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Abstract. This study presents a numerical solution to the three-dimensional solute
transport in heterogeneous media by using a layer-integrated approach. Omitting
vertical spatial variation of soil and hydraulic properties within each layer, a three-
dimensional solute transport can be simplified as a quasi-three-dimensional solute
transport which couples a horizontal two-dimensional simulation and a vertical one-
dimensional computation. The finite analytic numerical method was used to discretize
the derived two-dimensional governing equation. A quadratic function was used to
approximate the vertical one-dimensional concentration distribution in the layer to
ensure the continuity of concentration and flux at the interface between the adjacent
layers. By integration over each layer, a set of system of equations can be generated
for a single column of vertical cells and solved numerically to give the vertical solute
concentration profile. The solute concentration field was then obtained by solving all
columns of vertical cells to achieve convergence with the iterative solution procedure.
The proposed model was verified through examples from the published literatures in-
cluding four verifications in terms of analytical and experimental cases. Comparison of
simulation results indicates that the proposed model satisfies the solute concentration
profiles obtained from experiments in time and space.
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1 Introduction

The major difficulty of groundwater solute transport simulation could be attributed to
the large degree of heterogeneity in the subsurface. In reality, physical properties of sub-
surface porous media are spatially and temporally variable rather than homogeneous,
and could be simply considered as a multi-layered system. Therefore, groundwater so-
lute transport simulation is usually performed by employing the concept of multi-layered
system if the spatial variability of soil and hydraulic properties can be negligible with-
in each layer and the subsurface porous media can be assumed as a series of parallel
homogeneous layers with finite thickness. In the past decades, a number of analytical
or semi-analytical solutions to solute transport in multi-layered system have been de-
veloped by many investigators, including one-dimensional diffusion modeling [3, 19],
one-dimensional advection-diffusion modeling [4, 11, 13, 17, 18] and two-dimensional
advection-diffusion modeling [1, 24, 30, 31].

Although, analytical solutions are free from numerical dispersion and other trunca-
tion errors that are often observed in numerical simulations, the initial and boundary
conditions are so limited that are not suitable for many practical problems. Therefore
numerical methodology is more widely applied, and consequently a variety of numeri-
cal schemes, as reviewed by Zhao et al. [32], have been developed. On the other hand,
a fully three-dimensional model, which can appropriately simulate the aforementioned
solute transport, may be overwhelmed by the demand of a large number of nodes or
elements to become impractical to solve. To overcome these disadvantages, some re-
searchers introduced a multi-layered technique to simplify the three-dimensional compu-
tation processes by splitting the entire domain into a number of thin layers. The full three-
dimensional simulation can be reduced to the combination of vertical one-dimensional
and horizontal two-dimensional computations. It would disregard some noticed local
features but significantly reduces the consumption of computational time to improve
feasibility and practicability. This conceptual procedure was first used in coastal wa-
ter simulation [7, 10, 12, 14] and was later adopted and applied in some fields such as
open-channel flow applications [5,9,21,28] and subsurface flow simulation [15,22,29]. A
similar concept was also used to examine groundwater solute transport in heterogeneous
media [8], where a hybrid model was constructed by applying the finite analytic method
for the horizontal two-dimensional computation along with an analytical function for the
vertical one-dimensional computation. Through a multi-layered procedure, the model is
suitable for large-scale simulation and demonstrates both accuracy and efficiency com-
pared with analytical solutions.

The purpose of this paper is to test the feasibility of the latter approach. A quasi-three-
dimensional numerical model, based on the multi-layered technique, is proposed to deal
with this subject. The fundamental concept of the adopted approach is similar to Kuo
et al. [8], but we solve the vertical solute profile numerically by introducing a quadratic
function instead of using an analytical solution. The newly-proposed model can relieve
the limitation of Dirichlet type boundary conditions along the upper boundary and Neu-
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mann type boundary conditions along the lower boundary embedded in the model by
Kuo et al. [8]. In the following paragraphs, the framework for solute transport modeling
and adopted numerical algorithm are first introduced. Subsequently, a three-dimensional
solute transport problem with a patch source is applied to verify the proposed model as
well as to evaluate the effect of layer numbers on computational accuracy. Two heteroge-
neous media cases, respectively, with horizontal and vertical flow are then introduced to
examine the reliability of numerical model. Finally, the numerical results are compared
with experimental data to demonstrate the capabilities of the model.

