all participants for very interesting conversations and stimulating scientific
discussions during the meeting.

2 The de Rham lemma

Let M be a complex manifold of dimension m, m≥ 1, and let X ⊂ M be an subset in an
open neighborhood U of the distinguished point o∈U⊂M defined by a sequence of func-
tions f1,··· , fk ∈OU . We denote by Ω

p
X, p≥ 0, the sheaves of germs of regular holomorphic

differential p-forms on X; they are defined as the restriction to X of the quotient module

Ω
p
X =Ω

p
U

/
(( f1,··· , fk)Ω

p
U+d f1∧Ω

p−1
U +···+d fk∧Ω

p−1
U

)∣∣
X

.
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Then the ordinary de Rham differentiation d equips this family of sheaves with a struc-
ture of a complex; it is called the de Rham complex on X and is denoted by (Ω•

X,d).
Let z = (z1,··· ,zm) be a system of local coordinates in a neighborhood of the distin-

guished point o∈M, ω=∑aidzi ∈Ω1
M,o and Sing(ω)⊂M the analytic subset determined

by vanishing of the coefficients of ω.
The starting point of our approach is the classical lemma due to G. de Rham (1954).

Similar versions of the following statement exist in the context of real analytic, semi-
meromorphic and smooth (C∞)-functions, polynomials, distributions or currents, etc.

Lemma 2.1 (see [12]). Suppose that dimSing(ω)=0 or, in other terms, the sequence of coeffi-
cients a1,··· ,am of ω is regular in the local analytical algebra OM,o. If the germ of a differential

form η ∈Ω
p
M,o satisfies the condition ω∧η = 0, then η =ω∧ξ, where ξ ∈Ω

p−1
M,o . In particular,

there exists an exact sequence of OM,o-modules

0−→Ω
p−1
M,o ∧ω−→Ω

p
M,o

∧ω
−→Ω

p+1
M,o −→Ω

p+1
M,o /ω∧Ω

p
M,o−→0, 0≤ p<m, (2.1)

so that the increasing complex (Ω•
M,o,∧ω) is acyclic in all dimensions 0≤ p<m.

Remark 2.1. Assume that s = codim(Sing(ω),M) ≥ 1, that is, the codimension of
Sing(ω)⊂M is at least 1. Then the sequence (2.1) is exact for all 0≤ p< s and vice versa.
In particular, Hp(Ω•

M,o,∧ω)=0 whenever 0≤ p< s.

3 Logarithmic differential forms on manifolds

Let D⊂M be a Cartier divisor. Then a local equation of the hypersurface D, in a suitable
neighborhood U of the distinguished point o, is defined by the germ of a holomorphic
function h∈OM,o : if z=(z1,··· ,zm) is a system of local coordinates in a neighborhood of
o, then h(z)=0 is a local equation of D at o and OD,o

∼=OM,o/(h).
Given a reduced divisor D, the coherent analytic sheaves of germs of logarithmic differ-

ential forms Ω
p
M(logD), p≥0, are locally defined as follows.

Definition 3.1. The OM,o-module Ω
p
M,o(logD) consists of germs of meromorphic p-forms

ω on M such that ω and dω have at worst simple poles along D. In other terms, hω
and hdω (or, equivalently, dh∧ω) are holomorphic at o, that is, h·Ω

p
M,o(logD)⊆Ω

p
M,o and

h·dΩ
p
M,o(logD)⊆Ω

p+1
M,o (as well as dh∧Ω

p
M,o(logD)⊆Ω

p+1
M,o ).

Remark 3.1. It is well-known that this notion was introduced and studied by P. Deligne
(1970) for divisors with normal crossings, and then by K. Saito (1976) for arbitrary re-
duced divisors in a complex analytic manifold (see [21]). There are also few versions of
this notion in the real analytic, semi-meromorphic and smooth cases.

Making use of the following variant of the de Rham lemma for singular hypersurfaces,
we are able to describe explicitly for all p≥ 0 the kernel of exterior multiplication by the
total differential of a holomorphic function.
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Lemma 3.1 (see [2,3]). Let h∈OM,o be a germ of holomorphic function without multiple factors.
Then for p=0,1,··· ,m−1 there are exact sequences of OM,o-modules

0−→Ω
p
M,o(logD)

·h
−→Ω

p
M,o

∧dh
−→Ω

p+1
M,o /h·Ω

p+1
M,o −→Ω

p+1
D,o −→0, (3.1)

where by ∧dh we denote the homomorphism of exterior multiplication by the total differential of
the function h.

Proof. Taking ϑ∈Ker(∧dh)⊆Ω
p
M,o, we see that dh∧ϑ=h·ξ, ξ∈Ω

p+1
M,o . It is clear, that ω=ϑ/h

is contained in Ω
p
M,o(logD), because dh∧ω and hdω are holomorphic simultaneously, and

vice versa.

