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NUMERICAL ANALYSIS FOR A NONLOCAL PHASE FIELD

SYSTEM

SETH ARMSTRONG, SARAH BROWN AND JIANLONG HAN

Abstract. In this paper, we propose a stable, convergent finite difference scheme to solve numeri-
cally a nonlocal phase field system which may model a variety of nonisothermal phase separations
in pure materials which can assume two different phases, say solid and liquid, with properties
varying in space. The scheme inherits the characteristic property of conservation of internal en-
ergy. We also prove that the scheme is uniquely solvable and the numerical solution will approach
the true solution in the L

∞- norm.
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1. Introduction

In this work, we consider the problem

ut =

∫

Ω

J(x− y)u(y) dy −

∫

Ω

J(x− y) dy u(x)− f(u) + lθ,(1.1)

(θ + lu)t = △θ(1.2)

in (0, T )× Ω, with initial and Neumann boundary conditions

u(0, x) = u0(x), θ(0, x) = θ0(x),(1.3)

∂θ

∂n

∣

∣

∣

∣

∂Ω

= 0,(1.4)

where T > 0 and Ω ⊂ R
n is a bounded domain. Here θ represents temperature, u

is an order parameter often used to represent various material phases, l is a latent
heat coefficient, the interaction kernel satisfies J(−x) = J(x), and f is bistable.

In order to derive equations (1.1)-(1.2), we begin with the free energy

(1.5) E =
1

4

∫ ∫

J(x− y)[u(x)− u(y)]2 dx dy +

∫
[

F (u(x)) +
1

2
θ2
]

dx,

where F is a double well function.
We consider the gradient flow associated with (1.5) relative to the order param-

eter u in L2 and the internal energy e in H−1
0 (Ω), where by H−1

0 we mean the dual
space of H1 with mean value zero. This is done because the total internal energy
I, with density denoted by e = θ + lu, should be conserved. We have

ut = −
∂E(u, e)

∂u
,(1.6)

et = −
∂E(u, e)

∂e
,(1.7)

where ∂E(u,e)
∂u

is a linear functional on L2 and ∂E(u,e)
∂e

is a linear functional on H−1.
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If we write F ′ = f , the representative of ∂E(u,e)
∂u

in L2 is

∂E(u, e)

∂u
= −

∫

Ω

J(x − y)u(y) dy +

∫

Ω

J(x− y)dy u(x)

+ f(u)− l(e− lu),

(1.8)

and the representative of ∂E(u,e)
∂e

in H−1 is

∂E(u, e)

∂e
= −△(e− lu).(1.9)

The more familiar Ginzburg-Landau free energy
∫

[

d2

2
|∇u|2 + F (u) +

l

2
θ2
]

dx

used in [7], [8], and in higher order versions by [6] in deriving phase-field systems, is
obtained by approximating the interaction term through a truncated Taylor series.
For example, when J is fairly localized, one may hope that

∫ ∫

J(x − y)(u(x)− u(y))2 dx dy

is well-approximated by
∫

(

d2

2
|∇u|2

)

dx,

where d2

2 =
∫

J(y)y2i dy is assumed to be independent of coordinate, i. Such an
approximation was introduced by Van der Waals in [20] in 1893, and has been
adopted ever since for ease of analysis.

If
∫

Ω
J(x−y)u(y)dy−

∫

Ω
J(x−y)dy u(x) is replaced by△u, the system (1.1)-(1.4)

becomes

ut = △u− f(u) + lθ,(1.10)

(θ + lu)t = △θ(1.11)

in (0, T )× Ω, with initial and Neumann boundary conditions

u(0, x) = u0(x), θ(0, x) = θ0(x), and(1.12)

∂θ

∂n

∣

∣

∣

∣

∂Ω

= 0.(1.13)

The system (1.1)-(1.4) and the system (1.10)-(1.13) were proposed as models for
nonisothermal phase separation in pure materials which can assume two different
phases, say solid and liquid. The function θ represents the temperature field within
the material. The function u is an order parameter that describes the phase of
the material, where with appropriate scaling u = 1 represents the solid phase and
u = −1 represents the liquid phase; values of u with −1 < u < 1 represent a mixture
of the two phases. The results about existence, uniqueness, and the structure of
solutions for both systems can be found in references [1,3-5,9-13,15-19].

To the best of our knowledge, there are very few results on the numerical solutions
to the system (1.1)-(1.4) and the system (1.10)-(1.13).

When temperature is fixed in both systems, (1.1)-(1.4) is the nonlocal Allen-
Cahn equation

ut =

∫

Ω

J(x− y)u(y) dy −

∫

Ω

J(x− y)dy u(x)− f(u)(1.14)
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and the system (1.10)-(1.13) is the Allen-Cahn equation

ut = △u(x)− f(u).(1.15)

Numerical analysis related to the nonlocal Allen-Cahn (1.14) and Allen-Cahn
(1.15) equations can be found in [2], [14] and the references therein.

