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A TRANSFER THEORY ANALYSIS OF APPROXIMATE

DECONVOLUTION MODELS OF TURBULENCE

MONIKA NEDA, WILLIAM LAYTON, AND KEITH WYSS

Abstract. This study considers Pao’s transfer theory of turbulence for the family of Approximate
Deconvolution Models (ADMs). By taking a different representation of the persistent input of
energy into the large scales of the turbulent flow, the Pao theory simplifies somewhat. Analysis
of the resulting model is given and it is verified that (after the simplification as was known before
it) it is consistent with the important statistics of homogeneous isotropic turbulence. The ADMs
have an enhanced energy dissipation and a modification to the kinetic energy which affect the
truncation of scales by reducing the models microscale from the Kolmogorov microscale. The
energy dissipation can be even more enhanced by the time relaxation and the effects of this term

are presented as well.
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1. Introduction

Turbulent flows consist of complex, interacting three dimensional eddies of var-
ious sizes. In 1941 Kolmogorov gave a remarkable, universal description of the
eddies in turbulent flow by combining a judicious mix of physical insight, conjec-
ture, mathematical and dimensional analysis. In his description, the largest eddies
are deterministic in nature. Those below a critical size are dominated by viscous
forces, and die very quickly due to these forces. This critical length, the Kolmogorov
microscale, is η = O(Re−3/4) in 3d, so the persistent eddies in a 3d flow requires
taking ∆x = ∆y = ∆z = O(Re−3/4) giving O(Re+9/4) mesh points in space per
time step. Therefore, direct numerical simulation of turbulent flows (down to the
Kolmogorov microscale) is often not computationally economical or even feasible.
On the other hand, the largest structures in the flow (containing most of the flow’s
energy) are responsible for much of the mixing and most of the flow’s momentum
transport. Thus, various turbulence models are used for simulations seeking to
predict a flow’s large structures.

One of the mysteries of turbulence is how energy is transferred between scales
and how nonlinearity achieves a balance between the input of energy at large scales
and its dissipation on exceedingly small scales. In the study of energy transfer
among scales, the energy at time t and in scales parameterized by wave-number k,
is denoted E(k, t). Energy transfer theories explore this through simplified partial
differential equations for E(k, t). Shell models explore the energy transfer among
scales by further discretizing the variable k through simplified systems of ordi-
nary differential equations for the energy in a wave-number shell, typically denoted
En(t) or un(t). Transfer theories and shell models have a common aim of un-
derstanding a critical feature of turbulent flow and have attracted the attention
of many researchers on turbulence so there are a large number of different such
models of increasing complexity. Perhaps surprisingly, of these only the simplest
Energy Transfer Model of Pao [25] gives unequivocally correct (to the extent that
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the phenomena is understood) predictions of the time averaged statistics and en-
ergy spectrum of homogeneous isotropic turbulence. Understanding the mystery of
energy transfer through nonlinearity becomes of critical importance in predictions
of turbulent flows because one fundamental role of turbulence models is to add O(1)
terms which exactly emulate the effects of this not well understood process on scales
much larger than the process itself occurs. For example, in 1960 J. Smagorinsky
wrote:

“In setting up a finite difference grid or a finite wave number space,
a turbulent threshold is in effect defined and the question is: How
do the equations know how to communicate with the molecular dis-
sipation range? One of course finds empirically that, without any
provision for dissipation, the cascade of energy to the higher wave
numbers ultimately increases the energy of the smallest wave re-
solvable by the grid. This energy has no place further to go, and
ultimately the calculation departs from nature sufficiently to give
intolerable truncation error.” ——— J. Smagorinsky, 1960

One promising approach to the simulation of turbulent flows is called Large Eddy
Simulation or LES. Approximate deconvolution models in LES have great promise
because they are systematic, have high accuracy and a firm theoretical foundation
in some critical respects. The goal of this report is to apply the Pao energy transfer
theory to these approximate deconvolution models (ADMs) to gain further insight
into their predictions of important turbulent statistics. We derive the energy trans-
fer model associated with ADMs. Interestingly, through a change of variable, the
wave-number closure that arises in ADMs becomes exactly the same as the one
occurring for the NSE. Thus the Pao closure can be used exactly for the ADM
without modification or extra tuning parameters. We thus study the predictions
of the Pao transfer theory for ADMs and compare them both theoretically and
computationally to those of the NSE. Interestingly, the computational study herein
involves wave-number discretization of E(k, t) on wave-number shells (following an
equi-partition of energy) and thus results in an apparently new Pao shell model for
turbulence.

