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Abstract. Fluid-structure-interaction problems are ubiquitous, complicated, and not
yet well understood. In this paper we investigate the interaction of a leading rigid
circular cylinder and a trailing compliant filament and analyze the dynamic responses
of the filament in the wake of the cylinder. It is revealed that there exist two flapping
states of the filament depending on the cylinder-filament separation distance and the
relevant critical distance distinguishing the two states is associated with the Reynolds
number and the filament length. It is also found that the drag coefficient of the cylinder
is reduced but that of the filament may be increased or decreased depending on its
length. Compared with a single filament in a uniform flow, the filament of the same
mechanical properties flapping in the wake of the cylinder has a lower frequency and
a greater amplitude.

AMS subject classifications: 74K20, 76D05, 76Z10
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1 Introduction

Fluid-structure-interaction (FSI) problems are everywhere in our daily life. Arguably
the FSI problems may be further categorized into two subsets: fluid-rigid-structure-
interaction such as a flying aircraft interacting with the air and fluid-flexible-structure-
interaction such as red blood cells moving in the flowing blood in human arteries. These
two types of the FSI problems have already been extensively studied theoretically, ex-
perimentally and computationally. The readers are referred to the following papers and
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references therein: sedimentation of an elliptical particle [1], numerical simulations on
the dynamics of plates falling freely in a fluid under the influence of gravity [2]; experi-
mental and computational studies on the dynamics of flexible filaments in a flowing soap
film [3,4], a flapping flexible plate in quiescent fluid [5], resonance and propulsion perfor-
mance of a heaving flexible wing [6], capsule deformation [7, 8], and effects of flexibility
on the aerodynamic performance of flapping wings [9].

However, many FSI problems encountered are even more complicated. They may
involve the interaction of a viscous fluid and both rigid and flexible structures. To name
a few such examples: flag flapping in a wind (involving the rigid pole, the flexible flag
and the flowing air) and fish swimming in the wake of a bridge pillar or a navigating
ship. The FSI problems involving both rigid and compliant structures in a viscous flow
are less investigated and yet not well understood because of the intrinsic mathematical
and physical complexity of this type of fluid-structure-interaction. Liao et al. [10] demon-
strated how a trout might exploit the vortices to reduce the cost of locomotion in the wake
of a stationary object in a water flow. Beal et al. [11] showed that a streamlined body pas-
sively oscillating within a vortical wake could extract sufficient energy from the eddies
to propel itself upstream. Eldredge and Pisani [12] investigated the passive locomotion
of a simple articulated fish-like system in the wake of an obstacle. Sui et al. [13] first sim-
ulated the interaction of a leading rigid cylinder and a trailing massless flexible filament
in a two-dimensional flow as application of a newly developed numerical method for
the FSI problems. Jia and Yin [14] identified by laboratory experiments three response
modes of a flexible filament in the wake of a rigid cylinder in a flowing soap film. Wang
et al. [15] found the filament in the wake of a upperstream cylinder gained a thrust rather
than drag in two dimensions. Tian et al. [16] performed simulations on the interaction of
a leading flexible filament and a trailing rigid cylinder.

Because of the presence of both rigid and deformable bodies in a viscous flow, the
interaction among the bodies and the flow may become different and more complex, and
new phenomena may emerge. Previous experiments with tandem rigid cylinders [17]
found that the drag of a trailing object was less than that of a leading one. A recent experi-
ment on two tandem flapping rubber threads in a two-dimensional viscous flow reported
by Ristroph and Zhang [18] revealed just the opposite: the drag of the downstream flag
was greater than that of the upstream flag. A computational study [19] on the similar
problem showed that even more complicated scenarios happened as the Reynolds num-
ber was varied. What would happen if a rigid body and a deformable body are placed
in tandem in a viscous flow? Here we consider a flexible filament interacting with the
wake of a upstream rigid cylinder in a viscous incompressible flow in two dimensions.
Numerous simulations are performed with various dimensionless parameters and our
numerical results indicate the existence of two flapping modes of the filaments associ-
ated with the suction zone behind the cylinder [12] and the drag of the leading cylinder
is always reduced but the drag of the trailing filament may be decreased or increased
depending on the dimensionless filament length.