In this paper, we develop a finite difference scheme for the system (1.1)-(1.4). The
scheme inherits the characteristic property of conservation of internal energy. We
also prove that the difference scheme is stable and that the numerical approximation
converges to the solution of (1.1)-(1.4).

2. Analysis of the Proposed Scheme

In this section, we consider finite difference approximations of the system (1.1)-
(1.4) for n = 1 and n = 2. We will use f(u) = u3 − u, but the analysis applies to a
general smooth bistable function if care is taken in the choice of linearization (see
Lemma 2.4).

For n = 1 we use the following notation. Setting Ω = (−L,L), we define

Ωx = {xi|xi = −L+ i△x, 0 ≤ i ≤M} and

Ωt = {tk| tk = k△t, 0 ≤ k ≤ K},

where △x = 2L/M and △t = T/K. Then our choice of difference scheme for the
system (1.1)-(1.4) for n = 1 is

u0i = u0(xi) for 0 ≤ i ≤M, and(2.1)

θ0i = θ0(xi) for 0 ≤ i ≤M.(2.2)

Then

δtu
k
i = (J ∗ uk)i − (J ∗ 1)iu

k
i + ψ(uki , u

k+1
i ) + lθki(2.3)

and

lδtu
k
i + δtθ

k
i = δ2xθ

k
i ,(2.4)

both for 0 ≤ i ≤ M and 0 ≤ k ≤ K − 1. The Neumann boundary condition is
expressed by

θk1 − θk−1

2△x
= 0, and

θkM+1 − θkM−1

2△x
= 0 for 0 ≤ k ≤ K,(2.5)

with

δtu
k
i =

uk+1
i − uki
△t

, δ2xθ
k
i =

θki+1 − 2θki + θki−1

△x2

and

(J ∗ uk)i =△x

[

1

2
J(x0 − xi)u

k
0 +

M−1
∑

m=1

J(xm − xi)u
k
m +

1

2
J(xM − xi)u

k
M

]

.

Here we use

ψ(uki , u
k+1
i ) = uki − (uki )

2
uk+1
i

for the discretization of f . It will be shown later that this choice of ψ in place of
ψ(uki ) = uki − (uki )

3 is necessary to prove both the convergence and the stability of
of the numerical scheme.
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Now for n = 2, meaning a rectangular domain (−L,L)× (−W,W ) ⊂ R
2, we have

Ωx, y = {(xi, yj)|xi = −L+ i△x, yj = −W + j△y, 0 ≤ i ≤M, 0 ≤ j ≤ N}

and

Ωt = {tk| tk = k△t, 0 ≤ t ≤ K},

where △x = 2L/M and △y = 2W/N.
Our difference scheme in this case is

u0i, j = u0(xi, yj) for 0 ≤ i ≤M, 0 ≤ j ≤ N, and(2.6)

θ0i, j = θ0(xi, yj) for 0 ≤ i ≤M, 0 ≤ j ≤ N,(2.7)

with

δtu
k
i, j = (J ∗ uk)i, j − (J ∗ 1)i, ju

k
i, j + ψ(uki, j , u

k+1
i, j ) + lθki,j(2.8)

for 0 ≤ i ≤M, 0 ≤ j ≤ N, 0 ≤ k ≤ K − 1, and

lδtu
k
i, j + δtθ

k
i,j = δ2xθ

k
i, j + δ2yθ

k
i, j(2.9)

for 0 ≤ i ≤M, 0 ≤ j ≤ N, 1 ≤ k ≤ K. The Neumann boundary condition yields

θk1,j − θk−1,j

2△x
= 0,

θkM+1,j − θkM−1,j

2△x
= 0 for 0 ≤ j ≤ N and

θki,1 − θki,−1

2△y
= 0,

θki,N+1 − θki,N−1

2△y
= 0 for 0 ≤ i ≤M.