2 Mathematical model

2.1 Governing equation

The three-dimensional mathematical model for solute transport processes in porous me-
dia without chemical reaction can be expressed as
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, (2.1)

where t is the time; x, y and z are the Cartesian coordinates; C is the concentration of
solute at location (x, y, z); Dx, Dy and Dz are the dispersivity coefficients; u, v and w
denote velocity components in the directions x, y and z, respectively.

2.2 Layer-integrated equation

A sketch illustrating the layer division and the definition of coordinates for the compu-
tational domain in total K layers is shown in Fig. 1. Under the assumption of uniform
soil properties in the vertical direction for each layer, the layer-averaged transport equa-
tion with regard to the kth layer can be obtained from integrating the governing equation

Figure 1: Schematic illustration of layer division and the definition of coordinates.
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vertically over the layer from the bottom to the top and can be expressed as

ϕk=
1

hk

∫ zk+1/2

zk−1/2

ϕ(x,y,z,t)dz, (2.2)

where the subscript k represents the average quantities over the kth layer; the supple-
mentary subscripts +1/2 and −1/2 denote the quantities at top and bottom of the kth
layer, respectively; ϕk represents the average physical variables for the kth layer such as
u, v, w and C; zk±1/2 represents the vertical elevations at top and bottom of the kth layer
interfaces, respectively; hk is the thickness of the kth layer. The governing equation for
solute transport is integrated through K layers by applying Eq. (2.2) and Leibnizs rule.
The layer-integrated formulation of the transport equation for the kth layer then gives
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2.3 Formulation of layer interface relation

The three-dimensional solute transport equation has been simplified as the layer-
averaged form in xy two-dimensional subdomains, as given in Eq. (2.3). However, t-
wo more unknowns are produced at the top and bottom interfaces of each layer, e.g.,
Ck+1/2 and Ck−1/2 with respect to the kth layer. In addition, the vertical gradient values
of Ck+1/2 and Ck−1/2 should be determined first. In this study, the concentration variation
in the layer was modeled by a quadratic polynomial interpolation function, which was
also adopted by Tsai et al. [25] for solving the advection-diffusion equation and Hung et
al. [5] for shallow water free-surface flow computation. The quadratic function for solute
concentration in each layer along z direction can be represented as

C(z)= a+bz+cz2, (2.4)

where a, b and c are undetermined coefficients. Applying the concentration values at the
top and bottom interfaces

C(z=hk)= a+bhk+ch2
k =Ck+1/2, (2.5a)

C(z=0)= a=Ck−1/2, (2.5b)

together with the definition of Ck

Ck=
1

hk

∫ hk

0
(a+bz+cz2)dz, (2.6)
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the coefficients a, b and c in Eq. (2.4) can then be specified as follows

a=Ck−1/2, (2.7a)

b=
1

hk
(−2Ck+1/2+6Ck−4Ck−1/2), (2.7b)

c=
1

hk
(3Ck+1/2−6Ck+3Ck−1/2). (2.7c)

By taking the first derivative of Eq. (2.4) with respect to z, the vertical gradient values of
solute concentration at the top and bottom interfaces of the kth layer can be respectively
expressed as
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Substituting Eqs. (2.8a) and (2.8b) into Eq. (2.3) yields the following form of equation:
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2.4 External boundary conditions

The external boundary conditions can be expressed by given concentration or dispersive
flux at any given time and can be given as any one of the following:

C|boundary=C0(t), (2.10a)

D
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VnC
∣

∣

boundary
−D

∂C

∂n

∣

∣

∣

boundary
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where the subscript boundary represents the domain boundary; D is the dispersivity
coefficient; n is the normal direction; Vn is the velocity component along the normal di-
rection; C0(t) and Q0(t) are the known time-varying functions representing the specific
concentration and dispersive flux, respectively.