1.1. The LES Models Considered. In LES the evolution of local, spatial av-
erages over length scales l ≥ δ are sought where δ is user selected. The selection of
this averaging radius δ is determined typically by computational resources (δ must
be related to the finest computationally feasible mesh), turnaround time needed
for the calculation, and estimates of the scales of the persistent eddies needed to
be resolved for an accurate simulation. On the face of it, LES seems feasible since
the large eddies are believed to be deterministic. The small eddies (accepting Kol-
mogorov’s description) have a universal structure so, in principle, their mean effects
on the large eddies should be model-able. The crudest estimate of cost is

(1) ∆x = ∆y = ∆z = O(δ),

with thus O(δ−3) storage required in space per time step. On the other hand,
it is entirely possible that the computational mesh must be smaller than O(δ) to
predict the O(δ) structures correctly. It is also entirely possible that, since LES
models are themselves inexact and uncertain, solutions to an LES model contain
persistent energetic structures smaller than O(δ). Thus, a good LES model will
(i) truncate scales so that microscale = O(δ), consistent with (1), (ii) predict the
correct time averaged statistics over scales l ≥ δ (so that computational resolution
is free to capture non-universal, non-isotropic, non-fully developed features) and
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(iii) be a high accuracy approximation to the NSE over the large scales and capture
transitional and other non-fully developed flow behavior.

To introduce the LES models we consider herein, consider first the Navier-Stokes
equations in a periodic box Ω = (0, L)3 in R3:

(2) ut + u · ∇u− ν△u+∇p = f and ∇ · u = 0 ,

subject to periodic (with zero mean) conditions, for j = 1, 2, 3,

(3) u(x+ Lej , t) = u(x, t) and

∫

Ω

φdx = 0 for φ = u, u0, f, p.

In deriving equations for velocity averages (denoted u), many averaging operators
are used; herein we choose a differential filter, [12]. Given φ(x) ∈ L2(Ω), φ(x) is
the unique L−periodic solution in the Sobolev space H1(Ω) of

Aφ := −δ2△φ+ φ = φ , in Ω.

Averaging the NSE (meaning: applying A−1 to (2)) and noting that u · ∇u =
∇ · (uu) gives the exact space filtered NSE for u

ut +∇ · (uu)− ν△u+∇p = f , and ∇ · u = 0.

This is not closed since u u 6= u u. Approximate deconvolution models are among
the most accurate of turbulence models, [1], [2], [30], [9], [18] (see [28], [14], [5] for
other models). The van Cittert deconvolution operator (constructed in Section 2
and denoted DN ) was studied by van Cittert in 1931 and its use in LES pioneered
by Stolz and Adams [1], [30]. It is an approximate or asymptotic filter inverse
satisfying φ = DN (φ) + O(δ2N+2) for smooth φ. Since DNu approximates u to
accuracy O(δ2N+2) in the smooth flow regions it is justified to consider the closure
approximation:

(4) uu ≃ DNuDNu+O(δ2N+2).

The resulting models, whose solutions approximate the true flow averages, w ≈
u, q ≈ p, were introduced by Adams and Stolz [1], [2], [30], and are given by

wt +∇ · (DNw DNw)− ν△w +∇q + χ (w −DNw) = f ,(5)

∇ · w = 0, N = 0, 1, 2, . . . .

The time relaxation term χ (w−DNw) is included in numerical simulations of (5) to
damp strongly the temporal growth of the fluctuating component of w(x, t) driven
by noise, numerical errors, inexact boundary conditions and so on. It can be used
as a numerical regularization in any model and is studied in [2, 19, 27], as well.

In [20] a descriptive turbulence phenomenology was used to study how well (5)
predicts universal features of turbulence. Herein we apply a quantitative phe-
nomenology based upon Pao’s energy transfer theory to the ADM (5). In doing so,
we also develop a new shell theory of turbulence based on the Pao transfer theory
which predicts turbulent statistics correctly.