(2.10)

In (2.8)-(2.9),

δtu
k
i, j =

uk+1
i, j − uki, j

△t
,

δ2xθ
k
i, j =

θki+1, j − 2θki, j + θki−1, j

△x2
,

δ2yθ
k
i, j =

θki, j+1 − 2θki, j + θki, j−1

△y2
,

(J ∗ uk)i, j =△x△y

[

M−1
∑

m=1

N−1
∑

n=1

J(xm − xi, yn − yj)u
k
m, n

+
1

2

M−1
∑

m=1

(

J(xm − xi, y0 − yj)u
k
m, 0 + J(xm − xi, yN − yj)u

k
m,N

)

+
1

2

N−1
∑

n=1

(

J(x0 − xi, yn − yj)u
k
0, n + J(xM − xi, yn − yj)u

k
M,n

)

+
1

4

(

J(x0 − xi, y0 − yj)u
k
0, 0 + J(xM − xi, y0 − yj)u

k
M, 0

+J(x0 − xi, yN − yj)u
k
0, N + J(xM − xi, yN − yj)u

k
M,N

)]

and, as in the n = 1 case, we need choose for the discretization of f

ψ(uki, j , u
k+1
i, j ) = uki, j − (uki, j)

2
uk+1
i, j .
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From (2.6)-(2.10), we have
[

1 + (uki,j)
2△t

]

uk+1
i,j =

[

(J ∗ uk)i, j − (J ∗ 1)i, ju
k
i, j + uki, j + lθki,j

]

△t+ uki,j .
(2.11)

If we define rx = △t
△x2 and ry = △t

△y2 , then (2.9)-(2.10) yield

θk+1
i,j = rx(θ

k
i+1,j + θki−1,j) + (1− 2rx − 2ry)θ

k
i,j

+ ry(θ
k
i,j+1 + θki,j−1)− l(uk+1

i,j − uki,j)
(2.12)

for 1 ≤ i ≤M − 1 and 1 ≤ j ≤ N − 1. The boundary conditions give rise to

θk+1
0,0 = 2rxθ

k
1,0 + (1− 2rx − 2ry)θ

k
0,0

+ 2ryθ
k
0,1 − l(uk+1

0,0 − uk0,0),
(2.13)

θk+1
0,N = 2rxθ

k
1,N + (1− 2rx − 2ry)θ

k
0,N

+ 2ryθ
k
0,N−1 − l(uk+1

0,N − uk0,N),
(2.14)

θk+1
M,0 = 2rxθ

k
M−1,0 + (1− 2rx − 2ry)θ

k
M,0

+ 2ryθ
k
M,1 − l(uk+1

M,0 − ukM,0), and
(2.15)

θk+1
M,N = 2rxθ

k
M−1,N + (1− 2rx − 2ry)θ

k
M,N

+ 2ryθ
k
M,N−1 − l(uk+1

M,N − ukM,N),
(2.16)

each for 0 ≤ k ≤ K − 1. For 1 ≤ j ≤ N − 1,

θk+1
0,j = 2rxθ

k
1,j + (1− 2rx − 2ry)θ

k
0,j

+ ry(θ
k
0,j+1 + θk0,j−1)− l(uk+1

M,N − ukM,N )
(2.17)

θk+1
M,j = 2rxθ

k
M−1,j + (1− 2rx − 2ry)θ

k
M,j

+ ry(θ
k
M,j+1 + θkM,j−1)− l(uk+1

M,j − ukM,j);
(2.18)

while for 1 ≤ i ≤M − 1, we have

θk+1
i,0 = rx(θ

k
i+1,0 + θki−1,0) + (1− 2rx − 2ry)θ

k
i,0

+ 2ryθ
k
i,1 − l(uk+1

i,0 − uki,0)
(2.19)

and

θk+1
i,N = rx(θ

k
i+1,N + θki−1,N ) + (1− 2rx − 2ry)θ

k
i,N

+ 2ryθ
k
i,N−1 − l(uk+1

i,N − uki,N ),
(2.20)

where for each equation, 1 ≤ k ≤ K − 1.

For the sake of conciseness, it will be helpful in the following theorem to make some
preliminary definitions. We note that each Λi will exist under the assumption of
boundedness of u(0, x, y) and θ(0, x, y). To this end, define

Λ1 = sup |u(0, x, y)|, Λ2 = sup |θ(0, x, y)|, Λ3 = sup
∫

Ω
|J(x− y)|,

C1 = lΛ1 + Λ2 + 2(2Λ3 + 1) + 2l2 and C = C1e
C1T ,

where e. is the standard exponential function.
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Theorem 2.1. If u(0, x, y), θ(0, x, y) ∈ L∞(Ω), there exists a unique solution to
the system (2.6)-(2.10), and the internal energy is conserved under this scheme.
Furthermore, if rx + ry < 1/2 and △t < (l/C)2 where C is given above, then

(2.21) lmax
i, j

|uki, j |+max
i, j

|θki, j | ≤ C

i.e., the scheme is stable under the maximum norm.

Proof. From equations (2.11)-(2.20), it is clear that the scheme is uniquely solvable.
The internal energy e =

∫

Ω(θ + lu)dx under this scheme can be represented by

defining ek = e(k△t) as

ek =△x△y

[

M−1
∑

m=1

N−1
∑

n=1

(lukm,n + θkm,n)

+
1

2

M−1
∑

m=1

(

lukm,0 + θkm,0 + lukm,N + θkm,N

)

+
1

2

N−1
∑

n=1

(

luk0,n + θk0,n + lukM,n + θkM,n

)

+
1

4

(

luk0,0 + θk0,0 + lukM,0 + θkM,0

+luk0,N + θk0,N + lukM,N + θkM,N

)]

.