The remainder of the paper is organized as follows. Section 2 presents the physical
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problem and the relevant mathematical description. Section 3 briefly outlines the nu-
merical methods. Section 4 addresses the simulation results in detail with discussions.
Finally a brief summary concludes the present work.

2 Physical problem and mathematical formulation

We consider a viscous flow past a rigid circular cylinder of diameter D and a flexible
filament of length L which is introduced behind the cylinder with one end pinned and
otherwise unrestricted. As shown in Fig. 1, the extent of space between the filament
fixed-end and the cylinder center is 0.5D+G in the horizontal direction and H in the
vertical direction. This problem is representative of the fluid-structure-interaction that
involves a fixed rigid structure, a movable compliant structure with one end constraint
and a viscous incompressible fluid. The motion of the fluid can be described by the
viscous incompressible Navier-Stokes equations

∂v

∂t
+v·∇v=−

1

ρ
∇p+

µ

ρ
∇2v, (2.1a)

∇·v=0, (2.1b)

where v is the velocity, p the pressure, ρ the density of the fluid and µ the fluid dynamic
viscosity.
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Figure 1: Sketch of the problem of a flapping filament in the wake of a circular cylinder in a uniform incoming
flow. The cylinder is fixed and the filament is pinned at the fixed-end marked by a small solid circle.

The boundary conditions are as follows

v=(U,0), (2.2)

on the inlet, top and bottom boundaries, where U represents the free-stream velocity,

∂v

∂x
=0,

∂p

∂x
=0, (2.3)

on the outlet, and
v=0, (2.4)

on the cylinder.
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The initial condition is as follows

v=(U,0), (2.5)

on the flow domain.

The dynamics of the filament can be governed by the following equation

ρl
∂2X

∂t2
−

∂

∂s

[

T(s)
∂X

∂s

]

+EI
∂4X

∂s4
=F, (2.6)

with s as the Lagrangian coordinate along the length, and the body position vector
X(s, t). Here, ρl is the structural linear density, T(s) = Eh(|∂X/∂s|−1) is the tension,
Eh is the coefficient of stretching and compression, EI is the structural bending rigidity,
and F is the load of fluid.

The boundary conditions for the filament are

X(s=0,t)=(x0,y0),
∂2X

∂s2
(s=0,t)=(0,0), (2.7)

at the fixed end (s=0), where (x0,y0)=(0.5D+G,H) is its coordinates, and

T(s= L,t)=0,
∂2X

∂s2
(s= L,t)=(0,0),

∂3X

∂s3
(s= L,t)=(0,0), (2.8)

at the free end (s= L). The velocity of the filament is

v=
∂X

∂t
. (2.9)

The initial condition is

X(s,t=0)=(x0+s,y0),
∂X

∂t
(s,t=0)=(0,0). (2.10)

We choose ρ, U, and D as reference quantities to non-dimensionalize the above equa-
tions. Based on the non-dimensional analysis, there exist several dimensionless pa-
rameters in our problem: the Reynolds number Re = ρUD/µ, the stretching coeffi-
cient Ks =Eh/(ρU2D), the bending coefficient Kb =EI/(ρU2D3), the linear density ratio
M = ρl/(ρD), the length of the filament L/D, the horizontal gap between the cylinder
and the filament fixed-end G/D, and the vertical distance of the fixed-end to the center-
line H/D. The time t, the frequency f and the drag CD are non-dimensionalized by D/U,
U/D and 1/2ρU2D, respectively. In the remainder of the paper, we use L, G, and H to
represent L/D, G/D, and H/D respectively for simplicity of notation and all variables
and their cited values are dimensionless.
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3 Numerical method

The governing equations given above are solved numerically using a modified penalty
immersed boundary method coupled with a lattice Boltzmann method which was de-
scribed in detail in [20]. A brief description of the method is only provided here.

