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ANALYSIS OF A MIXED-SHEAR-PROJECTED
QUADRILATERAL ELEMENT METHOD FOR
REISSNER-MINDLIN PLATES

GUOZHU YU, XTAOPING XIE*, AND YUANHUI GUO

Abstract. This paper analyzes an existing 4-node hybrid mixed-shear-projected quadrilateral ele-
ment MiSP4, presented by Ayad, Dhatt and Batoz (Int. J. Numer. Meth. Engng 1998, 42: 1149-
1179) for Reissner-Mindlin plates, which behaves robustly in numerical benchmark tests. This
method is based on Hellinger-Reissner variational principle, where continuous piecewise isopara-
metric bilinear interpolations, as well as the mixed shear interpolation/projection technique of
MITC family, are used for the approximations of displacements, and piecewise-independent equi-
librium modes are used for the approximations of bending moments/shear stresses. Due to local
elimination of the parameters of moments/stresses, the computational cost of MiSP4 element is
almost the same as that of the conforming bilinear quadrilateral displacement element. We show
that the element is free from shear locking in the sense that the error bound in the derived a priori
estimate is independent of the plate thickness.

Key words. Reissner-Mindlin plate, mixed-shear-projected quadrilateral element, shear-locking
free.

1. Introduction

Due to avoidance of C'-continuity difficulty, the Reissner-Mindlin (R-M) plate
model is today the dominating two-dimensional model used to calculate the bending
of a thick/thin three-dimensional plate of thickness ¢. It’s well-known that for values
of t close to zero, the standard low-order finite element discretization of this model
suffers from shear locking ([1, 17]).

To overcome the shear locking difficulty and derive ‘locking-free’ or robust plate
bending elements that are valid for the analysis of thick and thin plates, signifi-
cant efforts are devoted to the development of simple and efficient triangular and
quadrilateral finite elements in the past few decades. The most common approach
is to modify the variational formulation with some reduction operator so as to
weaken the Kirchhoff constraint (see, e.g. [2]-[8], [10], [12], [14]-][16], [18]-[20] and
the references therein).

Among the existing elements, the family of finite elements named mixed inter-
polated tensorial components (MITC) by Bathe et. al [4, 5] is one of the most
attractive representative. By virtue of an independent shear approximation and a
discrete Mindlin technique along edges, MITC elements define the shear strains in
terms of the edge tangential strains that are projected on the element degrees of
freedom. As the lowest order quadrilateral MITC element, the 4-node plate element
MITCA4 is very likely the most used in practice.

Using the same technique of shear interpolation as in the element MITC fam-
ily, Ayad, Dhatt and Batoz [3] presented an improved formulation for obtaining
locking-free quadrilateral element, which is called MiSP4 element. It is based on
Hellinger-Reissner variational principle, including variables of displacements, shear
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stresses and bending moments. For the approximations of displacements, MiSP4
element uses continuous piecewise isoparametric bilinear interpolations. For the
approximations of bending moments/shear stresses, it uses piecewise-independent
equilibrium modes. The numerical experiments are presented to show that the
MiSP4 element can avoid locking phenomenon, and it also passes the patch test for
a general quadrilateral. However, so far there is no uniform error analysis with re-
spect to plate thickness. It should be pointed out that in a very recent paper [8], the
shear interpolation treatment was replaced by enhancing a shear-stress-enhanced
condition, and the resultant 4-node hybrid finite element scheme was shown to be
locking-free.

The main goal of this work is to establish uniform convergence for quadrilateral
MiSP4 element. The main tools of our analysis are the self-equilibrium relation,
i.e. (21), which contributes to the uniform coercivity of the corresponding bilinear
forms, and the properties of shear interpolation proved in [11] for MITC4 element
(see Lemma 4.11).

We arrange the rest of this paper as follows. In Section 2 we give weak for-
mulation of the model. Section 3 introduces the finite element spaces for MiSP4
element. We derive in Section 4 uniform error estimates for MiSP4 element. Finally
in Section 5 we provide some numerical results to verify the theoretical results.

For convenience, throughout the paper we use the notation a < b to represent
that there exists a generic positive constant C, independent of the mesh parameter
h and the plate thickness ¢, such that a < Cb. We also abbreviate a < b < a as
a=b.

2. Weak problem

The Reissner-Mindlin model for the bending of a clamped isotropic elastic plate
in equilibrium reads as: Find (w, 8) € Hg () x H}(Q)? such that
(1) —divDe(B) — Mt %(grad w — B) =0 in
(2) ~ M 2div(grad w —B) =g in Q.
Here Q C R?, assumed to be a convex polygon for simplicity, is the region occupied
by the midsection of the plate with plate thickness ¢, w and 3 denote respectively
the transverse displacement of the midplane and the rotation of the fibers normal

to it, €(B) is the symmetric part of the gradient of 3, g is the transverse loading,
D is the elastic module tensor defined by

DQ = m[(l —1)Q + vtr(Q)I]

with Q a 2 X 2 symmetric matrix, A = Q(’f—fy) with E the Young’s modulus, v the

Poisson’s ratio, and k = % the shear correction factor.