1.2. Summary of results. Beginning with the Pao transfer theory closure, we
derive a Pao ADM energy transfer model in Section 3. This energy transfer model
gives an approximation for the energy in DNw, which is an approximation to the
(energy in the) unfiltered velocity u. We prove in Proposition 4.1 that the Pao-ADM
transfer model has a unique solution which has exponential decay for large wave-
numbers. For the Pao-ADM, we show in Section 4.1 that the energy dissipation rate
(denoted εADM and εNSE respectively) of the underlying flow is correctly estimated
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as required for statistical equilibrium: εADM = O(εNSE). The ADM microscale,
where the dissipation range begins, is estimated in Section 4.1 to be

ηADM = ηNSE
.
= Re−3/4L, when δ ≤ O(ηNSE) and χ = 0,

ηADM
.
= Re−3/10δ3/5L, when δ>>O(ηNSE) and χ = 0,

ηADM
.
= δ, with χ = O(δ−2/3).

We also show that E(k, t) converges as t → ∞ to a time averaged spectrum (in
Corollary 4.2) which exhibits an inertial range behavior and a dissipation range
behavior (see equation (4.2)):

E(k) =
1

2
U2k−

5

3 eβ(1+
2

5
δ2) exp(−β(1 + 0.4δ2k2)k

4

3 ),(6)

where β :=
3

2

να

ε
1/3
0

, and ε0 = 2−3/2α−1U3.(7)

This gives (Section 4.1) that up to the wave number associated with the microscale
k = 1/ηADM we have

E(k)
.
= αε2/3k−5/3, over 1 < k < 1/ηADM .

This is very accurate for smaller wave numbers (in the resolved frequencies 0 <
k < 1/δ); for larger wave numbers, 1/δ < k < 1/ηADM , exponential decay is not
dominant but begins to bend the spectrum down, as expected.

The influence of time relaxation term is analyzed in Section 4.2. It is shown that
a careful choice of the relaxation parameter can accelerate the dissipation range to
begin at the transition point between resolved and unresolved scales: ηmodel = δ.

In Section 5 we give numerical results from an upwind type discretization of the
∂/∂k(·) term and the Runge Kutta 4th order routine, implemented in Matlab, for
the time variable. Discretization of the ∂/∂k(·) term thus results in a Pao-ADM
shell model. Consistent with work on shell models we pick break points in wave
number space by equi-distribution of model kinetic energy and give an estimate
of the computational complexity of solving the resulting shell model using Runge
Kutta 4th order algorithm. The resulting experiments in Section 5 fully corroborate
the predictions in Section 4.

2. Reduction of the ADM (5) to simpler form

For each N = 0, 1, ... the van Cittert deconvolution algorithm it computes an

approximate filter inverse uN = DNu :=
∑N

n=0(I − A−1)nu . DNu is typically

computed, [3], byN steps of the fixed point iteration: unew = uold+ {u−A−1uold}.

Algorithm 2.1 (van Cittert approximate deconvolution algorithm). Set u0 = u,
For n = 1, 2, · · ·, N − 1, perform: un+1 = un + {u− A−1un}.
Then DNu := uN .

The zeroth order approximate deconvolution model (5), [16], and [21], arises
when N = 0 and χ = 0:

(8) wt +∇ · (w w)− ν△w +∇q = f, and ∇ · w = 0.

Applying A = −δ2△ + I to (8) reduces it to an equivalent form with the same
nonlinearity as the NSE (which is ∇ · (w w)) with an extra hyperviscosity term
(νδ2 △2w) and an extra kinetic energy term (−δ2 △wt):

(
w − δ2 △w

)
t
+∇ · (w w)− ν△

(
w − δ2 △w

)
+∇q̃ = f, and ∇ · w = 0.
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Consider now the full ADM: ∇ · w = 0 and

wt +∇ · (DNw DNw)− ν△w +∇q + χ (w −DNw) = f .

Define a new filtering operator H := DNA−1 denoted by a tilde:

φ̃ = Hφ := DNφ.

Let v := DNw. Since w ≃ u, so v = DN(w) ≃ u. Applying DN reduces the full
ADM to the zeroth order model for the new velocity v with a different filter and
time relaxation: ∇ · v = 0 and

vt +∇ · (ṽ v)− ν△v +∇q + χ (v −Hv) = Hf .

Adapting the simplification of the zeroth order model’s nonlinear term for the full
ADM, apply H−1 to this equation, giving ∇ · v = 0, and

(9) H−1vt +∇ · (v v)− ν△H−1v +∇q + χ (H−1v − v) = f .

This derived equation is related to the original ADM by an invertible change of
variables. It has the same nonlinearity as the NSE and thus the Pao energy trans-
fer theory can be applied directly to its nonlinear term without any alteration or
adaptation.