The Navier-Stokes equations are approximated by the discrete lattice-Boltzmann
equation with a single relaxation time D2Q9 model, and the multi-block method [21]
is employed to improve the computational efficiency. The fluid-cylinder-filament inter-
action is handled by a modified version of the penalty immersed-boundary method orig-
inally developed by Kim and Peskin [22]. In this method, the no-slip boundary condition
(on the filament and on the cylinder surface) is achieved by including a body force den-
sity f (x,t) into the right hand side of the momentum Eq. (2.1) which is defined as follows

f (x,t)=
∫

Γ

F(s,t)δ(x−X(s,t))ds, (3.1)

where F(s, t) represents the interaction force between the fluid and the structures (in-
cluding the filament and cylinder), and δ(x−X(s,t)) is Dirac delta function. The velocity
of the filament is interpolated from the flow field onto the Lagrangian points discretizing
the filament, and the positions of those points are updated by explicitly integrating the
velocity in Eq. (2.9). The last two terms on the left hand side of Eq. (2.6) are calculated
explicitly by finite-difference method [4]. To calculate the first term (i.e., inertial force
term) in Eq. (2.6), the penalty method used in [22] is adopted to ensure the numerical
stability. Specifically, the filament itself is assumed to be massless in the algorithm, but
a ghost filament of linear density ρl is attached to the physical filament through a series
of virtual spring of specified stiffness. The inertial force term in Eq. (2.6) is thus replaced
by the virtual-spring force. A direct forcing method [13, 23] is employed to calculate the
interacting force between the cylinder and the fluid. The method and the code used for
our current study have been validated carefully in our previous papers [16, 20, 24].

4 Results and discussion

In the present simulations, the computational domain for fluid flow is chosen as −10≤x≤
30 and −10≤ y≤ 10 based on our computational examinations. Two level multi-blocks
are employed, with the fine lattice spacing of 0.02 near the region of the cylinder and
filament and the coarse lattice spacing of 0.04 away from these immersed boundaries.

For most of the simulations discussed in this paper, an elastic homogeneous mas-
sive filament with invariant mechanical properties is considered. The stretching coeffi-
cient, bending coefficient, and linear density ratio of the filament are constant: Ks=1000,
Kb = 0.0001, M = 0.3. The Reynolds number of the flow is Re = 100 unless otherwise
stated. The choice of the value of Ks makes sure that the filament extension is small.
Note that at these values of Re and M an isolated filament without the cylinder in a
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uniform flow settles down to a period-one limit-cycle oscillation of constant frequency
and amplitude [25]. The relevant resultant quantities such as drag coefficient of this case
will be used for comparison with those of the fluid-cylinder-filament system. There are
seven independent dimensionless parameters in this problem, we here focus on simu-
lation results for the parameters in the following ranges: L= 0.5−3.0, H = 0.0−2.0 and
G=1.5−15.0.

4.1 Two flapping modes

First of all, we set H = 0.0 to isolate the influence of the horizontal cylinder-filament
separation distance G on the motion of the fluid-cylinder-filament system. Extensive
simulations are performed with a series of different values of G. Our simulation results
reveal an interesting phenomenon: if the filament is placed far enough away from the
cylinder, i.e., when G is large enough, the filament flaps in the wake of the cylinder in a
way similar to the case where the cylinder is absent, i.e., filament flapping in a uniform
flow [4]; however, if the filament is placed close enough to the upstream cylinder, i.e.,
when G is small enough, the filament reverses its flapping direction–the free-end moves
upperstream passing the fixed-end and moving towards the cylinder, and finally settles
down to a self-sustained flapping state with the free-end upperstream and the fixed-end
downstream. We call the former situation ”normal flapping” (NF) and the latter situation
”reversed flapping” (RF). To identify the critical horizontal cylinder-filament distance Gc

for distinguishing the two types of flapping, a series of simulations with different values
of G are performed and the critical value Gc is obtained to be approximately 2.65, as
exhibited on the second row of Table 1.