Set
M := L*(Q)2%2, T :=L*Q)? W:=Hj(Q), ©:=H)Q)>.

sym>

When introducing the shear stress vector v = A\t ~2(grad w — 3) and the bending
moment tensor M = —De(3), the model problem (1)-(2) changes into the following
system: Find (M, ~,w,3) € M x I' x W x © such that

(3) divM —~v =0 in £,
4) divy+g=0 in €,
(5) M+ De(B) =0 in Q
(6) ~y—M"%(gradw—B)=0 in Q.
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The variational formulation of this system reads: Find (M, v, w, ) € MxT'x W x 0
such that

(7) aM,v;Q,7) +b(Q,7;w,8) =0 Y(Q,7) e M xT,
(8) HM7:0.¢) =~ [ gudx (w.¢) €W x .
Q

where the bilinear forms

(i) (L2(Q)2X2 x L2(Q)?) x (L2(Q)2%2 x L2(Q)?) — R,

sym sym

b(w) s (L2350 x LA(Q)?) x (Hg(Q) x Hy(Q)*) =R

sym

are defined by
t2
) a(M,v;Q, 7) 1:/M1D71de+x/7~7'dx,
Q Q

(10) b(Q,T;v,¢) = /QQ ce(¢)dx — /Q 7 - (grad v — ¢)dx.

To get further regularity of the solution (M, v, w, 3), we introduce a weak prob-
lem: Find (w,3,v) € W x © x I" such that

1) [ o) petcix+ [

v - (grad v — {)dx = / gudx Y(v,{) € W x 0,
Q Q

t2
(12) /T-(gradw—ﬂ)dx—_/»y.dezo vr eT.
Q A Jo
We recall the following result (see [2, 6]).

Lemma 2.1. The problem (11)-(12) admits a unique solution with

(13) [wll2 + 1182 + Ivllo + vl < llgllo-
In addition, if Q is a smoothly bounded domain and g € H'(Q), then it holds
(14) lwl[s < llglls-

With the above lemma, we obtain some further results [8]:

Theorem 2.2. Let (w,3,7) € W x O X T be the solution of the problem (11)-(12).
Then the following three conclusions (i)-(iii) hold.

(i) The quadruple (M = —De(8),v,w,B) € MxT x W x © is the unique solution
of the problem (7)-(8);

(i) IfM e H(div; Q) :={Q € L*(Q)2%2 : divQ € L*(Q)?}, then the equilibrium
relation (3) holds;

(iii) Provided that g € L*(Q2), it holds

(15) wll2 + 1182 + Ml + [[7llo + tllvll < llgllo-
3. Finite element formulation for MiSP4 method

3.1. Finite element formulation. This subsection is devoted to the finite ele-
ment formulation of the MiSP4 method on quadrilateral meshes. Let T}, be a regu-
lar family of finite element subdivisions of the polygonal domain €. Let M, C M,
I'n ', W, € W, O, C © be finite dimensional spaces for the bending mo-
ment, shear stress, transverse displacement, and rotation approximations. Then
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the corresponding finite element scheme for the problem (7)-(8) reads as: Find
(M, Yh, wh, Br) € My, x Ty, x W), x Oy, such that
(16)  a(Mn, ¥n; Qn> ) + b(Qn, Thswn, Br) = 0 V(Qn, 7h) € My x Ty,

(17) b(Mn, Yn; vn, Ch) = */nghdx V(vn, Cn) € Wi X Op,

where

(18) B(Qh,rh;vh,gh) = / Qh . e(Ch)dx — / Th * (grad Vh — Rhch)dx,
Q Q

and the reduction operator Ry, : H(Q)% N Hy(rot, Q) — Zj, is defined by [11]

(19) /Rh¢~te:/¢~te Y edge e of Ty,
where
(20) Hy(rot, Q) := {ap € L*(Q)? : rotap € L*(Q), 1) - t|sq = 0},

Zy, is to be defined in (30) for MiSP4, and ¢. denotes a unit vector tangent to e.
For MiSP4 element, we define

(21) Fh = dthMh, with (QhaTh) = (Qh;dthQh)

for Qp € M. Here divy denotes the divergence operator piecewise defined with
respect to Tp.

From the definition of the space I'y,, we have an equivalent form of the discrete
scheme (16)-(17): Find (Mp,, wn, Br) € My, x W), x Oy, such that

(22) a(My,, divyMy; Qn, divy,Qp) + b(Qn, diva Qu; wh, Br) = 0 VQ, € My,

(23) b(Mh,dthMh;’l}h,Ch) = 7/ gupdx V(”Uh,ch) € Wh X Op.
Q

3.2. Finite dimensional subspaces. Let 7, be a conventional quadrilateral
mesh of €. We denote by hyx the diameter of a quadrilateral K € 7T, and de-
note h := maxger, hx. Let Z;(x;,y:), 1 < i < 4 be the four vertices of K, and
T; be the sub-triangle of K with vertices Z;_1, Z; and Z;41 (the index on Z; is
modulo 4). Define
pr = min {diameter of circle inscribed in T;}.
1<i<4

Throughout the paper, we assume that the partition 7; satisfies the following
‘shape-regularity’ hypothesis: There exists a constant ¢ > 2 independent of h such
that for all K € Ty,

(24) hx < 0pK.
Let K = [~1,1] x [~1,1] be the reference square with vertices Z;, 1 < i < 4. For

a quadrilateral K € Tp, there exists a unique invertible mapping F that maps K
onto K with Fx(&,m) € Q3(¢,n) and Fg(Z;) = Zi, 1 <i < 4 (Figure 3.1). Here
&,n € [—1,1] are the local isoparametric coordinates.