Remark 3.2. In other words, we obtain an invariant description of modules of logarithmic
differential forms as the kernel of the operator of exterior multiplication

Ω•
M,o(logD)∼=

1

h
Ker(∧dh : Ω

p
M,o−→Ω

p+1
M,o /h·Ω

p+1
M,o ).

That is, the set of holomorphic forms annihilated by exterior multiplication by the total

differential ω=dh coincides with h·Ω
p+1
M,o (logD).

Remark 3.3. The above result can be also regarded as an analog of an observation due
to G. de Rham in the context of the theory of generalized functions. To be more precise,
he has proved that distributions T of degree zero, satisfying the condition T∧ω= 0, are
equal to multiples of the Dirac distribution δ (see in [12, Eq. (5)]).

Corollary 3.1. Assume that Ω
p
M(logD), for some p≥1, is a locally free OM-module. Then

the sequence (3.1) is a projective resolution of the OD-modules Ω
p+1
D .

Remark 3.4. The class of hypersurfaces satisfying this condition has been considered for
the first time by K. Saito [21] in relation with his studies of Gauss-Manin connection in
the cohomology of the relative De Rham complex associated with the versal deforma-
tion of an isolated hypersurface singularity. Somewhat later, P. Cartier [9] called such
hypersurfaces free divisors or Saito free divisors.

The class of Saito free divisors contains many types of hyperplane arrangements, dis-
criminants, Koszul free divisors, etc.; they are studied in a number of books and articles.
Some basic aspects of the theory of free divisors and their singularities have been stud-
ied in [3]; the most part of considerations there can be easily adopted to algebraic, real
analytic and smooth cases.

Lemma 3.2. For all p≥0 there are exact sequences of OM,o-modules

0−→Ω
p
M,o/dh∧Ω

p−1
M,o (logD)

·h
−→Ω

p
M,o/dh∧Ω

p−1
M,o −→Ω

p
D,o−→0,

where ·h is the homomorphism of ordinary multiplication.
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Proof. Similarly to Lemma 3.1.

Remark 3.5. It is easy to see that the exact sequences from Lemma 3.1 and Lemma 3.2
yield exact sequences of the corresponding increasing complexes endowed with the dif-
ferential induced by the de Rham differentiation d.

Proposition 3.1 (see [2, 3]). Assume that the hypersurface D is reduced, that is, the func-
tion h has no multiple factors. Then there exist the following exact sequences of OM,o-
modules

0−→dh∧Ω
p−1
M,o (logD)−→Ω

p
M,o⊕(dh/h)∧Ω

p−1
M,o −→Ω

p
M,o(logD)

·h
−→TorsΩ

p
D,o−→0,

where TorsΩ
p
D is the torsion submodule of Ω

p
D, p≥1.

Corollary 3.2. For all 1≤ p< c=codim(SingD,D) there are natural isomorphisms

Ω
p
M,o(logD)∼=Ω

p
M,o+(dh/h)∧Ω

p−1
M,o .

Remark 3.6. By analogy with the case of isolated singularities the most important analyt-
ical invariants of non-isolated singularities are the Milnor numbers µ(p), each of which is
equal to the rank of the corresponding torsion OD-module TorsΩ

p
D. It is well-known that

µ(p)=0 when 1≤p<c. On the other hand, for the case c=1 explicit calculations show that
the union of the coordinate hyperplanes in 3-dimensional space, that is, a divisor with
normal crossings has two non-zero Milnor numbers µ(1)=2, µ(2)=1, while for the swallow
tail, the discriminant of an A3-polynomial, one obtains µ(1)= 2, µ(2)= 2, and so on (see
further details in [1]).

4 Holonomic D-modules and the Poincaré lemma

Given a meromorphic differential form ω ∈ Ω•
M(logD) having logarithmic poles along

a reduced divisor D with normal crossings on a smooth complex quasi-projective variety
M, the restriction of ω to the complement M\D is a closed form (see [11]). This state-
ment is a direct consequence of the degeneracy of a certain spectral sequence (see (3.2.14)
in [11]). An analytic proof of a similar result for compact Kähler manifolds is described
in [19], where the author uses the classical harmonic integral theory and the standard
reduction to the case of divisors with normal crossings, based on Hironaka’s resolution
of singularities.

Herein, making use of the theory of holonomic D-modules, we show how to obtain
an explicit representation of closed meromorphic 1-forms with logarithmic poles along
arbitrary reduced divisor D⊂M. As a consequence, we shall see that such forms are exact
(see details in [5]).

By definition, a holonomic system of differential equations is represented by the fol-
lowing Pfaffian system:

du=∇u, (4.1)
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where the unknown u is either a vector or a matrix. Here ∇ is a coefficient matrix whose
entries are meromorphic differential 1-forms on M. The singular locus of the system con-
sists of points where the entries of the matrix ∇ are not holomorphic.

Proposition 4.1. Assume that system (4.1) is regular singular, integrable, and of dimen-
sion one. Then ∇=[ω] and the coefficient form ω has the following representation:

ω=dlog((gλ1
1 ···g

λp
p )g)=∑λi

(dgi

gi

)
+

dg

g
, (4.2)

where λ1,··· ,λp ∈ C are the characteristic numbers of the system and g1,··· ,gp,g,g−1 ∈
OM,o.