(2.22)

For k ≥ 0, using (2.9) we have

ek+1 − ek = △t△x△y

[

M−1
∑

m=1

N−1
∑

n=1

(δ2xθ
k
m, n + δ2yθ

k
m, n)

+
1

2

M−1
∑

m=1

(

δ2xθ
k
m, 0 + δ2yθ

k
m, 0 + δ2xθ

k
m,N + δ2yθ

k
m,N

)

+
1

2

N−1
∑

n=1

(

δ2xθ
k
0, n + δ2yθ

k
0, n + δ2xθ

k
M,n + δ2yθ

k
M,n

)

+
1

4

(

δ2xθ
k
0, 0 + δ2yθ

k
0, 0 + δ2xθ

k
M, 0 + δ2yθ

k
M, 0

+δ2xθ
k
0, N + δ2yθ

k
0, N + δ2xθ

k
M,N + δ2yθ

k
M,N

)]

.

(2.23)

Using the definition of the central schems and the summation gives

△t

M−1
∑

m=1

N−1
∑

n=1

(δ2xθ
k
m, n + δ2yθ

k
m, n)

= rx

N−1
∑

n=1

(θkM,n − θkM−1, n − θk1, n + θk0, n)

+ ry

M−1
∑

m=1

(θkm,N − θkm,N−1 − θkm, 1 + θkm, 0).

(2.24)

Invoking the Neumann boundary condition and the central schemes definition
gives
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△t

2

M−1
∑

m=1

(

δ2xθ
k
m, 0 + δ2yθ

k
m, 0 + δ2xθ

k
m,N + δ2yθ

k
m,N

)

= ry

M−1
∑

m=1

(−θkm,N + θkm,N−1 + θkm, 1 − θkm, 0)

+
1

2
rx(θ

k
M, 0 − θkM−1, 0 − θk1, 0 + θk0, 0)

+
1

2
rx(θ

k
M,N − θkM−1, N − θk1, N + θk0, N ),

(2.25)

△t

2

N−1
∑

n=1

(

δ2xθ
k
0, n + δ2yθ

k
0, n + δ2xθ

k
M,n + δ2yθ

k
M,n

)

= rx

N−1
∑

n=1

(−θkM,n + θkM−1, n + θk1, n − θk0, n)

+
1

2
ry(θ

k
0, N − θk0, N−1 − θk0, 1 + θk0, 0)

+
1

2
ry(θ

k
M,N − θkM,N−1 − θkM, 1 + θkM, 0),

(2.26)

and

△t
1

4
(δ2xθ

k
0, 0 + δ2yθ

k
0, 0 + δ2xθ

k
M, 0 + δ2yθ

k
M, 0 + δ2xθ

k
0, N + δ2yθ

k
0, N + δ2xθ

k
M,N + δ2yθ

k
M,N )

=
1

2
rx(−θ

k
M, 0 + θkM−1, 0 + θk1, 0 − θk0, 0 − θkM,N + θkM−1, N + θk1, N − θk0, N )

+
1

2
ry(−θ

k
0, N + θk0, N−1 + θk0, 1 − θk0, 0 − θkM,N + θkM,N−1 + θkM, 1 − θkM, 0).

(2.27)

Using (2.22)-(2.27), we arrive at

ek+1 = ek(2.28)

for k ≥ 0. Therefore,

ek = e0,(2.29)

showing that internal energy is conserved.

Finally, we prove statement (2.21) using induction. For k = 0, using definitions
preceding the theorem

max
i,j

|u0i, j | ≤ Λ1(2.30)

and

max
i,j

|θ0i, j | ≤ Λ2,(2.31)

so that

lmax
i,j

|u0i, j |+max
i,j

|θ0i, j | ≤ lΛ1 + Λ2 < C,(2.32)

where C is defined before the statement of the theorem.
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Assuming (2.21) is true for some natural number k, we consider uk+1
i,j and θk+1

i,j .