This isoparametric bilinear mapping (z,y) = Fk (£, n) is given by

4 4
i=1 i=1

where
Ny = (-6 (1=n), Ny = (1+€)1-m), Ny = 114 (14n), Ny = 7 (1-€)(1n).
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FiGure 3.1. The mapping Fg

We can rewrite (25) as

(26) T = ag +a1§ + azn + a126n, y = bo + b1€ + ban + b12€n,
with
ao b() 1 1 1 1 1 Y
aq b1 _ 1 -1 1 1 -1 T2 Y2
as by | 4|l -1 -1 1 1 T3 Y3
ai2 512 1 -1 1 -1 T4  Yq

The Jacobi matrix and the Jacobian of the transformation Fx are respectively
given by

DFy(&,1) = 2—2 g_i _( a1+ a2 az+axé
KT = g—g gg T\ D1 bien ba+b12€ )

Jg = det(DFK) = Jo + Ji& + Jam,
where

Jo = a1ba — azb1, J1 = aibiz — a12b1, J2 = a12b2 — azbio.

Remark 3.1. Notice that when K is a parallelogram, we have a2 = b1o =0, and
Fx is reduced to an affine mapping. Especially, when K is a rectangle, we further
have as = by = 0.

For element MiSP4, the continuous isoparametric bilinear interpolations are used
for the transverse displacement and rotation approximations, i.e. the transverse
displacement space W}, and rotation space ©j, are chosen as

(27) Wi = {vp € HH(Q)NCQ) : vp|x 0o Fx € Q1(K) VK € Tp},

(28)  Op :={Ch e (HYQ)NCQ))?: Culk o Fx € Q1(K)? VK € Ty}

Here Q;(K) denotes the set of bilinear polynomials on K. For the approximation
of bending moment tensor, we define

(29) My, := {Qh € LQ(Q)EJ% : (Qh|K OFK)'i,j € Ql(f() VK € Tpyi,5 = 1a2}'

We take the space Zj, as
(30)

Zy = {¢h€H0(rOt,Q)Z¢h|KOFKSpan{DFKt<(1) g (1) 2)} VKGE}



ANALYSIS OF A MIXED-SHEAR-PROJECTED QUADRILATERAL ELEMENT METHOD 53

4. Error analysis for MiSP4

This section is denoted to the error estimates for the MiSP4 element. The
corresponding subspaces in this section are defined as in subsection 3.2. We first
give the following properties for the operator Rj,.

Lemma 4.1. [13, Theorem I11.4.4] The operator Ry, satisfies
I = Rynllo < hllnllx, ¥n € H'(2)* N Ho(rot, Q).
Lemma 4.2. [11, Lemma 2.1] The following property holds
grad Wy, = {4}, € Zp, rot ¢, = 0}.

With the property in Lemma 4.2 and the definition of Ry, in (19), we obvious
have Ry (grad vp,) = grad vp, Vo, € Wh, and so the expression (18) can be rewritten
as

(31) l;(Qh;Th;UhaCh) = /Q Qh : e((’h)dx — /QTh . Rh(grad Vh — Ch)dX.

In general, for any Q € (H'(Q))2x2 + My, v € (H*(Q) N H{(Q)) + Wy, € €
H} ()2 + O, we define

62 HQdiviQ ) = [ QieQdx~ [ diviQ: Ri(srad v - O)ix,
Q Q
and define two mesh-dependent semi-norms for the finite dimensional spaces:

(33) QIMIk1 = [1QIlo + (t + ) [|divaQllo,

(34) (v, Ollln2 = lle(@)llo + (t + h) "' Ru(grad v = ¢)llo-
It is easy to see that ||| - [||n,1 is a norm on (H(Q))2X2 + My, and |||(-,)||n.2

sym

is a norm on Wy, x ©p. With this definition of mesh-dependent semi-norms, we
can easily check the continuity results in Lemma 4.3. While the corresponding
coercivity results are deduced in Lemma 4.4-4.6. Lemma 4.5 is a preparation for

Lemma 4.6.

Lemma 4.3. For any M,Q € (H'(Q2))2%2 + My, v € (H*(Q) N HY(Q)) + W,

¢ € H}(2)? + Oy, it holds uniformly the 5cyoﬁ;ufinuity condition

(35) a(M,div,M; Q,div, Q) < [[IM][[n,1/1Qll[n.1,

(36) b(Q. divaQ;v,¢) < 11QlInall (v, Olln.2-

Lemma 4.4. It holds uniformly the discrete coercivity condition

(37) a(Qp, diviQn; Qn, divaQr) 2 [[Qnllln1, VQu € M.