To examine whether the interesting phenomenon is sensitive to the filament initial
orientation, i.e., the relative position of fixed-end and free-end with respect to the cylin-
der, all of the above simulations used to estimate Gc are repeated with only the initial
filament orientation changed and all of the parameters remained the same, i.e., filament
free-end placed upperstream and the fixed-end downstream. We find that the switch be-
tween the normal and reversed flapping is independent of the filament initial orientation.
See the results on the third row of Table 1.

To investigate the physical mechanism in the reversed flapping mode, the flow be-
havior behind the cylinder is analyzed. Usually, a backflow zone is formed in the re-
gion behind the cylinder. Such a region where the x-component of velocity is negative is

Table 1: Effect of cylinder-filament separation distance G on flapping modes at L= 2.0 and H = 0.0 for two
different initial orientations of the filament. ⇒ (t=0): filament initially placed with the fixed-end towards the
cylinder; ⇐ (t=0): filament initially placed with the free-end towards the cylinder. Normal flapping (NF): the
filament flaps with the fixed-end towards the cylinder; reverse flapping (RF): the filament flaps with the the
free-end towards the cylinder.

G 1.5 2.0 2.6 2.7 3.5
⇒ (t=0) RF RF RF NF NF
⇐ (t=0) RF RF RF NF NF
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Figure 2: Instantaneous suction zone of (a) an isolated cylinder and filament and cylinder system for G= (b)
2.5 and (c) 3.0, L=2.0, and H=0.0.

called a suction zone [12], i.e., the region defined by the set {(x,y)|u(x,y)< 0, x> 0 and
−D/2≤ y≤D/2} on the x–y plane. In this suction zone the pressure is lower and fluid
particles move against the mainstream. Fig. 2(a) shows the shape and size of a typical
suction zone behind a cylinder without the filament. Note that the suction zone oscil-
lates up and down with respect to the horizontal line because of vortex shedding from
the cylinder. The presence of the suction zone is behind the interesting phenomenon of
reversed filament flapping identified by our numerical simulations. Presumably, when
the filament is initially placed outside of the suction zone, the normal flapping happens;
when it is placed within the suction zone, the reversed flapping happens. However, as
seen from Figs. 2(b) and (c), the introduction of a filament behind the cylinder changes
the size of the suction zone: the zone is elongated by the flapping filament behind. Thus,
the critical separation distance Gc of the two flapping modes may be dependent on other
dimensionless parameters of the system that affect the suction zone.

Therefore we further investigate the effect of a couple of important dimensionless

Table 2: Effect of filament length L on the critical gap Gc for H=0.0.

L 1.0 1.5 2.0 2.5
Gc 2.25 2.42 2.65 2.82

Table 3: Effect of vertical distance H on the critical gap Gc for L=2.0.

H 0.0 0.1 0.2 0.3 0.4 0.5
Gc 2.65 2.62 2.60 2.55 2.45 None

Table 4: Effect of Reynolds number Re on the critical gap Gc for L=2.0 and H=0.0.

Re 100 200 300
Gc 2.65 2.45 2.05

Table 5: Effect of Reynolds number Re on the mean value of the suction zone length L̄SZ for an isolated cylinder
in a uniform flow. The suction zone length LSZ is defined as shown in Fig. 2(a).

Re 100 200 300
L̄SZ 1.8 1.2 1.0
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Figure 3: (a), (b) Envelopes of the filament and (c), (d) instantaneous vorticity contours for L=1.0, H=0.0,
and G= (a), (c) 2.0 (RF) and (b), (d) 2.5 (NF).

parameters L, H, and Re on the critical cylinder-filament distance Gc. Table 2 indicates
that Gc increases with the filament length. This may be caused by the elongation of the
suction zone due to the presence of the filament. A longer filament may induce a greater
elongation within certain range and thus increase the critical cylinder-filament separation
distance Gc. Table 3 shows that the critical value Gc decreases as vertical distance H
increases, and when H≥0.5 the filament does not have the RF state. The results may be
explained by the gradual tapering of the suction zone shape downstream of the cylinder,
as seen in Fig. 2. Table 4 shows that the critical value is a decreasing function of the
Reynolds number Re. To explain this, several simulations are done to demonstrate the
influence of Re on the size of the suction zone. The mean length of the suction zone
L̄SZ versus Re is given in Table 5. It is shown that as the Re increases the mean length
decreases. Higher Re usually causes higher frequency of vortex shedding and therefore
higher frequency of the suction zone oscillation which may cause the breakage of the
suction zone and result in shrinkage of the suction zone. Thus higher Re results in shorter
mean suction zone length. This may explain the results in Table 4.