Here, (2.11)- (2.12) imply that

uk+1
i,j =

(

(J ∗ uk)i, j − (J ∗ 1)i, ju
k
i, j + uki, j + lθki,j

) △t

1 + (uki,j)
2△t

+
1

1 + (uki,j)
2△t

uki,j

(2.33)

and

θk+1
i,j = rx(θ

k
i+1,j + θki−1,j) + (1− 2rx − 2ry)θ

k
i,j

+ ry(θ
k
i,j+1 + θki,j−1)− l(uk+1

i,j − uki,j).
(2.34)

Plugging (2.33) into (2.34), we have

θk+1
i,j = rx(θ

k
i+1,j + θki−1,j) + (1− 2rx − 2ry)θ

k
i,j + ry(θ

k
i,j+1 + θki,j−1)

− l

[

(

(J ∗ uk)i, j − (J ∗ 1)i, ju
k
i, j + uki, j + lθki,j

) △t

1 + (uki,j)
2△t

−
(uki,j)

2△t

1 + (uki,j)
2△t

uki,j

]

.

(2.35)

If we set |uk| = max
i,j

|uki,j | and |θk| = max
i,j

|θki,j |, and if rx + ry < 1/2, then invoking

Λ3 defined before the theorem, (2.33)-(2.35) imply

|uk+1
i,j | ≤ (2Λ3 + 1)|uk|△t+ l|θk|△t+

1

1 + (uki,j)
2△t

|uki,j|(2.36)

and

|θk+1
i,j | ≤ |θk|+ l(2Λ3 + 1)|uk|△t+ l2|θk|△t+

l(uki,j)
2△t

1 + (uki,j)
2△t

|uki,j |.(2.37)

Since h(x) = x
1+x

is an increasing function for x ≥ 0, we have

(uki,j)
2△t

1 + (uki,j)
2△t

|uki,j | ≤
|uk|2△t

1 + |uk|2△t
|uk|.

This inequality together with (2.37) imply

|θk+1| ≤ |θk|+ l(2Λ3 + 1)|uk|△t+ l2|θk|△t+
l|uk|2△t

1 + |uk|2△t
|uk| .(2.38)

Since (2.36) is true for all i and j, and because there exist i0 and j0 such that

|uk+1| = |uk+1
i0,j0

|, we arrive at

l|uk+1| = l|uk+1
i0,j0

| ≤ l(2Λ3 + 1)|uk|△t+ l2|θk|△t+
l

1 + (uki0,j0)
2△t

|uki0,j0 |.(2.39)

We need the following lemma.

Lemma 2.2. If b ≥ a > 0 and △t ≤ 1/b2, then

1

1 + a2△t
a+

b2△t

1 + b2△t
b ≤ b.(2.40)

Proof. Since the proof is straightforward, we omit it here. �
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Adding (2.38) and (2.39) implies

|θk+1|+ l|uk+1| ≤ |θk|+ 2l(2Λ3 + 1)|uk|△t+ 2l2|θk|△t

+
l|uk|2△t

1 + |uk|2△t
|uk|+

l

1 + (uki0,j0)
2△t

|uki0,j0 |.
(2.41)

We have assumed the statement is true for k, so l|uk| + |θk| < C. Therefore
|uk| < C/l. Also by the definition of |uk|, we have |uk| ≥ |uki0,j0 |. If △t < (l/C)2,

then △t < 1/|uk|2. Using Lemma 2.2 we have

l

1 + (uki0,j0)
2△t

|uki0,j0 |+
l|uk|2△t

1 + |uk|2△t
|uk| ≤ l|uk|.(2.42)

Using (2.41) and (2.42) together with the definiton of C1 preceding the theorem,
we get

|θk+1|+ l|uk+1| ≤ |θk|+ l|uk|+ 2l(2Λ3 + 1)|uk|△t+ 2l2|θk|△t

≤ (1 + C1△t)(|θ
k|+ l|uk|)

· · ·

≤ (1 + C1△t)
k+1(|θ0|+ l|u0|)

≤ eC1TC1 = C.

(2.43)

So the statement is true for k + 1. Therefore,

max
i, j, k

l|uki, j |+max
i, j, k

|θki, j | ≤ C,(2.44)

where C is independent of k and of the spatial mesh size. �

Remark 2.3. A similar result holds for n ≥ 3.

Next we consider error estimates for the proposed scheme. For the solution of
(1.1)-(1.4), we have the following lemma.

Lemma 2.4. Suppose that J and f satisfy the following assumptions:

(A1) M ≡ sup
∫

Ω |J(x− y)|dy <∞ and f ∈ C(R).
(A2) There exist c1 > 0, c2 > 0, c3 > 0, c4 > 0 and r > 2 such that f(u)u ≥

c1|u|
r − c2|u|, and |f(u)| ≤ c3|u|

r−1 + c4.

If assumptions (A1) − (A2) are satisfied, u0 ∈ L∞(Ω) and θ0 ∈ L∞ ∩H1(Ω), then
there exists a unique solution (u, θ) ∈ C ([0, T ], L∞(Ω)) to the system (1.1)-(1.4)
such that ut ∈ L∞(QT ), and utt, θt, △θ ∈ L2(QT ), where QT = [0, T ]× Ω̄.