Prngf. Tl‘lhe proof immediately follows from the inverse inequality ||divyQpllo <
= 1Qulo- O

Lemma 4.5. The following two conclusions hold:
(1) For any given {p € Oy, there exists Q) € My, such that

(38) (Qh-€(Cn)) = 1QAIIE = lle(Cn) I3, and div,Q;, = 0;
((2)?07" any given vy, € Wy, ¢, € O, there exists Q} € My, such that
39

(div, Q7. Ry (grad vp—Cn)) = —(£°+h%)||divi Q3[5 ~ Ry (grad vi—Cn) |5,

L
2 + h?
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and

(40) [divi Q7o =~ 7 |Q2 lo-

Proof. The proof is similar to that in [§].

(1) Given ¢}, € Oy, choose Q}, as the 5-parameter PS element in [8]. The proof
for (38) can be found in [8, Lemma 4.4].

(2) Given vy, € Wy, ¢n € Oy, for any K € Tp, Rp(grad vy, — ¢n)|x can be
expressed as

R (grad vn — Cn)lx

C1

— i ba + b12€ —(b1 + b12m) 1 n 00 c
Ji \ —(a2 +a2§) a1 +aan 0 0 1 ¢ cz |’

Cq

here (c1,co,c3,c4)” depends on vy, ¢. Some calculations show

[ Ry (grad v — Cn)ll5 i

4 1 1
:m (bac1 —brcs)” + g(b2c2 — biaes)? + g(bucl — bieyg)?
1
+§(b12cz — b1204)2 + (azer — a103)2 + g(ag@ _ a1203)2
1 ) 1 ,
+§(a1201 — a164) + §(a1202 — a12c4)
C
:m [(b2c1 = bies)? + (baca — biacs)® + (azer — axes)” + (aracr — azes)?].
01§ +c3n + 02&7
Take Qulk = | 1§ +csn+can |, then we have

0

(bacr — bicz) + (br2er — bic2)€ + (baca — biaes)n )

1
div = —
nQul = 72 ( —(ager — ayes) — (arzer — arcs)€ + (azcs — aracs)n

and
||dthQ} H2 Z# {(5201 - 5103)2 + l(5202 - 51203)2 + 1(()1201 - b1c4)2
HOE T Tk (L2,m2) 3 3
1 1
+(azec1 — G1C3)2 + §(G2C4 - a1203)2 + g(awcl - G1C4)2
S T [(bac1 — bies)® + (baca — bizcs)?
JK(§27772)

+(azec1 — G1C3)2 + (ai2¢1 — a104)2] .
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On the other hand, it holds

/ div,Qp, - Rp(grad vy — Cp)dx
K

:m {(bgq — bies)? + %(bz@ — biocs)? + %(51261 ~brea)?
+(ager — ares)? + %(@04 ~araes)? + %(auq —ares)?
:L [(b201 —bics)® + (bacz — bizcz)? + (azer — ares)® + (arze1 — a1C4)2} )
I (€3,7m3)
Let Cy = gi%tzw, and choose Q3 |x = CoQulk, ie. div,Qilx =

Codivy,Qp |k, then a summation over all elements in 7}, completes the proof for
(39). The result (40) follows from the construction of Q3. O

Lemma 4.6. It holds the inf-sup condition

b ,div U,
) sup AQuAVQuivniCa) o0 on, ) € Wi x O
QneM;, I[1Qn

Proof. For ¢, € Oy, from (38) there exists a positive constant Cy and Qj, € My,
such that

(42) (Qh-€(¢n) = Qw13 = Calle(¢n) 3, and div,Qj, = 0.

For vy, € Wy, ¢ € Op, from (39) for any positive constant Cs there exists Q%L e My,
such that

(div, Q3. Ry(grad vy, — ¢)) = — Cs(1* + h)||div, Qj I3

(43) == C5 (8 + 1)~V Ry (grad vn — G5,
and there exists a positive constant Cg independent of h and ¢, such that
(44) I1divaQ7lI5 = Csh ™2 Q35

Let Qp = Q,ll + Q%L, then we have

b(Qn. divaQu; vi, Cn)
=(Q} + Qi €(¢n)) — (div,Qj, + div,Qj, Ry(grad vy, — Cn))
=(Qp€(¢n)) + (Qf, €(Cn)) — (divaQy, R (grad vy, — Cn))
>[1Qxll5 - HQilloIIE(Ch)llo + C5 (8 + 1) divi Q13

1 .
>[Qulls — || (Cu)lls — C4||Q%II3+Cs(t2+h2)|\dIVhQiII3
h2
>[1Q 115 — —|| (= 2C:Cs A 1diva Q13 + Cs (% + 1?)||diva Q7 |13
C . .
>CHQbE + (2 + 1) [diviQ3 3 (by taking Cs = i)

~le(Cnlle + (¢ + 1) | Ragrad vn = Gu)
~)|Qh + QAIIE + (87 + )| diviQy + diva Q7§ = 1Qnll§ + (¢ + h*)l|divaQull5.