This statement implies the following two assertions. In a certain sense, the first one
can be regarded as a logarithmic variant of the classical Poincaré lemma for logarithmic
differential 1-forms.

Corollary 4.1. Any closed logarithmic differential 1-form ω with poles along D has rep-
resentation (4.2). In particular, the differential 1-form ω is exact.

In other terms, a closed logarithmic form is determined by the eigenvalues of the
monodromy associated with the corresponding (logarithmic) holonomic D-module. A
method of computation of eigenvalues of the monodromy, the most important invariants
of a regular singular holonomic integrable system, is also described in [5].

Corollary 4.2. Any one-dimensional regular singular integrable D-module is meromor-
phically equivalent to a D-module with the following coefficient matrix:

∇=dlog(gλ1
1 ···g

λp
p ), λj ∈C, j=1,··· ,p.

The Systems 4.1 with coefficient 1×1-matrices of such type are often called linear
differential equations of Fuchs’ type (see no2 in [10]). It should be noted that in the many-
dimensional case any integrable Fuchsian D-module is meromorphically isomorphic to an
integrable D-module of logarithmic type.

5 Regular meromorphic forms

Throughout this section we assume that dimX=n and there exists a dualizing complex
on X, for example, X is a Cohen-Macaulay space. Recall that the OX-module

ωn
X =Extm−n

OM
(OX ,Ωm

M)

is called the Grothendieck dualizing module of X.
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Definition 5.1. The coherent sheaf of OX-modules ω
p
X, p≥0, is locally defined as the set

of germs of meromorphic differential forms ω of degree p on X such that ω∧η ∈ωn
X for

any η∈Ω
n−p
X . In other terms (see [8, 16]),

ω
p
X
∼=HomOX

(Ω
n−p
X ,ωn

X)
∼=Extm−n

OM
(Ω

n−p
X ,Ωm

M), 0≤ p≤n.

The elements of ω
p
X are called regular meromorphic differential p-forms on X; such

forms are described in different settings: in terms of Noether normalization and trace
(see [8, 13, 16]), in terms of residual currents (see [7]), in the context of the theory of V-
varieties (see [23]), and others.

Recall some useful properties of regular meromorphic differential forms:

1. ω
p
X =0, if p<0 or p>n;

2. ω
p
X has no torsion, i.e., Torsω

p
X =0, p≥0;

3. the de Rham differential d acting on Ω
p
X is extended on the family of modules ω

p
X,

0≤ p≤n, and equips this family with a structure of a complex (ω•
X,d);

4. there exist inclusions ω
p
X⊆ j∗ j∗Ω

p
X, p≥0, where j : X\Z−→X is the canonical inclu-

sion and Z=SingX; moreover, if X is a normal space, then ω
p
X
∼= j∗ j∗Ω

p
X.

Lemma 5.1 (see [8]). Assume X is a complete intersection given by a regular sequence of func-
tions f1,··· , fk ∈OU in a neighborhood U of o∈X. Then n=m−k and for all p≥ 0 there exist
exact sequences of OM,o-modules

0−→ω
p
X,o

cM
X−→ExtM,o(OX,o,Ω

p+k
M,o )

E
−→

[
ExtM,o(OX,o,Ω

p+k
M,o )

]k
,

where the map cM
X is induced by multiplication by the fundamental class of X⊂M and the map E

is given by the rule: E(e)=(e∧dh1 ,··· ,e∧dhk).

In particular, ωn
X,o = Extk

OM,o
(OX,o,Ωm

M,o)
∼= OX,o(dz1∧···∧dzm/d f1∧···∧d fk), so that the

Grothendieck dualizing module ωn
X is a locally free OX-module of rank one.

Corollary 5.1. Under the assumptions of Lemma 5.1 suppose X=Y∪Z is any irredundant
decomposition. Then there is a natural inclusion ω•

Y⊕ω•
Z →֒ω•

X.

Proof. The inclusion is induced from the long exact sequence of the functor Ext associated
with the short exact sequence 0−→OX −→OY⊕OZ −→OY∩Z −→0.

6 The residue of logarithmic forms

A series of interesting results is closely related with the concept of residue, the core of the
complex analysis and geometry. First recall a reformulation of Definition 3.1.
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Lemma 6.1 (see [21]). In the notations of Section 3 let D⊂U be a reduced hypersurface deter-
mined by a function h, and ω a meromorphic p-form on U, p ≥ 1, with simple poles along D.
Then the form ω has logarithmic poles along D if and only if there exists a holomorphic function
g determining the hypersurface V ⊂U, a holomorphic (p−1)-form ξ and a holomorphic p-form
η on U such that

(a) dimC D∩V≤m−2,

(b) gω=
dh

h
∧ξ+η.

Obviously, the function g determines a non-zero divisor of OD,x for all x∈D. In par-
ticular, the restriction of g−1ξ to D is well-defined.