Proof. The proof of the lemma is a similar argument to that in the proof of Theorem
2.3 in [4]; we omit it here. �

We note that although Lemma 2.4 is more general than for f(u) = u3 − u that
we consider here, the conditions in the lemma are satisfied for our choice of f for
the nonlinear function in (1.1).

Theorem 2.5. If the system (1.1)-(1.4) has a solution (u, θ) ∈ C1,2([0, T ] × Ω̄),
then the solution of the difference scheme converges to this solution uniformly, and
the convergence rate is O(△t +△x2 +△y2).
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Proof. Let (U(t, x, y), V (t, x, y)) be the solution of the system (1.1)-(1.4). We use
the following notation:

U0
i, j = u0(xi, yj), U

k
i, j = u(tk, xi, yj),

V 0
i, j = θ0(xi, yj), V

k
i, j = θ(tk, xi, yj).

(2.45)

From (1.1)-(1.4), we have for k ≥ 0,

Uk+1
i, j − Uk

i, j

△t
= (J ∗ Uk)i, j − (J ∗ 1)i, jU

k
i, j

+ Uk
i, j − (Uk

i, j)
3 + lV k

i,j +R1(△t,△x,△y),

(2.46)

where R1(△t,△x,△y) = O(△t+△x2 +△y2).
Then

l
Uk+1
i, j − Uk

i, j

△t
+
V k+1
i, j − V k

i, j

△t
=
V k
i+1,j − 2V k

i,j + V k
i−1,j

△x2

+
V k
i,j+1 − 2V k

i,j + V k
i,j−1

△y2
+R2(△t,△x,△y),

(2.47)

with Neumann boundary condition

V k
1,j = V k

−1,j +O(△x2), V k
M+1,j = V k

M−1,j +O(△x2) for 0 ≤ j ≤ N,

V k
i,1 = V k

i,−1 +O(△y2), V k
i,N+1 = V k

i,N−1 +O(△y2) for 0 ≤ i ≤M,
(2.48)

where R2(△t,△x,△y) = O(△t+△x2 +△y2).
We define error terms

Xk
i, j = Uk

i, j − uki, j for k = 0, . . . ,K, i = 0, . . . ,M, j = 0, . . . , N(2.49)

and

Y k
i, j = V k

i, j − θki, j for k = 0, . . . ,K, i = 0, . . . ,M, j = 0, . . . , N.(2.50)

From (2.6), (2.7) and (2.45), we have

X0
i, j = 0, Y 0

i, j = 0 for i = 0, · · · ,M, j = 0, · · · , N.(2.51)

Turning now to k ≥ 1, (2.8) and (2.46) yield

Xk+1
i, j = △t[(J ∗Xk)i, j − (J ∗ 1)i,jX

k
i, j +Xk

i, j

− (U3(tk, xi, yj)− (uki, j)
2uk+1

i, j ) +Xk
i, j + lY k

i,j]

+Xk
i, j +△tR1(△t,△x,△y).

(2.52)

Since

(Uk
i,j)

3 − (uki,j)
2uk+1

i,j = (Uk
i,j)

2(Uk
i,j − Uk+1

i,j )

+Xk
i,j(U

k
i,j + uki,j)U

k+1
i,j

+ (uki,j)
2Xk+1

i,j ,

(2.53)
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equation (2.52) implies
[

1 +△t(uki, j)
2
]

Xk+1
i, j =

△t
[

(J ∗Xk)i, j − (J ∗ 1)i,jX
k
i, j +Xk

i, j

−(Uk
i,j)

2(Uk
i,j − Uk+1

i,j )−Xk
i,j(U

k
i,j + uki,j)U

k+1
i,j

]

+Xk
i,j + l△tY k

i,j +△t · O(△t+△x2 +△y2).

(2.54)

From Lemma 2.4, u and ut are bounded in QT , so

|(Uk
i,j)

2(Uk
i,j − Uk+1

i,j )| ≤ (Λ2)
2Λ4△t,(2.55)

where Λ2 = maxi,j,k |U
k
i, j |, Λ4 = maxQT

|ut|.