This immediately indicates the desired result. (]

With the above continuity and coercivity results, we can obtain the following
error estimates for MiSP4 element by following the standard error analysis.
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Theorem 4.7. Given g € L%(Q), let (M, v = divM,w,3) € Mx T x W x © be the
solution of the problem (7)-(8). Then the discretization problem (22)-(23) admits
a unique solution (Mp,wp, Br) € My X Wy, x Oy, such that

1M — Mp|||n1 + ||| (w — wn, B — Bn)|]

< inf M —
S int, IV = Qulllas

+ inf w—v B —
(vh,Cn)EWRXOp |||( haﬁ Ch)”

h,2

n,2 + htl[y([ + hllv]lo-

Proof. Since

G(M, s Qh7 dithh) + B(qu dithh; w, /3)
— (divpQp, grad w — B8 — Ry (grad w — B)) = 0,VQy, € My,

a(Mp, divaMy; Qn, divi,Qn) + b(Qn, divy Qn; wh, Br) = 0,YQp € My,
then for all Qp € My, it holds

a(M — My, v — div,My; Qp,, diviQp) + b(Qp, div, Qu; w — wp, B — Br)
—(div,Qp, grad w — B — Ry, (grad w — B)) = 0.

Denote

Zi(g) = {Qn € My, : b(Qn, divaQn; vn, Cn) = —(g,va), Y(vn,Cn) € Wi x O}
Let Qh be any element of Zp,(g). Since Q;l — My, € Z,(0), then

11Qn — Malll7

S a(Qn — My, diva(Qr — My); Qi — My, diva(Qr, — My))
= a(Qn —M,divi,Qs — v; Qu — My, divi(Qr — My))
+a(M — My, — div,Mp; Q — My, divy (Qn — M)
= a(Qn — M, diva(Qn — M); Q, — My, divi(Qn — My))
—b(Qn — My, diva(Qp, — My);w — wp,, B — Br)
+(div,(Qn — My,), grad w — 8 — Ry, (grad w — 3))
= a(Qn — M, div,(Qr — M); Qp, — My, div, (Qn — My,))
—b(Qn — My, divi(Qr — Mp);w — vn, B — Cn)
Jr%(divh(Qh —Mp),y — Rp)
< Qr = Mallla1 ([1Qr — M[|n,1 + || (w = vn, B = Cu)lllnz + htlv[]).-
So we have
11Qr —Malllna S 1Qn = M[ln1 + [[l(w = va, B = Cu)lllnz2 + bty

Then, by using the triangle inequality, we get
(45)
[IM—M|

hi S inf o [1Qa—M[|n+ inf I (w—vn, B=Cp)l[n,2+ht[|[1
QrEZK(g) (vr,€n)EWLXOp
For any Qj, € My, there exists Q;, € My, such that, for all (vy,¢n) € Wi, x Oy,

b(Qn, div,Qp; vn, Cn) =b(M — Qp, div, (M — Qp); vn, Cn)
— (v, grad vy, — ¢ — Ry (grad v, — Cn))
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and

1QnIlln1

< b(Qn, div,Qpivn, Cn)

~ sup
(vh,¢n)EWLXO, |||(’Uh, Ch)|||h72

< sup b(M — Qp,, divy (M — Qp); vp, 1)
(vn,Cn)EWR X Op, |H(Uh7 Ch)” h,2

_ (7) grad Up — Ch - Rh(grad U — Ch)) }
I[[(vh, Cn)llln,2

_ sup bM — Qp, diva(M — Qn); va, Gn) + (7, 6n — RiGh)

(vh,Cn)EWL XOp, |||(Uh, Ch)|||h72

S IM = Qulllaa + Allyllo-
Choose Qp, = Qpn + Qp, then Q,, € Zn(g). Thus we get
M = Qulllns =IIM = Qr — Qalllna < [IM = Qallln + |1Qall

h,1
SHM = Qulllna + 2l llo-
This estimate and (45) imply
M-M S inf  |[[M—
IV = Ml £ inf M = Qulls
(46) + o inf [l (w = v, B = G)lllnz + AtllYll + Rl o

(vn,Cr) EWR X O,

On the other hand, from the coercivity and continuity properties we get

Il (vh — why o — Br)||ln2
b(Qn, div, Qu; v — wh, Cn — Bh)

S o, 1Rl
— sup { —a(M — My, divy (M — My); Qp, diviQp)
QreMp, |||Qh|| h,1
—b ,div ;W — vp, B —
(47) (Qn ﬁ%hhlllm B —Cn)
(div,Qp, grad w — B8 — Ry, (grad w — B))
QA }
S HIIM = Malllna + [[[(w = on, B = Cu)llln2 + Bty
This inequality and (46) imply
= wn, 8= Bl
w5 ot M- Qi
t oncn b <o I (w = v, B = Cu)llln2 + htllvll + Rllvlo-
A combination of (46) and (48) completes the proof. O

Next we consider the approximation properties of finite element spaces. Lemma
4.8 gives the error estimates for space My, and Lemma 4.12 is for space W x Oy,.
We need to notice here the key for Lemma 4.12 is the property of the operator
Ry, described in Lemma 4.11. Finally the convergence theorem, i.e. Theorem 4.13,
follows from these lemmas.
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Lemma 4.8. Given g € L?(Q), let (M,~ = divM,w,3) € M x ' x W x © be the
solution of the problem (7)-(8). It holds

inf M —
QreEM, ||| Qh”

nt S P (M o + tlvI) -

Proof. For the exact solution M, first let Q,ll be its piecewise constant L? projection,
then
1
M —Qullo < M.