Fig. 3 illustrates the envelope of the flapping filament and the vorticity contours of
the flow for the filament in NF and RF states for L=1. Two major differences between the
two flapping states are identified as follows. One is the sign of shed vortices in the wake,
and the other is the size of filament flapping envelope. This is caused by the restriction
of the suction zone of the cylinder. The suction zone height is less than the cylinder
diameter. But the filament in the normal flapping state has no such constraints in the
vertical direction, its free-end may go as far as it can vertically. Therefore the filament
possesses a wider envelope.

Similarly, Figs. 4 and 5 show the envelopes of the flapping filament and the vorticity
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Figure 4: (a), (b) Envelopes of the filament and (c), (d) instantaneous vorticity contours for L=2.0, H=0.0,
and G= (a), (c) 2.5 (RF) and (b), (d) 3.0 (NF).
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Figure 5: (a), (b) Envelopes of the filament and (c), (d) instantaneous vorticity contours for L=2.5, H=0.0,
and G= (a), (c) 2.5 (RF) and (b), (d) 3.5 (NF).

contours of the flow for the filament in NF and RF states for L = 2.0 and L = 2.5, re-
spectively. Compared to the Fig. 3 for L = 1.0, a striking difference exists in the shape
of the envelope of filament in the reversed flapping state: the envelope becomes fish-
like for L=2.0 and becomes multiple-section-lotus-root like for L=2.5. The spindle-like
sub-structure of the envelope is caused by the constraint imposed by the limited size of
the suction zone on the filament flapping motion. The filament cannot flap beyond the
boundary of the suction zone, thus forced to oscillate more frequently with smaller wave
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numbers in a narrow space along the vertical direction, thus forming more spindle-like
sub-structures. The envelope of the filament at normal flapping state simply gets bigger
as L increases since a longer filament sweeps across a bigger area when it flaps.

4.2 Drag coefficients

Previous experimental results on two tandem bodies in a viscous flow revealed that the
drag of a trailing body was reduced in the case of two rigid bodies [17] and the drag of the
leading body was reduced in the case of two compliant bodies [18]. What would happen
in the present case where the leading object is rigid and the trailing object is compliant?

Now let us look at the drag coefficients of the cylinder, the filament and the whole
cylinder-filament system. First we report the influence of the horizontal cylinder-filament
separation distance on the drag coefficients (i.e., H=0.0). Fig. 6 plots the drag coefficients
of the cylinder and the filament as functions of the separation distance G for L = 1.0
and 2.0. These plots show that the CD of the cylinder is reduced by the presence of
the filament; however, the CD of the filament is length dependent: it is reduced when
L = 1.0 and it is increased when L = 2.0. It is noticed that there always exists a jump
in these functions which corresponds to the critical value of the separation distance Gc.
When G<Gc, the drag coefficients of both the cylinder and the filament are significantly
reduced; when G>Gc, the drag coefficients are bounded above by the drag coefficients
of the cylinder (without the filament) and filament (without the cylinder) except for the
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Figure 6: Drag coefficient CD of the cylinder (a), (c) and the filament (b), (d) versus G for L= 1.0 (a), (b)
and 2.0 (c), (d). In the legends, ”cylinder” and ”filament” represent the results for the corresponding isolated
bodies.
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Figure 7: Drag coefficient CD of the cylinder (a), (d), the filament (b), (e) and the sum of both (c), (f) versus
H for L= 1.0 (a)-(c) and 2.0 (d)-(f).

L= 2.0 case where the drag coefficient of the filament is increased when outside of the
suction zone (i.e., G>Gc). In either case, the drag coefficients approach the corresponding
drag coefficient of the cylinder alone case or the filament alone case, respectively.