3. Pao’s Transfer Theory applied to the ADM

Consider the transformed form of the full ADM (9) in a three dimensional 2π
periodic box. Under periodicity, the fluid velocity and its associated kinetic energy
can be expanded in Fourier series (in the sums k 6= (0, 0, 0)1)

v(x, t) =
∑

k

v̂(k, t)eik·x, and E(t) =
∑

k

1

2
|v̂(k, t)|2.

Transfer theory is based on a partition of the kinetic energy into wave number shells
given by Fourier series follows. Define |k|2 = k21 + k22 + k23 and

E(k, t) :=
∑

k=|k|

1

2
|v̂(k, t)|2, so that E(t) =

∑

1≤k

E(k, t).

In this definition of E(k, t), the index k in the sum takes non integer values (e.g.,

k =(1, 1, 1), k =
√
3). This will be no difficulty since transfer theories are further

approximations in which k will (in the end) be a continuous variable. Further,
E(k, t) represents the energy in v := DNw. Since w ≃ u, so v = DN (w) ≃ u. Thus,
E(k, t) is an approximation to the energy in u and not in u.

Exact but non closed equations for E(k, t) are derived in the usual way by taking
the inner product of the equations (9) with one Fourier mode and then summing
over |k| =k, see Davidson [7], Frisch [10], or Pope [26] for details. Suppressing the

dependence on N , let2 h(k) := Ĥ−1(k). This gives (using the Kronecker delta)

h(k)
∂

∂t
E(k, t) +

∑

|j|=k

∑

k1

∑

k2

{
v̂(k1, t) · v̂(k2, t)⊗ k2 · v̂(j, t)δk1+k2,j

}
+

+2νk2h(k)E(k, t) + χ (h(k)− 1)E(k, t) =
∑

|j|=k

f̂(j, t) · v̂(j, t).

1Further, since ∇ · u = 0 and u is real, k·û(k,t) =0 and û(k,t) =û(−k,t) .

2For example, when N = 0, h(k) = ̂(D0A−1)(k) =
̂

(
I (−δ2 △+ I)−1

)
(k) =

(
δ2 k2 + 1

)
−1
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Define T (k, t) and the energy transfer function S(k, t):

T (k, t) : =
∑

|j|=k

∑

k1

∑

k2

{
v̂(k1, t) · v̂(k2, t)⊗ k2 · v̂(j, t)δk1+k2,j

}

S(k, t) : =
∑

1≤k′≤k

T (k′, t).

The case of fully developed, homogeneous, isotropic turbulence corresponds to (i)
smooth, persistent body forces, (ii) time averaged behavior of E(k, t), and (iii) high
Reynolds number with a richness of persistent scales of motion. Exploiting (iii), k
is treated as a continuous variable; following (ii), we study time averages of E(k, t)
given by

(10) E(k) := lim
T→∞

1

T

∫ T

0

E(k, t)dt ,

and, motivated by (i), energy is input into the k = 1 modes: E(1, t) = 1
2U

2, for all t >
0, where U is fixed.

To extend k to a continuous variable, sums are replaced by integrals in the usual
way. Thus the energy transfer function S(k, t) and the energy E(k, t) satisfy, for
fixed U > 0,

S(k, t) = −
∫ k

0

T (k′, t)dk′ or S(k, t) =

∫ ∞

k

T (k′, t)dk′(11)

T (k, t) =
∂

∂k
S(k, t), and E(1, t) =

1

2
U2, for all t > 0.(12)

Remark 3.1. Because of the change of variables in Section 2, the terms E(k, t),
T (k, t) and S(k, t) are defined exactly as for the Navier-Stokes equations. This
means the correct extension of Pao’s transport theory to the ADM (after the change
of variables) is exactly the same closure in wave-number space as Pao used for the
NSE.