For the exact solution v, secondly choose Q? satisfying:
(1) dthQ,Ql is the piecewise constant L? projection of 4, then

v = divaQallo = hllvll1,  [IdivaQZllo < [1v]lo;

(2) 1Q7llo = RlldivQF llo, then [Qzllo < Allvllo-
Take Qr, = Q}, + Q2, then we get the desired result

IM = Qullln: < IM=Qpllo+ 1Qillo + (7 + )|y — divaQillo
< hIMI+ Allyllo + Ally — diviQillo + tlly — divaQi o
< RIMIl+ Allvllo + Rlivllo + thllyl
S UM+ lvlo + vl -

O

Remark 4.9. We note that with the same technique as in Lemma 4.8, the condition
t < hoin [8, Lemma 3.2] and in [8, Theorem 4.3] can be removed.

Assumption 4.10. [11] The mesh Ty, is a refinement of a coarser partition Tay,,
obtained by jointing the midpoints of each opposite edge in each Kap, € Tap (called
macroelement). In addition, Top is a similar refinement of a still coarser regular
partition Tap,.

Lemma 4.11. [11, Lemma 3.2, 3.4] Given g € L?(Q), let (M,~v = divM,w,3) €
M x T x W x © be the solution of the problem (7)-(8). Then under Assumption
4.10, there exist (u?,ﬁ) € Wy, x Oy, and operator II : H*(2)? N Hy(rot, Q) — Zy,
satisfying

(49) 18— Bl1 < 1Bz,

(50) Ry, (grad w — ,C:}) = I(grad w — B),

and

(51) ln —TInllo < hllnlli, YV € H () N Ho(rot, ).

Lemma 4.12. Given g € L*(Q), let (M,y = divM,w,3) € M x ' x W x © be
the solution of the problem (7)-(8). Then under Assumption 4.10, it holds

ht?
52 inf w—vp, B — <h + —
62wt w8 - Gl S BB+

71l
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Proof. Choose (vy,¢h) = (0, B), with (@, 3) € Wi, x O as in Lemma 4.11, then
we can get

inf w — Vp, _
i o, 100 = 0n B = Gz
= 1nf ||E(ﬁ)7E(Ch)|‘0+FthRh(gra'dwiﬁ)*Rh(grad ”Uh—ch)HO

(vh,Cn) EWR X O,

< [€(B) ~ €(B)llo + g | Ru(arad w— B) — Ru(erad v — B)ll

= [€(8) ~ e(B)llo + 25 | Ra(gxad w — B) ~ T(grad w — B)]lo

< Ie(8) — eB)llo+ 75| Ba(erad w— ) — (grad w = B)llo
| (arad w = )~ T(grad w — B)]lg

S BBl + AN (grad w = B

< b8l + ElL.

O

Theorem 4.13. Given g € L*(Q), let (M,~ = divM,w,3) e Mx T x W x © and
(Mp, Yh, wh, Br) € My X Ty x Wi, X Oy, be the solutions of the problems (7)-(8) and
(16)-(17) respectively. Then under Assumption 4.10, it holds the error estimate
(53)

M =M |51+l (w = wn, B—Bn)|

Furthermore, it holds

M — Mallo + (t + R)l|v —nllo + |w —wn|ls + |8 — Brllx
S R(IM|1 + [Jwll2 + [|8]]2 + tllv] + 1Y]l0) S Rllgllo-

Proof. The estimate (53) follows from the Theorem 4.7, Lemma 4.8 and Lemma
4.12.
For the second estimate, we only need to estimate |[w — wp||1. In fact,

n2 S PAMI+ (I8l + [[vllo +¢llvIl) < Allgllo-

(54)

lirad w — grad wh o
=||grad w — Rpgrad w + Ry (grad w — grad wy, — B+ Br) + Rn(B — Br)llo
<|lgrad w — Rpgrad wllo + || Rpr(grad w — grad wp, — B+ Br)llo + | Rr(8 — Br)llo
Sh(llwllz + (M| + [Bll2 + vl + [17]o)-

Il

5. Numerical results

We compute a square plate with analytical solution to show the convergence.
This example is taken from [9, 15]. The domain is the unit square (0,1)2, the
material parameters are taken as £ = 1.0, v = 0.3 and k = %. The exact solution
is: the first component of the rotation 81 = 100y3(y — 1)32%(z — 1)?(2x — 1), the
second component of the rotation B2 = 10023(z — 1)3y%(y — 1)?(2y — 1), and the
displacement w = 100(323(z — 1)3y*(y — 1)3 — Sﬁi) [v3(y —1)32(x — 1) (52 — bz +
1)+a3(x—1)%y(y—1)(5y*—5y+1)]). Therefore, the transverse load g = 2295 (23 (z—
1)3(5y2—5y+1)+y*(y—1)3(5a* —5a+1)+a(x—1)y(y—1) (522 —5x+1) (5y* —5y+1)).
For the plate thickness ¢, we consider four cases: t = 1.0,0.1,0.001, 1le — 8.