Now equations (2.54) and (2.55) and the boundedness of |Uk
i,j | and |uki,j | suggest

that

max
i,j

|Xk+1
i, j | ≤ C(Λ1,Λ2,Λ3)△tmax

i,j
|Xk

i, j |

+max
i,j

|Xk
i, j |+ l△tmax

i,j
|Y k

i,j |+ |△tR2|,
(2.56)

where C(Λ1,Λ2,Λ3) depends only on Λ1 = maxi,j,k |u
k
i, j |, Λ2 = maxi,j,k |U

k
i, j | and

Λ3 = sup
∫

Ω
|J(x − y)|dy, and where R2 = O(△t + △x2 +△y2). Equations (2.9)

and (2.47) together lead to

l
Xk+1

i,j −Xk
i,j

△t
+
Y k+1
i,j − Y k

i,j

△t

=
Y k
i+1,j − 2Y k

i,j + Y k
i−1,j

△x2

+
Y k
i,j+1 − 2Y k

i,j + Y k
i,j−1

△y2
+R3(△t,△x,△y),

(2.57)

with Neumann boundary condition

Y k
1,j = Y k

−1,j + (△x2), Y k
M+1,j = Y k

M−1,j +O(△x2) for 0 ≤ j ≤ N,

Y k
i,1 = Y k

i,−1 + O(△y2), Y k
i,N+1 = Y k

i,N−1 +O(△y2) for 0 ≤ i ≤M,
(2.58)

where R3(△t,△x,△y) = O(△t+△x2 +△y2). Thus

Y k+1
i, j = rx(Y

k
i+1,j + Y k

i−1,j) + ry(Y
k
i,j+1 + Y k

i,j−1)

+ (1− 2rx − 2ry)Y
k
i,j+

− l(Xk+1
i,j −Xk

i,j) +△tR3(△t,△x,△y).

(2.59)

If rx + ry < 1/2, equation (2.59) gives rise to

max
i,j

|Y k+1
i, j | ≤ max

i,j
|Y k

i,j |+ lmax
i,j

|Xk+1
i,j −Xk

i,j |

+△tR3(△t,△x,△y).
(2.60)

Invoking equation (2.52) and the boundedness of |Uk
i,j | and |uki,j |, we have

lmax
i,j

|Xk+1
i,j −Xk

i,j | ≤ lC(Λ1,Λ2,Λ3)△tmax
i,j

|Xk
i,j |

+ l2△tmax
i,j

|Y k
i,j |+ l△tR1(△t,△x,△y),

(2.61)
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where C(Λ1,Λ2,Λ3) and R1 = O(△t +△x2 +△y2) are defined as before. Finally,
using equations (2.56), (2.60) and (2.61), we arrive at

max
i,j

|Xk+1
i,j |+max

i,j
|Y k+1

i,j |

≤ (1 + C(Λ1,Λ2,Λ3, l)△t)(max
i,j

|Xk
i,j |+max

i,j
|Y k

i,j |)

+ l△tR4(△t,△x,△y)

≤ (1 + C(Λ1,Λ2,Λ3, l)△t)
2(max

i,j
|Xk−1

i,j |+max
i,j

|Y k−1
i,j |)

+ 2l△tR4(△t,△x,△y)

...

≤ (1 + C(Λ1,Λ2,Λ3, l)△t)
k+1(max

i,j
|X0

i,j |+max
i,j

|Y 0
i,j |)

+ (k + 1)△tR4(△t,△x,△y)

≤ T lR4(△t,△x,△y) = O(△t+△x2 +△y2),

(2.62)

establishing Theorem 2.5. �

Remark 2.6. The scheme for the Neumann boundary condition can also be applied
to the problem with the Dirichlet boundary condition. However, for the Dirichlet
problem, the internal energy is not conserved.

3. Numerical Results

Having established stability and convergence of the difference scheme, in this
section we investigate some numerical approximations of the solution to (1.1)-(1.4).
In the graph, we use T as the temperature instead of θ.

For n = 1, let Ω = (−1, 1), f(u) = u3 − u, J(x) = 10e−100x2

and l = 1. Figures
1-3 show the numerical results for the phase field system at t = 0, 10, 20 and 40
with initial values

u0(x) = 0.8 sin(2πx), θ0(x) = 0.5 + 0.1 cos(2πx).

Figures 4-6 show the numerical results for the phase field system at t = 0, 10, 20,
and 40 with initial values

u0(x) = 0.8 sin(2πx), θ0(x) = 0.5 cos(2πx).

Figures 7-8 show the numerical results for the phase field system at t = 0, 10, 20,
and 40 with initial values

u0(x) = 0.8 sin(2πx), θ0(x) = −0.5 + 0.1 cos(2πx).

For n = 2, let Ω = (0, 1) × (0, 1), Jǫ(x, y) = 10e−100(x2+y2), △t = 0.0005,
△x = 0.05 and △y = 0.05. Figures 10-12 show the numerical results at t = 2, 4
and 5 with initial values

u0(x, y) = 0.8 cos(2πx) ∗ cos(2πy), θ0(x, y) = 0.5 + 0.1 cos(2πx) ∗ cos(2πy).

Figures 13-15 show the numerical results at t = 2, 4 and 5 with initial values

u0(x, y) = 0.8 cos(2πx) ∗ cos(2πy), θ0(x, y) = 0.1 cos(2πx) ∗ cos(2πy).