With these approximations we have the following (non-closed) energy equation:

h(k)
∂

∂t
E(k, t) +

∂

∂k
S(k, t) +

(
h(k)2νk2 + χ (h(k)− 1)

)
E(k, t) = 0,

subject to E(1, t) = 1/2U2 , for t > 0, and E(k, 0) = E0(k) where E0(k) ≡ 0 for
large k. A transfer theory is simply a closure which relates S(k, t) back to E(k, t)
either through an algebraic relation (simplest) or an extra set of integro-differential
equations, [7]. The goal of transfer theory is to develop a closed system of differential
equations for E(k, t) which is of much reduced complexity than the NSE in wave
number space and predicts statistics of fully developed turbulence correctly. Energy
transfer theories arose from the early work of Obukhov, Heisenberg, Onsager and
others, see, e.g., [24], [7], [29]. The simplest and (so far) most successful is Pao
[25], which generalizes Onsager’s spectral jump condition, [23], in a simple and
effective manner, postulating the algebraic relation S(k, t) = σE(k, t), σ(ε, k) =

proportionality constant. Equating units gives σ = α−1ε
1/3
0 k5/3 and the unique

closure

(13) S(k, t) = α−1ε
1/3
0 k5/3E(k, t), where ε0 = 2−3/2α−1U3.

Here α is the Kolmogorov constant (with value between 1.4 and 1.6) and ε0 is the
Pao model’s energy dissipation rate. In justification, Y.-H. Pao writes (page 1067
in [25]):
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“We visualize the transfer of turbulent energy as a cascading
process in which the spectral elements are continuously transferred
to even larger wave numbers.... Let the rate at which an energy
spectral element is transferred across k be σ ... then the energy
flux across k is S(k) = E(k)σ(k). We assert that the spectral
element σ(k) is dependent on ε ... and on the wave number k ....
Dimensional reasoning gives σ(k) = α−1ε1/3k5/3.”

We study the long time averaged behavior of solutions to the following hyper-
bolic, initial boundary value problem with time relaxation damping:

h(k)
∂

∂t
E(k, t) +

∂

∂k
(α−1ε

1/3
0 k5/3E(k, t)) +

(
h(k)2νk2 + χ (h(k)− 1)

)
E(k, t) = 0,

for 1 < k < ∞, t > 0,(14)

E(1, t) =
1

2
U2, for t > 0, and ε0 = 2−3/2α−1U3,

E(k, 0) = E0(k) for 1 < k < ∞ where E0(k) ≡ 0 for large k.

The characteristics of (14) are non-intersecting and positive sloped curves given by

h(k)dt− 5

3
α−1ε

1/3
0 k5/3dk = 0.

The problem (14) reduces to a linear ordinary differential equation along each char-
acteristic. From this existence and uniqueness follows immediately from standard
theory of hyperbolic equations, [33].

Proposition 3.2. Let E0(k) ≡ 0 for large k. A unique solution exists to problem
(14). For each fixed t > 0 the solution E(k, t) has compact support in k.

The energy input defines a clear representative large scale velocity U . The
natural large length scale is L = 2π. Thus, the natural Reynolds number associated
with the Pao energy transfer model is

Re =
|nonlinearity|
|viscous term| =

U 1
2πU

ν
(
1 +

(
δ
2π

)2) 1
(2π)2U

.
= 2π

U

ν
since δ is small.

The long time averaged energy distribution is defined to be

E(k) = lim
T→∞

1

T

∫ T

0

E(k, t)dt.

This limit exists (Corollary 4.2 below). Its value is determined by the properties of
the equilibrium problem associated with (14), given by E∞(1) = 1

2U
2 and

(15)
∂

∂k
(α−1ε

1/3
0 k5/3E∞(k)) +

(
h(k)2νk2 + χ (h(k)− 1)

)
E∞(k) = 0.

The equilibrium Pao-ADM is easily seen to have a unique solution. It has expo-
nential decay for large k and, (when N = 0, χ = 0) is given by

E∞(k) =
1

2
U2k−

5

3 eβ(1+0.4δ2) exp(−β(1 + 0.4δ2k2)k
4

3 ), where β :=
3

2

να

ε
1/3
0

.
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4. Analysis of Pao’s Transfer Theory for ADMs

The goal of energy transfer theory is to develop a single and consistent phe-
nomenology that explains the K41 theory as well as giving insight into the transi-
tion between k−5/3 in the inertial range and exponential decay in the dissipation
range, including:

• statistical equilibrium: energy input at large scales balanced by energy
dissipation at small scales.

• k−5/3 energy spectrum through the inertial range transitioning to exponen-
tial decay in the dissipation range.

• an estimate of the microscale between inertial and dissipation ranges.

First we analyze the predictions of these features for the ADM transfer model
without time relaxation (i.e. χ = 0 case) and, following this, the effect of time
relaxation.