The results for MiSP4 method under the uniform meshes (Figure 5.1) are re-
ported in Table 5.1. These results are conformable to the error estimates in Theo-
rem 4.13.

We note that the error analysis for MiSP4 element requires the partitions of do-
main to satisfy Assumption 4.10. However, numerical results in Table 5.2 show that
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FIGURE 5.1. Uniform mesh

TABLE 5.1. Results of error on uniform mesh with MiSP4

t 4x4 8x8 16x16 32x32 64x64 rate
1 lw— w1 0.2806 0.1460 0.0736 0.0369 0.0184 0.9819
18 — Bnlx 0.0771 0.0383 0.0191  0.0095 0.0048 1.0039

IM— Mo  0.0062 0.0020 0.0008 0.0003 0.0002 1.2977

Iy = nllo 0.0877 0.0458 0.0231 0.0116  0.0058  0.9799

(t+h)|ly —~allo 0.1187 0.0539 0.0252 0.0121  0.0059 1.0812

0.1 lw — wn i 0.0117 0.0052 0.0025 0.0012 0.0006 1.0610
18 — Bnlx 0.0775 0.0384 0.0191  0.0095 0.0048 1.0057

IM— Mo  0.0061 0.0020 0.0008 0.0003 0.0002 1.2957

Iy = nllo 0.0870 0.0458 0.0231  0.0116  0.0058 0.9771

(t+h)||y —allo 0.0395 0.0127 0.0044 0.0017 0.0007 1.4504

0.001 lw — wni 0.0095 0.0041 0.0019 0.0009 0.0005 1.0896
18 = Bnlx 0.0777 0.0384 0.0191  0.0095 0.0048  1.0065

IM —Myllo  0.0061 0.0020 0.0008 0.0003 0.0002 1.2944

Iy = llo 0.0866 0.0460 0.0234  0.0117  0.0059  0.9704

(t+h)|ly —allo 0.0307 0.0082 0.0021 0.0005 0.0001 1.9555

le-8 lw — w1 0.0095 0.0041 0.0019 0.0009 0.0005 1.0896
18 = Brh 0.0777 0.0384 0.0191  0.0095  0.0048  1.0065

IM —Myllo  0.0061 0.0020 0.0008 0.0003 0.0002 1.2944

Iy = llo 0.0866 0.0460 0.0234  0.0117  0.0059  0.9703

(t+h)||y —allo 0.0306 0.0081 0.0021 0.0005 0.0001 1.9703

this assumption seems not to be absolutely necessary for the uniform convergence,
as is similar to the MITC4 element [11]. Here the used partitions (Figure 5.2) do
not satisfy Assumption 4.10.

FIGURE 5.2. Quadrilateral mesh
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TABLE 5.2. Results of error on quadrilateral mesh with MiSP4

t 4x4 8x8 16x16 32x32 64x64 rate
1 |w — wa 1 0.2873 0.1693 0.0881 0.0445 0.0223 0.9217
1B — Bl 0.0924 0.0528 0.0255 0.0122  0.0060 0.9872

IM—Myulo  0.0066 0.0032 0.0012 0.0005 0.0002 1.1968

Iy = nllo 0.0899 0.0531 0.0277 0.0140  0.0070  0.9203

(t+h)||y —vallo 0.1285 0.0645 0.0306 0.0147 0.0072 1.0398

0.1 lw — w1 0.0118 0.0064 0.0031 0.0015 0.0008 0.9898
18 — Brls 0.0834 0.0496 0.0253 0.0122  0.0060 0.9506
IM—Mulo  0.0065 0.0031 0.0012 0.0005 0.0002 1.1925

Iy = llo 0.0930 0.0574 0.0285 0.0141  0.0070 0.9318

(t+h)|ly —allo 0.0493 0.0181 0.0059 0.0022 0.0009 1.4475

0.001 lw — w1 0.0096 0.0051 0.0024 0.0012 0.0006 1.0151
18 — Brls 0.0835 0.0475 0.0245 0.0120  0.0060 0.9525
IM—Mulo  0.0066 0.0032 0.0013 0.0006 0.0003 1.1477

Iy = llo 0.0947 0.0702 0.0470 0.0355 0.0310 0.4031

(t+h)||y —~allo 0.0408 0.0152 0.0051 0.0019  0.0009 1.3908

le-8 lw — w1 0.0096 0.0051 0.0024 0.0012 0.0006 1.0151
18 — Brlx 0.0835 0.0475 0.0245 0.0120  0.0060 0.9525
IM—Malo  0.0066 0.0032 0.0013 0.0006 0.0003 1.1466

Iy = nllo 0.0947 0.0703 0.0470  0.0356  0.0315 0.3976

(t+h)||y —~allo 0.0407 0.0151 0.0051 0.0019 0.0008 1.3976

Acknowledgments

The work of the first author was partly supported by National Natural Sci-
ence Foundation of China (11401492 and 11226333) and the Fundamental Re-
search Funds for the Central Universities (2682015CX053). The work of the second
author was partly supported by National Natural Science Foundation of China
(11171239) and Major Research Plan of National Natural Science Foundation of
China (91430105).