2.5 Internal boundary conditions

The internal boundary conditions express the solute concentration relationship at each
interface of neighboring two layers. The solute concentration and its gradient at each
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layer interface should be continuous and can be shown in the following equations:

Ck+1/2=C(k+1)−1/2, (2.11a)

εz,kDz,k
∂Ck+1/2

∂z
= εz,k+1Dz,k+1

∂C(k+1)−1/2

∂z
, (2.11b)

where ε represents the porosity of soil.

3 Numerical algorithm

3.1 Finite analytic formulation

In each layer, the finite analytic (FA) method was chosen to solve the transport equation.
FA method was first introduced by Chen et al. [2] to perform two-dimensional fluid flow
and heat transfer simulation and was applied to solute transport simulation to acquire
convincing results [6,26,27]. The development history and engineering applications were
further illustrated and reviewed by Lin et al. [16]. Applying the FA method at each time
step, Eq. (2.9) for the kth layer at a node i, j can be specified as
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where the superscripts n and n+1 are the time steps; Cne, Cnw, Cse, Csw, Cwc, Cec, Cnc,
Csc and Cp are the FA coefficients. The detailed derivations of Eq. (3.1) are given in the
Appendix.

3.2 Formation of algebraic system of equations

Applying Eq. (3.1) to a single column of vertical cells from bottom upward to top of the
computational domain layer by layer, there are K layer-averaged transport equations can
be produced for the K layers. Coupling with the bottom and top external boundary con-
ditions and (K−1) internal conditions, a set of algebraic system of equations consisting of
(2K+1) equations can be established and form a well-posed problem for a single column
of vertical cells. Therefore, the total (2K+1) undetermined unknowns can be solved by
the (2K+1) equations.

The computational procedure is illustrated as a flowchart shown in Fig. 2 and can be
summarized in the following:
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Figure 2: Flow chart of the computational procedure.

(a) Set the initial and boundary conditions for the domain of interest.

(b) Compute the FA coefficients.

(c) Solve the equations to obtain solute concentration distribution for each column of
vertical cells.

(d) Repeat steps (b) and (c) if solute concentration does not converge for the whole
computational domain.

(e) March through time by repeating steps (b) to (d).

4 Model verification

4.1 Solute transport with a patch source

Three-dimensional solute transport from a patch source in the unidirectional flow field
illustrated in Fig. 3 is considered in this examination, for which the following initial con-
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Figure 3: Schematic representation of solute transport with a patch source in unidirectional flow field.

dition applies

C(x,y,z,0)=0. (4.1)

The boundary conditions are:

Left : C(0,y,z,t)=

{

C0(t), −y0<y<y0 and z1<z<z2,

0, otherwise,
Right : C(∞,y,z,t)=0, (4.2a)

Upper : C(x,−∞,z,t)=0, Lower : C(x,∞,z,t)=0, (4.2b)

Top : ∂C(x,y,H,t)/∂z=0, Bottom : ∂C(x,y,0,t)/∂z=0. (4.2c)

The analytical solution by Neville [20] is:

C(x,y,z,t)=
x

4H
√

πDx

∫ t

0
C0(t−ξ)

1

ξ3/2
exp

[

−λξ− (x−uξ)2

4Dxξ

][

er f c
( y−y0

2
√

Dyξ

)

−er f c
( y+y0

2
√

Dyξ

)]{

(z2−z1)+
2H

π

∞

∑
n=1

1

n

[

sin
(nπz2

H

)

−sin
(nπz1

H

)]

cos
(nπz

H

)

exp
(

−Dz
n2π2

H2
ξ
)}

dξ, (4.3)

where H is the aquifer thickness, λ is the reaction rate and C0(t) is the inflow concentra-
tion at the left boundary within the patch from −y0 to y0 and z1 to z2 (see Fig. 3). The
constant concentration C0(t)=1 with dispersivity Dx =1 is assumed to be released from
the left boundary with the patch source of 2m in height and 2m in width. The parame-
ters and soil properties used in the modeling are listed in Table 1. In order to investigate
the effects of layer numbers on computational accuracy, K= 40, K= 20 and K= 10 were
applied to this case. At x = 10m, the relative concentration (C/C0) distributions along
z direction for t = 5 day, t = 10 day and t = 30 day are shown in Fig. 4 where the solid
line is due to (4.3) and the symbols are due to our numerical solution. The results of the
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Table 1: Summary of parameters for solute transport with a patch source.