Proposition 4.1. Let χ ≥ 0 and let E(k, t), E∞(k) denote respectively the solu-
tions to (14) and (15). Then E(k, t) → E∞(k) exponentially fast in L2(1,∞) as
t → ∞, (even in the case ν = χ = 0).

Proof. We give the proof in the notationally simplest N = 0 case. The proof for
N > 0 is the same only notationally more complex. Let e(x, t) = E(k, t)− E∞(k).
Since E(k, t) has compact support, e(k, t) decreases exponentially in k (and thus
all integrals below are convergent). Subtraction gives the following equation for
e(k, t) : e(1, t) = 0, for t > 0, and e(k, 0) given and

(1+δ2k2)
∂

∂t
e(k, t)+

∂

∂k
(α−1ε

1/3
0 k5/3e(k, t))+

(
2ν(1 + δ2k2)k2 + χδ2k2

)
e(k, t) = 0.

Multiply by e(k, t) and integrate. This yields

d

dt

∫ ∞

1

1

2
(1 + δ2k2)e(k, t)2dk+

+

∫ ∞

1

[
5

6
α−1ε

1/3
0 k5/3 + 2ν(1 + δ2k2)k2 + χδ2k2

]
e(k, t)2dk = 0.

The term in brackets is bounded below by 5/6α−1ε
1/3
0 , a positive constant, even if

ν = χ = 0. Thus, we have exponential convergence to steady state.

Thus, E(k, t) approaches the unique solution of the equilibrium problem as t →
∞, E∞(k) = E(k) given by

(16) E(k) =
1

2
U2k−

5

3 eβ(1+0.4δ2) exp(−β(1 + 0.4δ2k2)k
4

3 ), where β :=
3

2

να

ε
1/3
0

.

The fact that exponential convergence to a k−5/3 energy spectrum occurs even
for the ν = χ = 0 ADM energy transfer model is perhaps relevant to the Onsager
conjecture that ”... in three dimensions a mechanism for complete dissipation of all
kinetic energy, even without the aid of viscosity, is available,”( L. Onsager, 1949).
From the last proposition and following arguments in [22], it follows that time
averages on E(k, t) exist and correspond to the equilibrium solution.

Corollary 4.2. Let E(k, t), E∞(k) denote respectively the solutions to (14) and
(15). The following limit exists and equals:

E(k) := lim
T→∞

1

T

∫ T

0

E(k, t)dt = E∞(k).
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Thus, we may check predictions of the Pao transfer theory through (16). The
formula for the equilibrium solution reveals that there are two wave number regimes:
resolved scales and unresolved scales.

Inertial Range: If β(1 + 0.4δ2k2)k
4

3 << 1, then E(k)
.
= 1

2U
2k−

5

3 . Over the

subrange of resolved scales (1 ≤ k ≤ 1/δ) where (1 + 0.4δ2k2) ≃ 1, E(k) replicates
the NSE’s Pao spectrum

(17) E(k)
.
=

1

2
U2k−

5

3 eβ exp(−βk
4

3 ) for k < 1/δ.

Dissipation Range:If β(1 + 0.4δ2k2)k
4

3 ≥ 1, the solution exhibits accelerated
energy decay

(18) E(k)
.
=

1

2
U2k−

5

3 eC(δ)β exp(−βδ2k
10

3 ).

4.1. Consistency with the K41 Theory. We now turn to consistency of the
predictions with Kolmogorov’s theory of homogeneous, isotropic turbulence check-
ing predictions of statistical equilibrium, the inertial energy range spectrum, ex-
ponential decay in the dissipation range and the predicted microscale. With ε0 =
2−3/2α−1U3, consider the Pao ADM’s energy spectrum given by (16).

Statistical equilibrium. Statistical equilibrium in the K41 theory means that
the energy input to the large scales (which is O(U3/L)) is balanced (after time
averaging) by energy dissipation primarily at the small scales. When χ = 0 the
time averaged energy dissipation rate of (14) is given by

εADM := lim
T→∞

1

T

∫ T

0

∫ ∞

1

2ν(1 + δ2k2)k2E(k, t)dkdt

We calculate directly that as δ → 0, εADM → ε0 which is exactly the time averaged
energy dissipation rate predicted for the NSE by the Pao model. Indeed,

εADM := lim
T→∞

1

T

∫ T

0

∫ ∞

1

2ν(1 + δ2k2)k2E(k, t)dkdt

=

∫ ∞

1

2ν(1 + δ2k2)k2E∞(k)dk

= νU2eβ(1+0.4δ2)