Definition 6.1 (see [21]). Under the assumptions of the Lemma above the residue form
of ω is defined as follows:

res(ω)=
1

g
ξ|D .

It is clear that the residue differential form is contained in the space MD⊗OD
Ω

p−1
D

∼=

MD̃⊗OD̃
Ω

p−1

D̃
, p≥1, where D̃ is the normalization of D, and MD and MD̃ are sheaves of

meromorphic functions on D and D̃, respectively. On the other hand, if ω is holomorphic
then res(ω)=0 and vice versa.

Remark 6.1. In fact, the above definition is a generalization of the notion of residue orig-
inated by H.Poincaré who studied the case of hypersurfaces without singularities. In
such case the function germ g is invertible and the multiplier g−1 is no longer required.
The corresponding presentation for closed forms was described by J.-P.Leray (see [18]).
Moreover, J.-B. Poly has proved later that this presentation is well-defined for any semi-
meromorphic differential forms ω as soon as ω and dω have simple poles along a hyper-
surface [20].

Proposition 6.1 (see [3]). There exists an exact sequence of complexes of OM-modules
endowed with the differential induced by the de Rham differentiation

0−→Ω•
M −→Ω•

M(logD)
res
−→ω•−1

D −→0,

and natural isomorphisms

H
p
DR(Ω

•
M(logD))∼=H

p−1
DR (ω•

D), p≥1,

where ω•
D is the complex of regular meromorphic differential forms on D and H

∗
DR is the

functor of cohomologies.

Recall that the complex (ω•
D,d) is acyclic in positive dimensions if D is a graded ratio-

nal normal hypersurface singularity (see [14, Remark (4.8)(2)]), i.e., ω•
D is a resolution of

the constant sheaf CD. Consequently, Ω•
M(logD) is acyclic in all dimensions p> 1 in the

case where D is a simple rational singularity of type Ak, Dk, E6, E7 or E8 of dimension
n≥2, and dimCH

1
DR(Ω

•
M(logD)) is equal to the number of irreducible components of D.
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7 Multi-logarithmic differential forms

Following [4], we now describe an extension of the above results in the framework of the
many-dimensional residue theory.

Let D be a reduced divisor of complex manifold M of dimension m, and let D =
D1∪···∪Dk, k ≥ 1, be any irredundant (not necessarily irreducible) decomposition of D.
Then the component Dj is locally determined by a function hj ∈ OM,o, j = 1,··· ,k. The
hypersurface D=D1∪···∪Dk and the intersection C=D1∩···∩Dk is locally defined by the
function h=h1 ···hk and by the ideal I=(h1,··· ,hk) of OM,o, respectively. For convenience

of notations we set D̂j =D1∪···∪Dj−1∪Dj+1∪···∪Dk and D̂1=∅ for k=1.

We denote the sheaves of meromorphic differential forms of degree p ≥ 1 formed
by differential p-forms with simple poles along D by Ω

p
M(D). Similarly, the sheaves

Ω
p
M(⋆D) consists of meromorphic differential forms with poles along D of any order so

that Ω
p
M(⋆D̂j) is also well-defined. By definition, Ω

p
M(D̂1)=Ω

p
M(⋆D̂1)∼=Ω

p
M.

Definition 7.1. Assume that h1,··· ,hk is a regular sequence. Then an element ω∈Ω
p
M(D)

locally satisfying the conditions

dhj∧ω∈
k

∑
i=1

Ω
p+1
M,o (D̂i), j=1,··· ,k,

is called the multi-logarithmic differential p-form with respect to the complete intersection
C; the set of all such forms and the corresponding sheaf is denoted by Ω

p
M(logC).

Thus, Ω
p
M(logC), p ≥ 0, are coherent sheaves of OM-modules and there are nat-

ural inclusions hj ·Ω
p
M(logC) ⊆ Ω

p
M(D̂j), j = 1,··· ,k, and h·Ω

p
M(logC) ⊆ (I)Ω

p
M. Fur-

ther, Ω
p
M(logD) ⊆ Ω

p
M(logC), p ≥ 0, Ω0

M(logD) ∼= Ω0
M(logC) ∼= OM, and Ωm

M(logD) ∼=
Ωm

M(logC)∼=Ωm
M/h. Moreover, there is an analog of the presentation from Remark 3.2.

Proposition 7.1. For all p≥0 there are exact sequences of OM,o-modules

0−→h·Ω
p
M,o(logC)−→Ω

p
M,o

E
−→

(
Ω

p+1
M,o /(h1,··· ,hk)Ω

p+1
M,o

)k
,

where the mapping E is locally defined by the rule: E(e)=(e∧dh1,··· ,e∧dhk); so that

Ω•
M,o(logC)∼=

1

h
Ker(E : Ω

p
M,o−→Ω

p+1
M,o /(h1,··· ,hk)Ω

p+1
M,o ).