Symbol Value Unit
Time step ∆t 0.1 day
Space interval ∆x, ∆y 0.1 m
Layer thickness hk 0.25 m
Layer number K 40 -
Initial solute concentration Cini 0 -
Aquifer thickness H 10 m

Reaction rate
λ 0 day−1

u 1 m day−1

Seepage velocity
v 0 m day−1

w 0 m day−1

Dispersivity coefficient
Dx









0.002
0.01
0.1
1









m2 day−1

Dy 0.1 m2 day−1

Dz 0.1 m2 day−1

Constant source concentration C0 1 -
Width of patch source y0 1 m

Position of patch source
z1 4 m
z2 6 m

numerical simulation are in good agreement with those obtained by the analytical anal-
ysis for various layer numbers. Taking the results at z=5m after 30 days for example, a
relative concentration of 0.1658 is obtained from the analytical solution while the numer-
ical model yields 0.1657, 0.1655 and 0.1646 with K= 40, K= 20 and K= 10, respectively.
Using more layers cannot much improve the accuracy of results. It is that the relative
CPU time (i.e., the CPU time relative to the case with K = 10) consumed in simulation
increases drastically as number of layers increases: 3.66 and 15.25 for K=20 and K=40,
respectively for the cases studied.

With all other parameters remaining the same as previous section, the dispersivity Dx

is set to 1, 0.01, and 0.002 to produce Peclet numbers (Pe) of 0.1, 10 and 50, respectively.
Fig. 5 shows plots of the concentration profile in the longitudinal direction with K=20 at
each Peclet number for t=5 day, t=10 day and t=30 day. With Peclet number of 10, some
degree of numerical overshooting can be found in Fig. 5(b) and numerical oscillation
occurs once the Peclet number is elevated to 50 (see Fig. 5(c)). It can be concluded from
Fig. 5 and Fig. 4(b) (Pe=1) that the simulated results are worse with smaller dispersivity,
i.e., larger Peclet number.

4.2 Horizontal solute transport in multi-zone heterogeneous media

One-dimensional solute transport in heterogeneous porous media under the condition of
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Figure 4: Relative concentration (C/C0 distribution along z direction for t= 5 day, t= 10 day and t= 30 day
from modeling with (a) K=40; (b) K=20; and (c) K=10.

Figure 5: Relative concentration (C/C0) distribution along z direction for t=5 day, t=10 day and t=30 day
from modeling with (a) Pe=0.1; (b) Pe=10; and (c) Pe=50.
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Figure 6: Schematic representation of one-dimensional solute transport in porous media with (a) one-zone
(homogeneous sand); (b) three-zone (sand-clay-sand); and (c) five-zone (sand-clay-sand-clay-sand).

steady-state horizontal flow shown in Fig. 6 is considered in this examination. Liu et
al. [17] derived an analytical solution for this problem by using a generalized integral
transform method. In their study, three cases including one-zone case with a 30-cm-
thick homogeneous sand soil, three-zone case with a 2-cm-thick clay zone placed in the
center of the homogeneous sand soil and five-zone case with two separate 2-cm-thick
clay zones placed in the sand soil (see Figs. 6(a), (b) and (c)) were taken into account
respectively. The analytical solution is used to verify the numerical model proposed in
this study under the same initial and boundary conditions shown in Fig. 6 along with the
related soil parameters listed in Table 2. The comparisons of the analytical and numerical

Table 2: Summary of soil properties for horizontal solute transport in heterogeneous media.

Symbol Value Unit
Sand
Velocity u 10 cm day−1

Dispersivity coefficient Dx 7 cm2 day−1

Porosity ε 0.4 -
Retardation factor R 4.25 -
Clay
Velocity u 8 cm day−1

Dispersivity coefficient Dx 18 cm2 day−1

Porosity ε 0.5 -
Retardation factor R 14 -
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Figure 7: Relative concentration (C/C0) distribution along x direction for t=2 day, t=6 day and t=10 day in
porous media with (a) one zone; (b) three-zone; and (c) five-zone.

solutions with one-zone, three-zone and five-zone cases are shown in Fig. 7 for three time
periods, i.e., t=2 days, t=6 days and t=10 days.