Presumably the drag reduction of the cylinder is caused by the trailing flapping fil-
ament. The filament in flapping state (NF or RF) acts as a flow stopper/divider that
increases the pressure behind the cylinder hence reduces the drag of the cylinder. The
longer the filament, the farther the filament free-end may reach out vertically, thus the
greater the flapping amplitude. As a consequence, the flapping filament presents as a
larger effective object downstream and therefore causes more drag reduction for the up-
perstream cylinder. This phenomenon has also been found for the rigid plate splitter in
the wake of cylinder [26]. This is the reason why the cylinder drag coefficient decreases
with the filament length. When the filament is short, it flaps in the vicinity of the cylinder
and the pressure near the fixed-end is less compared to the uniform coming flow, thus
the drag is reduced. When the filament is longer, the pressure near the free-end is greater
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Figure 8: Drag coefficient CD of the cylinder (a) and the filament (b) versus L for H=0.0.

than the isolated-filament case. Besides, the flapping amplitude is greater, i.e., the effec-
tive projected area is bigger. Therefore the drag of the filament is increased compared to
the uniform coming flow case. These combined may explain the results in Figs. 6(b) and
(d).

Further, let us turn to the influence of vertical distance H on the drag coefficient CD.
Fig. 7 shows the CD versus the H for three typical horizontal distance G for L= 1.0 and
2.0. These plots show that the CD of the cylinder is always reduced for all cases, but the
CD of the filament is reduced only for L=1.0 and it is increased for L=2.0 except for very
small H in the G=2.5 case. As a consequence, the total CD of the whole system is reduced
only for L=1.0 and it is increased for L=2.0 except for small H and G. For both values
of L, the function of CD versus H is more complex when G=2.5 and becomes relatively
simpler for greater values of G. Figs. 7(a), (b), (d) and (e) show that smaller values of G
and H have more significant influence on the CD of system; it means that the cylinder-
filament-interaction is much more complicated when they are placed close to each other.
This is probably due to the complex interaction of the flapping filament and the suction
zone boundary.

From the preceding analysis, the CD of the system depends on the filament length L.
To reveal in detail how this parameter may influence the CD, a series of simulations with
varying L with H = 0.0 and G = 5.0 are performed. Fig. 8 plots the CD of the cylinder
and the CD of the filament versus the filament length L. It is seen that the CD of the
cylinder is a monotonously decreasing function of L while the CD of the filament is a
monotonously increasing function of the L. This is to say that the drag coefficient of the
cylinder is always reduced because of the presence of the filament and the greater the
filament length L, the greater the reduction in CD. For the drag coefficient of the filament,
the outcomes depend on the filament length: small L induces drag reduction but large L
induces drag increment.

4.3 Flapping frequency and amplitude of the filament

At the base values of all the parameters given at the beginning of this section, the dimen-
sionless flapping frequency of the filament in a uniform flow is approximately 0.33; the
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Figure 9: Frequency f of vortex shedding of the cylinder or the flapping of the filament versus H for for L=
(a) 1.0 and (b) 2.0.
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Figure 10: Root-mean-square value of the filament tail vertical position Arms versus G for L= (a) 1.0 and (b)
2.0.

vortex shedding frequency of the cylinder without the filament is approximately 0.166.
When the two objects are placed in tandem in the same uniform flow, the frequency of
the filament flapping becomes equal to the vortex shedding frequency of the cylinder
because the filament is passive and compliant, and it simply oscillates with the wake of
the cylinder. Fig. 9 shows the influence of vertical distance H on the frequency of the
system for three typical values of G. It is seen that introduction of the trailing filament
into the system causes the system frequency (i.e., vortex shedding and filament flapping)
to decrease. The decrease is more pronounced for small values of G and H. Little change
in the frequency is seen when the filament is horizontally or vertically placed far away
from the cylinder.