Remark 7.1. If k=1, then multi-logarithmic differential forms are logarithmic in the sense
of Definition 3.1. Indeed, we have C=D, so that Ω

p
M(logC)=Ω

p
M(logD), p≥0.
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8 The multiple residue

Let us now discuss the concept of multiple residue of multi-logarithmic differential forms
with respect to a complete intersection.

Proposition 8.1 (see [6, 7]). For any multi-logarithmic differential form ω ∈ Ωp(logC)
there is a holomorphic function g, which is not identically zero on every irreducible com-

ponent of the complete intersection C, a holomorphic differential form ξ ∈ Ω
p−k
U and a

meromorphic p-form η∈∑
k
i=1Ω

p
U(D̂i) such that there exists the following representation

gω=
dh1

h1
∧···∧

dhk

hk
∧ξ+η. (8.1)

First, note that the function g in Decomposition 8.1 is not a zero divisor in the local
ring OC,o

∼=OX,o/(h1,··· ,hk)OX,o. Therefore, one can consider the restriction of the form
ξ/g to the germ of the complete intersection C=D1∩···∩Dk.

Definition 8.1. The restriction of differential form ξ/g to the complete intersection C is
called the multiple residue form or multiple residue of the differential form ω; this form is
denoted by

ResC(ω)=
ξ

g

∣∣∣
C

.

By definition, the multiple residue differential form is contained in the space

MC⊗OC
Ω

q−k
C

∼=MC̃⊗OC̃
Ω

q−k

C̃
, q≥ k,

where C̃ is the normalization of C, and MC and MC̃ are quasicoherent sheaves of mero-

morphic functions on C and C̃, respectively.

Remark 8.1. An analog of the decomposition (8.1) was studied by J.-P. Leray in the case
where all the divisors Di are smooth (see (42.4) in [18]). In such case the germ g is invertible
similarly to the situation described in Remark 6.1.

Theorem 8.1 (see [7]). Under the assumptions of Section 7 there are exact sequences of OM-
modules

0−→
k

∑
i=1

Ω
p
M(⋆D̂i)−→Ω

p
M(logC)

ResC−→ω
p−k
C −→0, p≥ k≥1, (8.2)

where ω
p−k
C is the module of regular meromorphic differential (p−k)-forms on C.

It is clear that Ω
p
M(logD)⊂Ω

p
M(logC), so that the restriction of ResC(ω) to Ω

p
M(logD)

is also well-defined. Moreover, if ω ∈ Ω
p
M(logD) then we can choose the decomposi-

tion (8.1) in such a way that the form η is also logarithmic along D.
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Theorem 8.2 (see [4]). Under the same assumptions there exist exact sequences of OM-modules

0−→
k

∑
i=1

Ω
p
M(logD̂i)−→Ω

p
M(logD)

ResC−→ω
p−k
C −→0, p≥ k≥1. (8.3)

Remark 8.2. Note that there exist also some other explicit representations for the mul-
tiple residue p-form (ξ/g)|C. For example, one is described by a ∂̄-closed meromorphic
current: 〈[ ξ

g

]∣∣∣
C

,ϕ
〉
= lim

ε−→0

∫

C∩{|g|>ε}

ξ

g
∧ϕ,

where ϕ ∈ D
2m−k−p
U is a differential C∞-form on an open set U with compact support

defined by the map (h1,··· ,hk) : U −→ Ck (see details in in [7, Théorème 3.1]). Slightly
modifying some arguments from Section 2–Section 3 in [15], we can obtain another inte-
gral representation using a variant of Grothendieck residue for complete intersections.

9 The weight filtration

The concept of the weight filtration on the logarithmic de Rham complex for divisors
with normal crossings in a nonsingular manifold was introduced by Deligne (1971) in de-
scribing the mixed Hodge structure on the cohomology of the complement of a divisor
(see [11]). Since then, this theory has been extensively developed in many directions for
various types of varieties and cohomology theories. However, almost all known gener-
alizations are based on the reduction of the situation under consideration to the case of a
divisor with normal crossings, on general theorems on resolution of singularities, and on
the functoriality of the notion of the mixed Hodge structure.

Following [4, 6], now we proceed to a description of the weight filtration on the log-
arithmic de Rham complex for divisors whose irreducible components are given locally
by a regular sequence of holomorphic functions. In particular, this allows us to compute
the mixed Hodge structure on the cohomology of the complement of divisors of certain
types without resorting to the above-mentioned reduction.

Given an analytic manifold M, let D⊂M be a reduced divisor and D=D1∪···∪Dk be
its irreducible decomposition. For the sake of simplicity we also suppose that components
Di, i=1,··· ,k, have no self-intersections. For any n-tuple I=(i1 ··· in), 1≤ i1 < ···< in ≤ k, of
length n=#(I) consider the germs:

DI =D(i1···in)=Di1∪···∪Din
, CI =C(i1···in)=Di1∩···∩Din

.