The results in Fig. 7 present how solute transport is retarded by the existence of low-
permeable clay layers and also show satisfactory agreement between the analytical and
simulated results.

4.3 Vertical solute transport in two-layer heterogeneous media

To verify the vertical transport behavior, one-dimensional vertical solute transport in
two-layered porous media with steady flow shown in Fig. 8 is studied herein. A ze-
ro initial concentration Cini=0, constant inlet concentration C0(t)=1 and constant outlet
concentration CH(t)=0 are given for this problem. The analytical solution of two-layered
application has been reported by Li and Cleall [13], in which the soil properties for the
inlet layer were assumed to be fixed while one of the following three parameters of dis-
persivity coefficient, porosity and retardation factor was varied with the others remain-
ing unchanged for the outlet layer. The detailed soil parameters for these three scenarios
are summarized in Table 3. Two-year simulation with the effects of various dispersivity
coefficients, porosities and retardation factors on the solute concentration profiles are p-
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Figure 8: Schematic representation of one-dimensional vertical solute transport in two-layer porous media and
related coefficients.

resented in Figs. 9(a), (b) and (c), respectively. It is seen in Fig. 9 that the simulated results
are in good agreement with those obtained from the analytical solution.

The results for the same cases, but now considering a Neumann outlet condition (i.e.,
∂C/∂z= 0) are presented in Fig. 10, where it is seen that the solute concentration distri-
butions obtained from analytical and numerical methods are in good agreement as well.

Table 3: Summary of soil properties for vertical solute transport in heterogeneous media.

Symbol Value Unit
Inlet layer
Velocity w 4×10−9 m s−1

Dispersivity coefficient Dz 5×10−9 m2 s−1

Porosity ε 0.4 -
Retardation factor R 2 -
Outlet layer
Velocity w 410−9 m s−1

Dispersivity coefficient Dz













2.5×10−9

5×10−9

1×10−8

2×10−8

4×10−8













m2 s−1

Porosity ε













0.2
0.3
0.4
0.6
0.8













-

Retardation factor R













1
2
4
8

16













-
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Figure 9: Relative concentration (C/C0) distribution along z direction under Dirichlet outlet condition with
various values of (a) dispersivity coefficient; (b) porosity; and (c) retardation factor.

Figure 10: Relative concentration (C/C0) distribution along z direction under Neumann outlet condition with
various values of (a) dispersivity coefficient; (b) porosity; and (c) retardation factor.
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It seems that the proposed model can properly simulate the concentration variation in
two-layer heterogeneous media under various boundary conditions.

4.4 Solute transport in three-layer heterogeneous media

The numerical solution is compared to the experimental data from Sudicky et al. [23] to
further test the proposed model. Sudicky et al. [23] conducted laboratory experiments by
injecting a sodium chloride solution into a thin sand layer bounded by silt layers within a
Plexiglass box (1.0m in length, 0.2m in thickness and 0.1m in width) as shown in Fig. 11.
Two experiments were performed in the study, i.e., a continuous injection with flow ve-
locity of 0.1m/day and an injection duration of 7 days with flow velocity of 0.5m/day
respectively applied in the sand layer. The relevant parameters employed in the exper-
iment are summarized in Table 4. Figs. 12 and 13 show the comparison between the
numerical results and the experimental data for the variation of relative concentration
with respect to time at the effluent end. Both of the two cases appear to be in reasonable
agreement with the observed data though the numerical model gives a slight overesti-
mation at some time spans.

Figure 11: Schematic representation of solute transport in stratified porous media.

Figure 12: Comparison between numerical results and measurements for velocity of 0.1m/day.
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Figure 13: Comparison between numerical results and measurements for velocity of 0.5m/day.

Table 4: Summary of soil properties for solute transport in stratified porous media.