The filament flapping amplitude Arms is defined as the root mean square value of
the vertical excursion of the filament free-end. Fig. 10 plots Arms against the horizontal
separation distance G for H = 0.0. The left panel corresponds to L = 1.0 and the right
panel corresponds to L=2.0. It is seen that when G<Gc, corresponding to RF state, the
flapping amplitude is smaller than the filament-alone case because the filament vertical
excursion is restricted to the suction zone; but when G>Gc, corresponding to NF state,
it flaps outside of the suction zone and the free-end has no restrictions along the vertical
direction except for the fixed-end. Thus the flapping amplitude is significantly increased
compared to the filament-alone case. The increment is caused by the oscillating wake
behind the cylinder which facilitates the filament flapping motion. Therefore the filament
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Figure 11: Root-mean-square value of the filament tail vertical position Arms versus H for L= (a) 1.0 and (b)
2.0.

flaps more violently with larger amplitude. The significant increase in Arms by the wake
is persistent with respect to separation distance and only slightly becomes smaller as G
increases; the amplitude remains significantly greater than the filament-alone case even
when the filament is placed far away from the cylinder (as far as G=15.0). This suggests
filament flapping in the wake of an object is quite different from flapping in a uniform
flow. Fig. 10 also shows that a longer filament has larger flapping amplitude in the wake
of the cylinder.

To examine how the vertical separation distance H would influence the flapping am-
plitude, Fig. 11 shows the Arms against H for three typical values of G for L = 1.0 and
2.0. It is seen that if G > Gc, the amplitude is significantly increased, but quickly and
monotonously approaches the filament-alone case as H increases; if G < Gc, the situa-
tion is more complicated because of filament-suction-zone-boundary interaction. This is
probably caused by the fact that the filament is at RF state for smaller values of H and at
NF state for greater values of H.

5 Concluding remarks

Numerical simulations are performed to understand the interaction of a upperstream
rigid stationary cylinder and a downstream flexible flapping filament. Our simulations
have identified two stable self-sustained flapping states of the filament: a normal flap-
ping (NF) state where the filament flaps with the fixed-end upperstream and free-end
downstream and a reversed flapping (RF) state where the filament flaps with the free-
end upperstream and the fixed-end downstream. The reversed flapping is caused by
the existence of the suction zone behind the cylinder and the critical horizontal cylinder-
filament separation distance Gc depends on the Reynolds number and filament length.
Our numerical results have found that the drag coefficient of the cylinder is always re-
duced by the presence of the downstream filament, but the drag coefficient of the filament
is dependent on the filament length; it is reduced for sufficiently short filament in either
flapping state and it may be decreased or increased dependent on the values of G and H
for sufficiently long filament. For large value of G, the drag coefficient of the cylinder is a
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monotonously decreasing function of the filament length while the drag coefficient of the
filament is a monotonously increasing function of filament length L. Our computational
studies have also shown that compared to the filament-alone case the filament’s flapping
frequency is decreased and its flapping amplitude is increased unless both G and H are
very small.

The previous laboratory experiments showed that the drag of the trailing object is
reduced in the case of two tandem rigid objects in a viscous flow, the drag of the lead-
ing object is reduced in the case of two tandem flexible objects. For the present case, the
leading rigid cylinder experiences drag reduction, and the filament may experience drag
increase or decrease dependent on the filament length. This indicates the inherit com-
plexity of the fluid-structure-interaction. Furthermore, previous computational studies
have shown that a massless filament does not possess a self-sustained flapping state in a
uniform flow (i.e., no mass no flapping). However, in our case the filament is placed in
the wake of a cylinder, and we find that a massless filament still has a self-sustained flap-
ping state. This is because the trailing filament may simply oscillate with the oscillating
wake behind the cylinder.

There are seven dimensionless parameters in our cylinder-filament-flow system: the
Reynolds number Re, the filament mass density M, the filament bending modulus Kb and
stretching coefficient Ks, the filament length L, the cylinder-filament horizontal and verti-
cal separation distances G and H. For most of the simulations presented in this paper, the
parameters Re, M, Kb and Ks are fixed. The Reynolds number has been varied to study
the transition between the two flapping modes. Further, we will study the influence of
these parameters on this system in the future.
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