We use C(n) to denote the germ of the analytic subspace of M determined by the unions
of germs C(i1···in) for all admissible n-tuples, so that C(1)=D, C(k)=C(i1···ik)=C, and so on.
It is also convenient to set D0=C0=∅.
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Definition 9.1. The weight filtration, or the filtration of weights W on the logarithmic de
Rham complex Ω

p
M(logD) is locally defined as follows:

Wn(Ω
p
M,o(logD))=





0, n<0,

Ω
p
M,o, n=0,

∑#(I)=pΩ
p
M,o(logDI), n≥ p, 0< p< ko,

∑#(I)=n Ω
p
M,o(logDI), otherwise,

where the number of irreducible components of D passing through the point o∈ M is
denoted by ko.

For example, for k = 3 the first non-trivial elements of the weight filtration one can
represent in the following form:

W0 Ω1
M Ω2

M Ω3
M Ω4

M

↓ ↓ ↓ ↓ ↓
W1 ∑Ω1

M(logDi) ∑Ω2
M(logDi) ∑Ω3

M(logDi) ∑Ω4
M(logDi)

↓ ↓ ↓ ↓ ↓
W2 ∑Ω1

M(logDi) ∑Ω2
M(log(Di∪Dj)) ∑Ω3

M(log(Di∪Dj)) ∑Ω4
M(log(Di∪Dj))

↓ ↓ ↓ ↓ ↓
W3 ∑Ω1

M(logDi) ∑Ω2
M(log(Di∪Dj)) Ω3

M(logD) Ω4
M(logD)

↓ ↓ ↓ ↓ ↓
··· ··· ··· ··· ···

Thus, Wn(Ω
p
M,o(logD))=Ω

p
M,o(logD), if n≥ p≥ko≥1. Next, W is an increasing filtration

and, in view of d- and ∧-closeness of the exterior algebra Ω•
M(logD), there exist natural

inclusions

d(Wn(Ω
•
M(logD)))⊂Wn(Ω

•
M(logD)),

Wn(Ω
p
M(logD))∧Wℓ(Ω

q
M(logD))⊂Wn+ℓ(Ω

p+q
M (logD)),

for all integers p, q, n and ℓ.
The following statement can be regarded as a generalization of isomorphism (3.1.5.2)

described in [11] for divisors with normal crossings to the case of divisors whose compo-
nents are defined by a regular sequence of functions.

Let π : C̃(n)→C(n) be the normalization morphism, so that C̃(n) is the disjoint union
of the normalizations C̃(i1···in) for all for all n-tuples with n≥1. Let ι denote the projection
of C̃(n) to M, so that ι= i◦π, where i : C(n)→M is a natural inclusion.

Theorem 9.1. Suppose that D satisfies the above assumptions and the normalization morphism
induces an isomorphism of complexes

π∗ : ω•
C̃(n)

∼=ω•
C(n) .
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Then the multiple residue map (8.3)

Res•n : Wn(Ω
•
M(logD))−→ ι∗ω•

C̃(n)[−n]

induces an isomorphism of complexes of OM-modules

GrW
n (Ω•

M(logD))∼= ι∗ω•
C̃(n)[−n],

where the complexes of sheaves of regular meromorphic differential forms on C(n) and its normal-
ization C̃(n) are denoted by ω•

C(n) and ω•
C̃(n) , respectively.

Further analysis shows that, under one of the standard assumptions on the ambient
manifold M (smoothness, Kählerness, completeness, etc.), this filtration can be used for
the computation of the canonical mixed Hodge structure on the cohomology of comple-
ments H∗(M\D,C) similarly to [23, pp. 532], without the use of theorems on resolution
of singularities and the standard reduction to the case of normal crossings.

10 The multiple residue with respect to Cohen-Macaulay spaces

Now, we briefly discuss an explicit construction of multi-logarithmic differential forms
and their residues with respect to non-complete intersections.

In the notations of Section 2, let X ⊂ M be an analytic space defined by a sheaf of
ideals IX so that OX =OM/IX . Then IX is locally generated by a sequence of function
germs f1,··· , fℓ ∈OM,o, that is, I= IX,o=( f1,··· , fℓ)OM,o. Assume that X is a reduced pure-
dimensional Cohen-Macaulay space. In particular, the height of I is equal to k=m−n, where
n is the dimension of X, and ℓ≥ k.

Taking a regular sequence h1,··· ,hk ∈ I of maximal length, we denote by D ⊂ M the
divisor whose components Di are defined as the zero-sets of the functions hi, i= 1,··· ,k.
Set h= h1 ···hk and denote by C= D1∩···∩Dk the corresponding complete intersection,
similarly to the notations of Section 7. It is clear that X⊆C.

Remark 10.1. Thus, any pure-dimensional Cohen-Macaulay space X can be regarded as a
component (not necessarily irreducible) of an irredundant decomposition of the complete
intersection C (not necessarily unique) which has been just considered.

In what follows we shall analyze the local situation and, in order to simplify notations,
often do not indicate the distinguished point.