References

[1] D.N. Arnold. Discretization by finite elements of a model parameter dependent problem.
Numerische Mathematik, 37(3) (1981) 405-421.

[2] D.N. Arnold and R.S. Falk. A uniformly accurate finite element method for the Reissner-
Mindlin plate. SIAM Journal on Numerical Analysis, 26(6) (1989) 1276-1290.

[3] R. Ayad, G. Dhatt, and J.L. Batoz. A new hybrid-mixed variational approach for Reissner—
Mindlin plates. The MiSP model. International Journal for Numerical Methods in Engineer-
ing, 42(7) (1998) 1149-1179.

[4] K.J. Bathe, F. Brezzi, and S.W. Cho. The mitc7 and mitc9 plate bending elements. Com-
puters & Structures, 32(3) (1989) 797-814.

[5] K.J. Bathe and E.N. Dvorkin. A four-node plate bending element based on Mindlin/Reissner
plate theory and a mixed interpolation. International Journal for Numerical Methods in
Engineering, 21(2) (1985) 367-383.

[6] F. Brezzi and M. Fortin. Numerical approximation of Mindlin-Reissner plates. Mathematics
of Computation, 47(175) (186) 151-158.

[7] F. Brezzi, M. Fortin, and R. Stenberg. Error analysis of mixed-interpolated elements for
Reissner-Mindlin plates. Mathematical Models and Methods in Applied Sciences, 1(2) (1991)
125-151.



62

G. YU, X. XIE, AND Y. GUO

[8] C. Carstensen, X. Xie, G. Yu, and T. Zhou. A priori and a posteriori analysis for a locking-free

low order quadrilateral hybrid finite element for Reissner-Mindlin plates. Computer Methods
in Applied Mechanics and Engineering, 200(9-12) (2011) 1161-1175.

[9] C. Chinosi and C. Lovadina. Numerical analysis of some mixed finite element methods for

Reissner-Mindlin plates. Computational Mechanics, 16(1) (1995) 36-44.

[10] R. Durdn and E. Liberman. On mixed finite element methods for the Reissner-Mindlin plate

model. Mathematics of Computation, 58(198) (1992) 561-573.

[11] R.G. Durén, E. Hernédndez, L. Hervella-Nieto, E. Liberman, and R. Rodriguez. Error esti-

mates for low-order isoparametric quadrilateral finite elements for plates. SIAM Journal on
Numerical Analysis, 41 (2003) 1751-1772.

[12] R.S. Falk and T. Tu. Locking-free finite elements for the Reissner-Mindlin plate. Mathematics

of Computation, 69(231) (2000) 911-928.

[13] V. Girault and P.A. Raviart. Finite element methods for Navier-Stokes equations, Theory

and algorithms, volume 5 of Springer Series in Computational Mathematics, 1986.

[14] Y. Guo, G. Yu, and X. Xie. Uniform analysis of a stabilized hybrid finite element method for

Reissner-Mindlin plates. Science China Mathematics, 56(8):1727-1742, 2013.

[15] J. Hu and Z.C. Shi. Error analysis of quadrilateral wilson element for Reissner—Mindlin plate.

Computer Methods in Applied Mechanics and Engineering, 197(6) (2008) 464-475.

[16] J. Hu and Z.C. Shi. Analysis for quadrilateral MITC elements for the Reissner-Mindlin plate

problem. Mathematics of Computation, 78(266) (2009) 673—711.

[17] T.J.R. Hughes. The finite element method: linear static and dynamic finite element analysis.

Prentice-hall, 1987.

[18] T.J.R. Hughes, M. Cohen, and M. Haroun. Reduced and selective integration techniques in

the finite element analysis of plates. Nuclear Engineering and Design, 46(1) (1978) 203-222.

[19] P.B. Ming and Z.C. Shi. Analysis of some low order quadrilateral Reissner-Mindlin plate

elements. Mathematics of Computation, 75(255)(2006) 1043-1065.

[20] O.C. Zienkiewicz, R.L. Taylor, and J.M. Too. Reduced integration technique in general anal-

ysis of plates and shells. International Journal for Numerical Methods in Engineering, 3(2)
(1971) 275-290.

School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan, China, 610031
E-mail: yuguozhumail@gmail.com

School of Mathematics, Sichuan University, Chengdu, Sichuan, China, 610064
E-mail: xpxie@scu.edu.cn

Experiment Center, China West Normal University, Nanchong, Sichuan, China, 637009
E-mail: gyh6209@sina.com