∫ ∞

1

(1 + δ2k2)k
1

3 exp(−β(1 + 0.4δ2k2)k
4

3 )dk

→ νU2eβ
∫ ∞

1

k
1

3 exp(−βk
4

3 )dk = ε0

Surprisingly, the relation εADM = Const.ε0 holds exactly, not just asymptotically.
Indeed, integrating (14) and time averaging gives

lim
T→∞

1

T

∫ T

0

∫ ∞

1

(1 + δ2k2)Et(k, t)+

+(α−1ε
1/3
0 k5/3E(k, t))k + 2ν(1 + δ2k2)k2E(k, t)dkdt = 0.

Using Fubini’s theorem, the first term vanishes and the time average of the third
term is exactly εADM . We then have from the second term, that E∞(k) → 0 as

k → ∞, the boundary condition at k = 1 and the third term α−1ε
1/3
0

1
2U

2 = εADM .

The Pao model for the NSE predicts that ε0 = CU3 (since L = 2π). Thus, in the

last equation U2 =
(
U3
)2/3

= Cε
2/3
0 and, as required for statistical equilibrium,

εADM = Cε0.
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The inertial range energy spectrum. Since E(k, t) is bounded, and Re =
2πU/ν is large, there is a range of k ( 1 < k < 1/ηADM , say) for which the term
2ν(1 + δ2k2)k2E(k, t) is negligible. On this range, (14) simplifies to

(1 + δ2k2)Et(k, t) + (α−1ε
1/3
0 k5/3E(k, t))k

.
= 0.

Integrating over 1 < k′ < k (< 1/ηADM ), time averaging and using Fubini’s theo-
rem, the term (1 + δ2k2)Et(k, t) drops out and we have

∫ k

1

(α−1ε
1/3
0 k′5/3E(k′))k′dk′

.
= 0, or α−1ε

1/3
0 k5/3E(k)

.
= α−1ε

1/3
0

1

2
U2.

From the choice of ε0,
1
2U

2 = αε
2/3
0 . Thus, rearranging

E(k)
.
= αε2/3k−5/3, over 1 < k < 1/ηADM .

The dissipation range. The K41 theory predicts exponential decay in E(k)
for large k and gives an estimate of the microscale at which this decay begins to
be the dominant effect. Exponential decay of E(k) follows immediately for k large

enough that exponent β(1 + 2
5δ

2k2)k
4

3 is O(1) or larger from (16). The transition

point / microscale is calculable since β := 3να/(2ε1/3), and ε = 2−3/2α−1U3.

Indeed, the exponent β(1 + 2
5δ

2k2)k
4

3 is O(1) or larger when

νU−1(1 +
2

5
δ2k2)k4/3 = O(1).

This equation determines the Pao-ADM transition model’s microscale. There are
two cases depending on which term, 1 or 2

5δ
2k2, is dominant.

Case 1: If the averaging radius δ is O(ηNSE) or smaller, where ηNSE
.
=

Re−3/4L is the Kolmogorov microscale of the NSE. This is the case of a fully
resolved flow and is of less interest than case 2. Case 1 corresponds to δ2k2 ≪ O(1),
so that (1 + 2/5δ2k2) ≃ 1. The condition νU−1(1 + 2

5δ
2k2)k4/3 = O(1) becomes

νU−1k4/3 = O(1). This implies (after rearrangement) k
.
= (U/ν)

3/4 .
= Re3/4/L ,

as L = 2π yielding the predicted models’s microscale of

ηADM = ηNSE
.
= Re−3/4L, when δ ≤ O(ηNSE).

Case 2: If δ>>O(ηNSE). This is the typical case of under-resolved flow. Case
2 corresponds to δ2k2 >> O(1), so that (1 + 2/5δ2k2) ≃ 2/5δ2k2. The condition
νU−1(1 + 2

5δ
2k2)k4/3 = O(1) becomes νU−1δ2k10/3 = O(1). This implies (after

rearrangement) k
.
=
(
νU−1δ2

)−3/10
yielding the models’ microscale of

ηADM
.
= Re−3/10δ3/5L, when δ>>O(ηNSE)

which agrees with the result derived using direct application of turbulence phe-
nomenology to the ADM in [20].