Figures 16-18 show the numerical results at t = 2, 4 and 5 with initial data

u0(x, y) = 0.8 cos(2πx) ∗ cos(2πy), θ0(x, y) = −0.5 + 0.1 cos(2πx) ∗ cos(2πy).
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Figure 1. The order parameter u in the phase field system for
n = 1 with u0(x) = 0.8 sin(2πx), θ0(x) = 0.5 + 0.1 cos(2πx),△t =
0.0001,△x = 0.002 .
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Figure 2. The temperature T in the phase field system for n = 1
with u0(x) = 0.8 sin(2πx), θ0(x) = 0.5 + 0.1 cos(2πx),△t =
0.0001,△x = 0.002 .
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Figure 3. The internal energy in the phase field system for
n = 1 with u0(x) = 0.8 sin(2πx), θ0(x) = 0.5 + 0.1 cos(2πx),△t =
0.0001,△x = 0.002 .
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Figure 4. The order parameter u in the phase field system for
n = 1 with u0(x) = 0.8 sin(2πx), θ0(x) = 0.5 cos(2πx),△t =
0.0001,△x = 0.002 .
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Figure 5. The temperature T in the phase field system for n = 1.
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Figure 6. The order parameter u in the phase field system for n =
1 with u0(x) = 0.8 sin(2πx), θ0(x) = −0.5 + 0.1 cos(2πx),△t =
0.0001,△x = 0.002 .
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Figure 7. The temperature T in the phase field system for n =
1 with u0(x) = 0.8 sin(2πx), θ0(x) = −0.5 + 0.1 cos(2πx),△t =
0.0001,△x = 0.002 .
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Figure 8. The order parameter u in the phase field system for
n = 2 with u0(x, y) = 0.8 cos(2πx) ∗ cos(2πy), θ0(x, y) = 0.5 +
0.1 cos(2πx) ∗ cos(2πy),△t = 0.0005,△x = 0.05,△y = 0.05.
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Figure 9. The temperature T in the phase field system for n = 2.
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Figure 10. The internal energy in the phase field system for
n = 2 with u0(x, y) = 0.8 cos(2πx) ∗ cos(2πy), θ0(x, y) = 0.5 +
0.1 cos(2πx) ∗ cos(2πy),△t = 0.0005,△x = 0.05,△y = 0.05.
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Figure 11. The order parameter u in the phase field system
for n = 2 with u0(x, y) = 0.8 cos(2πx) ∗ cos(2πy), θ0(x, y) =
0.1 cos(2πx) ∗ cos(2πy),△t = 0.0005,△x = 0.05,△y = 0.05 .
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Figure 12. The temperature T in the phase field system for n = 2
with u0(x, y) = 0.8 cos(2πx) ∗ cos(2πy), θ0(x, y) = 0.1 cos(2πx) ∗
cos(2πy),△t = 0.0005,△x = 0.05,△y = 0.05 .
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Figure 13. The order parameter u in the phase field system for
n = 2 with u0(x, y) = 0.8 cos(2πx) ∗ cos(2πy), θ0(x, y) = −0.5 +
0.1 cos(2πx) ∗ cos(2πy),△t = 0.0005,△x = 0.05,△y = 0.05 .
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Figure 14. The temperature T in the phase field system for
n = 2 with u0(x, y) = 0.8 cos(2πx) ∗ cos(2πy), θ0(x, y) = −0.5 +
0.1 cos(2πx) ∗ cos(2πy),△t = 0.0005,△x = 0.05,△y = 0.05 .

In Figures 1-3 and Figures 10-12, we see that when the initial temperature is
greater than zero, θ will decrease to a negative constant and u will approach a
piecewise defined constant function which will approach 1 in the greater portion of
the region. During this process, the internal energy is conserved as predicted by
Theorem 2.1.

Figures 4-5 and Figures 11-12 suggest that when the initial temperature oscillates
about zero, θ will approach zero while u approaches a piecewise defined constant
function. Both are also steady state solutions for the phase-field system. During
this process, we have checked that the internal energy is also conserved as expected.
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The graphs in figures 6-7 and Figures 13-14 demonstrate the reasonable result
that over time and with the negative, nonconstant initial temperature, θ will in-
crease to a positive constant on Ω, while u approaches a piecewise-constant function
that is represented by state value of −1 in the greater portion of Ω. The theoretical
analysis for this steady state solution will be investigated in a future paper.

Remark 3.1. We also checked the numerical result with discontinuous but bounded
functions used as initial conditions functions. The numerical results show behavior
similar to that obtained with smooth initial functions agreeing with the finding that
they need only be bounded functions.
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