Definition 10.1. A meromorphic differential form ω∈Ω
p
M(D) locally satisfying the con-

ditions

gω∈
k

∑
i=1

Ω
p
M(D̂i), dg∧ω∈

k

∑
i=1

Ω
p+1
M (D̂i), for all g∈I,

is called the multi-logarithmic differential p-form with respect to the pair (X,C). The cor-
responding sheaf is denoted by Ω

p
M(logX|C).
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Thus, Ω
p
M(logX|C), p≥0, are coherent sheaves of OM-modules and there are natural

inclusions hj ·Ω
p
M(logX|C)⊆Ω

p
M(D̂j), h·Ω

p
M(logX|C)⊆Ω

p
M, Ω

p
M(logX|C)⊆Ω

p
M(logC),

and so on.

Remark 10.2. If X=D is a reduced hypersurface or X=C is a complete intersection, then
Ω

p
M(logX|C) coincides with Ω

p
M(logD) or Ω

p
M(logC), respectively.

By Definition 10.1, if ω ∈ Ω•
M(logX|C)[k] = Ω•+k

M (logX|C) then ω = ϑ/h, where the

holomorphic form ϑ∈Ω•
M[k]=Ω•+k

M satisfies the following congruences:

gϑ≡0 mod (h1,··· ,hk), dg∧ϑ≡0 mod (h1,··· ,hk), for all g∈I. (10.1)

In such a case one can define the residue symbol
[ ϑ

h1,···,hk

]
which is an element of the corre-

sponding Cousin complex CΩ(M) on M (see details in [13]).

Theorem 10.1. There exists a functorial residue map

resX : Ω•
M[k]−→ω•

X, resX(ϑ)=

[
ϑ

h1,··· ,hk

]
,

compatible with the canonical extension of the ordinary de Rham differentiation d to ω•
X, so that

d

[
ϑ

h1,··· ,hk

]
=(−1)k

([
dϑ

h1,··· ,hk

]
−

k

∑
j=1

[
dhj∧ϑ

h1,··· ,h2
j ,···hk

])
.

Moreover, for any p ≥ 0 the OX-module ω
p
X is generated by all the elements resX(ϑ), where

ϑ∈Ω
p+k
M . In particular, resX is a surjective map.

Proof. It is a direct consequence of considerations from [13].

Corollary 10.1. There is a functorial map

ResX|C : Ω•
M(logX|C)[k]−→ω•

X, ResX|C(ω)= resX(hω).

Proof. This follows from the Theorem above since h·Ω•
M(logX|C)⊆Ω•

M.

Proposition 10.1. For any ω∈Ω•
M(logX|C) we get ResX|C(ω)=ResC(ω)|X ∈ω•

X .

Proof. In fact, ω∈Ω•
M(logC) since Ω•

M(logX|C)⊆Ω•
M(logC). Hence, the multiple residue

ResC(ω)∈ω•
C is given by decomposition (8.1) in view of Definition 8.1. On the other hand,

ω•
X is naturally included in ω•

C in view of Corollary 5.1 and one can take the restriction of
the residue-form ResC(ω) to ω•

X.

Theorem 10.2. Under the above assumptions there exist exact sequences of OM-modules

k

∑
i=1

Ω
p
M(⋆D̂i)∩Ω

p
M(logX|C)−→Ω

p
M(logX|C)

Res
p

X|C
−→ ω

p−k
X −→0, p≥ k≥1,

induced by sequences (8.2) from Theorem 8.1.
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Proof. We have already remarked above that there are natural inclusions Ω
p
M(logX|C)⊆

Ω
p
M(logC). Thus, one can restrict the sequences of Theorem 8.1 to Ω

p
M(logX|C). Further-

more, by Corollary 5.1 one has ω•
X →֒ω•

C. It remains to verify that Im(Res
p

X|C
)⊆ω

p
X.

Proposition 10.2. The family of the multiple residue maps ResX|C satisfy the transforma-
tion law. To be more precise, if C ⊆C′ are two ambient complex intersections given by
two regular sequences (h1,··· ,hk)⊇ (h′1,··· ,h′k) of maximal length containing in the ideal
I, then

ResX|C(ω)=ResX|C′(∆ω′),

where ∆ is the determinant of a transformation h′i =∑αijhj, and ω′ ∈Ω•
M(logX|C′) and

ω∈Ω•
M(logX|C) are the corresponding multi-logarithmic differential forms.

Proof. By definition, there is a congruence

dh′1∧···∧dh′k ≡∆·dh1∧···∧dhk (mod (h1,··· ,hk)).

On the other hand, ∆·δij = ∑k Aikαkj, where Aik is the cofactor of the element αik, and,
consequently,

∆·hi =∑
j

∆δijhj =∑
j,k

Aikαkjhj =∑
k

Aikh′k =⇒∆(h1,··· ,hk)⊆ (h′1,··· ,h′k).