Symbol Value Unit
Sand

Velocity u

[

0.1
0.5

]

m day−1

Dispersivity coefficient Dx 0.0002045 m2 day−1

Dispersivity coefficient Dz 0.0001045 m2 day−1

Porosity ε 0.33 -

Clay Velocity u 0 m day−1

Dispersivity coefficient Dx 0.0001045 m2 day−1

Dispersivity coefficient Dz 0.0001045 m2 day−1

Porosity ε 0.36 -

5 Conclusions

We presented and tested a numerical model for three-dimensional solute transport in
porous media using a separate, but coupled, solution strategy for horizontal and vertical
transport. By solving the vertical solute profile numerically instead of using an analytic
solution (Kuo et al. 2008), we removed many of the restrictions on boundary conditions
imposed by the analytic solution. The hybrid approach is accomplished by subdivid-
ing an aquifer in number of hypothetical layers in each of which horizontal transport is
solved using the finite analytic method. These same layers form the basis for the numer-
ical vertical transport calculations.

Verifications were carried out by comparison with analytical solutions and experi-
mental results, which showed a good agreement between vertical concentration profiles.
A varying number of layers were examined to investigate their effect on computation-
al accuracy. We found that no appreciable improvement in accuracy was obtained with
more layers, while the computational effort became burdensome if not impractical. We
also tested different types of boundary conditions, including Dirichlet and Neumann
conditions. Here the numerical results corresponded well with an analytic solution to a
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two-layer aquifer system.

Overall, our tests showed that the proposed model is computationally efficient, rea-
sonably accurate, and accommodates various boundary conditions.

Appendix

The appendix shows the derivations of discretization of solute transport equation by ap-
plying FA method.

Eq. (2.9) should be first expressed in a FA standard form as

2A
∂Ck

∂x
+2BC

∂Ck

∂y
=

∂2Ck

∂x2
+C

∂2Ck

∂y2
−G, (A.1)

in which

A=
uk

2Dx,k
, B=

vk

2Dy,k
, (A.2a)

C=
Dy,k

Dx,k
, G=R

(Cn+1
k −Cn

k

∆t

)

+ fp, (A.2b)

R=
1

Dx,k
, fp=

Dz,k

hk

(

−6Ck+1/2 +12Ck−6Ck−1/2

)

+
(

wkCk+1/2−wkCk−1/2

)

Dx,khk
. (A.2c)

For the kth layer, the relation between the central node i, j and eight neighboring nodes
at time step (n+1) can be obtained

Cn+1
i,j,k =

(

CneC
n+1
i+1,j+1,k+CnwCn+1

i−1,j+1,k+CseC
n+1
i+1,j−1,k+CswCn+1

i−1,j−1,k+CwcC
n+1
i−1,j,k+CecC

n+1
i+1,j,k

+CncC
n+1
i,j+1,k+CscC

n+1
i,j−1,k+

R

∆t
CpCn

i,j,k−Cp fp

)/(

1+
R

∆t
Cp

)

, (A.3)

in which

Cec=EBe−Ah, Cne=Ee−Ah−Bk, Cwc=EBeAh, Cnw=EeAh−Bk,

Csc=EAeBk, Cse=Ee−Ah+Bk, Cnc=EAe−Bk, Csw=EeAh+Bk,

Cp=
1

2(A2+B2C)
[(Cnw+Cwc+Csw−Cne−Cec−Cse)Ah

+(Csw+Csc+Cse−Cnw−Cnc−Cne)Bk],

E=
1

4cosh(Ah)cosh(Bk)
−E2Ahcoth(Ah)−BkE∗

2 coth(Bk),
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EA=2Ah
cosh2(Ah)

sinh(Ah)
E2, EB=2Bk

cosh2(Bk)

sinh(Bk)
E∗

2 ,

E2=
k2

Ch2
E∗

2+
BChtanh(Ah)−Aktanh(Bk)

4ABCh2cosh(Ah)cosh(Bk)
, E∗

2 =
∞

∑
m=1

−(−1)m(λmk)

[(Bk)2+(λ∗
mk)2]

2
coshµ∗

mh
,

µ∗
m =(A2+B2C+λ∗

m
2C)

1
2 , m=1,2,3,··· ,

λ∗
m =

(2m−1)π

2k
, m=1,2,3,··· ,

where h and k are space steps in the x and y directions, respectively; ∆t is time step; Cne,
Cnw, Cse, Csw, Cwc, Cec, Cnc, Csc and Cp are the FA coefficients.

Eq. (3.1) in the text can be obtained by grouping all the undetermined variables ap-
pearing in Eq. (A.3) to the left-hand-side of the equation.
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