Now, taking ∆ω′=∆ϑ/h′∈Ω•
M(logX|C′), we see that the decomposition (8.1)

g∆ω′=
dh′1
h′1

∧···∧
dh′k
h′k

∧ξ+η, η∈∑Ω•
M(D̂′

i),

is equivalent to the inclusion

g∆ϑ∈dh′1∧···∧dh′k∧ξ+(h′1,··· ,h′k)η,

which implies

gϑ∈dh1∧···∧dhk∧ξ+(h1 ,··· ,hk)η
′.

Equivalently, for ω=ϑ/h∈Ω•
M(logX|C) there is a decomposition

gω=
dh1

h1
∧···∧

dhk

hk
∧ξ+η′ , η′∈∑Ω•

M(D̂i).

As a result,

ResC(ω)=
ξ

g

∣∣∣
C
=ResC′(∆ω′)=

ξ

g

∣∣∣
C′

,

where C⊆C′. It is not difficult to verify that similar identities remain valid for any other
presentation h′i =∑βijhj (see [17]).
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Finally, we also note that for arbitrary regular sequences (h1,··· ,hk) and (h′1,··· ,h′k) of
maximal length from the ideal I we can choose a regular sequence (h′′1 ,··· ,h′′k ) of the same
length in the intersection (h1,··· ,hk)∩(h

′
1,··· ,h′k) and then apply the above considerations

to the pairs (X,C′′), (X,C′), (X,C), and so on (see [17, Korollar 3.4]).

Remark 10.3. As a result, one can consider the union
⋃

{C : C⊃X}Ω•
M(logX|C) as the nat-

ural ”universal” domain of definition of the multiple residue map. Further considerations
show that this set can be naturally identified with a subspace of the local cohomology
module Hk

{X}(Ω
p
M) and can be expressed in terms of the corresponding Cousin complex

on M presented by Čech cocycles with poles of the first order along the divisors D associ-
ated with the corresponding ambient complete intersections C⊃X similarly to [3, Section
4] or [7, Théorème 2.4].

We see that Theorem 10.2 implies that

Ker(ResX|C)⊇
k

∑
i=1

Ω•
M(⋆D̂i)∩Ω•

M(logX|C).

Now we describe the kernel explicitly.

Corollary 10.2. In the above notations

ResX|C(ω)=0⇔∃C′⊇C, so that ResX|C′(∆ω′)=0.

Proof. It follows directly from the above considerations based on decomposition (8.1).
One can also use another method described in [13, Satz 2.6].

In slightly different terms similar ideas can be used for a description of explicit inte-
gral representations of the multiple residue for non-complete intersections in the frame-
work of the theory of currents.

More precisely, let X be as above. Then there is an analytic function g on X vanishes
at the singular subset SingX of X such that any section w∈ H0(X,ω•

X) can be presented
over the open set {g 6= 0} as the quotient v/g, where v∈ H0(X,Ω•

X). That is, all sections
of ω•

X are uniformely meromorphic. Then there is a ∂̄-closed meromorphic current Tw on X
defined by the following rule:

〈Tw,ϕ〉= 〈VPg(v/g),ϕ〉= lim
ε−→0

∫

|g|>ε
w∧ϕ,

where ϕ∈D
n−•,n
X is a differential C∞-form on X with compact support of the type (n−•,n),

and VPg is the symbol of principal value in the sense of Herrera-Lieberman (see [8, Propo-
sition 4]). The aim of the proof is to check the relation ∂̄Tw = 0; it follows from basic
properties of currents defined on a suitable ambient complete intersection C⊇X. Similar
approaches are also discussed in [22, Théorème] and [7, Théorème 3.1, Remarque (3.3)].
In contrast with our approach these constructions are based on the standard reduction to
the case of a normal crossing divisor (with the use of Hironaka’s resolution of singulari-
ties) when the principal value is well-defined.



50 A. G. Aleksandrov / Anal. Theory Appl., 30 (2014), pp. 34-50

References

[1] A. G. Aleksandrov, Milnor numbers of nonisolated Saito singularities, Funct. Anal. Appl.,
21(1) (1987), 1–9; translation from Funkts. Anal. Prilozh., 21(1) (1987), 1–10.

[2] A. G. Aleksandrov, On the De Rham complex of nonisolated singularities, Funct. Anal.
Appl., 22(2) (1988), 131–133; translation from Funkts. Anal. Prilozh., 22(2) (1988), 59–60.

[3] A. G. Aleksandrov, Nonisolated hypersurface singularities,–In: Advances in Soviet Mathe-
matics, (V. I.Arnol’d, editor), 1 (1990), 211–246.

[4] A. G. Aleksandrov, Multidimensional residue theory and the logarithmic de Rham complex,
J. Singularities, 5 (2012), 1–18.

[5] A. G. Aleksandrov and A. N. Kuznetsov, Holonomic D-modules of Fuchsian and logarith-
mic types, Complex Variables and Elliptic Equations, 56(1-4) (2011), 171–191.

[6] A. G. Aleksandrov, The multiple residue and the weight filtration on the logarithmic de
Rham complex, Funct. Anal. Appl., 47(4) (2013), 247–260; translation from Funkts. Anal.
Prilozh., 47(4) (2013), 1–17.
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