4.2. Influence of time relaxation. Since time relaxation, the case χ > 0, dissi-
pates energy in all cases, its main issue is the choice of the (user supplied) parameter
χ. We pick χ to enforce ηADM = δ. For deconvolution order N = 0 and χ > 0 the
equilibrium energy distribution satisfies

(19)
∂

∂k
(α−1ε

1/3
0 k5/3E(k)) + 2νk2

(
1 +

χδ2

2ν
+ δ2k2

)
E(k) = 0 , E(1) =

1

2
U2
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With β := 3να/(2ε1/3), and ε = 2−3/2α−1U3, we find

E(k) = αε2/3k−
5

3 eβ(1+
2

5
+δ2 χδ2

2ν
) exp(−β(1 +

2

5
δ2k2 +

χδ2

2ν
)k

4

3 ).

Thus, increasing χ increases the multiplier in the exponent from (1 + 2
5δ

2k2) to

(1 + 2
5δ

2k2 + χδ2

2ν ). This increases energy decay in the dissipation range and the
model microscale where exponential decay begins to be significant.

Set the microscale ηADM = δ and solve for the induced χ value. Exponential

decay becomes significant where β(1 + 2
5δ

2k2 + χδ2

2ν )k
4

3 = O(1). If ηADM = δ then

δ2k2 = 1 and this reduces to β(7/5+ χδ2/(2ν))δ−
4

3

.
= 1. Solving for χ recovers the

formula of [19]:

χ =

(
4

3
ε1/3α−1

)
δ−2/3 −

(
7π

5
U

)
Re−1δ−2.(20)

Calculating the crossover point in the two terms on the RHS we find that χ > 0

provided δ
L > Re−3/4 = ηNSE , which is exactly as desired: the extra dissipation

induced by time relaxation under the formula (20) decreases to zero as the LES
approaches a DNS.

5. Numerical Tests of the Pao-ADM Shell Model

Shell models are low dimensional dynamical systems descriptions of the time
evolution of the energy in wave number shells in turbulent flows, e.g., [8], [6].
When the wave number in (14) is discretized a shell model results. The energy
in the mth wave number shell is denoted herein by Em(t) (and often elsewhere by
um(t)). Given wave number levels km and associated energy shell levels Em(t),m =
1, 2, ...,M,upwind difference the ∂/∂k term in (14). This gives the following Pao-
ADM shell model: E1(t) =

1
2U

2 and for m = 2, · · ·,M,

(1 + δ2k2m)
∂

∂t
Em(t) + α−1ε

1/3
0

(
k
5/3
m Em(t)− k

5/3
m−1Em−1(t)

km − km−1

)
+(21)

+2ν(1 + δ2k2m)k2mEm(t) = 0.

5.1. Choice of shell levels by equi-distribution of energy. The energy spec-
trum of the transformed ADM solution v (which approximates u not u) is ap-

proximately αε
2/3
0 k−5/3 over 1 ≤ k ≤ 1/ηADM . Thus the energy spectrum of the

untransformed ADM solution w is approximately αε
2/3
0 k−5/3. We have selected

energy levels by equi-distribution of the untransformed energy distribution. The
total kinetic energy (up to exponentially small terms) is

TotalEnergy :=

∫ 1/ηADM

1

E(k)dk
.
=

∫ 1/ηADM

1

αε
2/3
0 k−5/3dk =

3

2
αε

2/3
0 (1−η

2/3
model).

The M shell levels km,m = 1, · · ·,M, are chosen to equi-distribute the TotalEnergy
by

k1 = 1,(22)

k
−2/3
m+1 = k−2/3

m − 2 · TotalEnergy

3M
, for 1 ≤ km ≤ 1/ηADM ,

kM = 1/ηmodel.
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5.2. Complexity of the Runge Kutta 4th order Algorithm. The shell model
(21) was solved using Runge Kutta 4th order routine implemented in Matlab,
(whose complexity is estimated next), until statistical equilibrium (in all cases by
Tfinal = 30). With timestep △t, the resulting complexity is roughly

Complexity = M × (#FLOPs/eqn)× (Tfinal/△t)

The implemented Runge Kutta routine requires about 20 floating point opera-
tions to evaluate the nonlinearity in (21) per stage per equation. Computing the
Em(tn+1) after 4 stages requires eight additional operations, yielding

(23) Complexity
.
= 88M

Tfinal

∆t

Since the shell model is a discretized hyperbolic equation, we halved the time step
△t until the usual CFL condition (below) is satisfied

max
m=1,···,M

α−1ε
1/3
0 k

5/3
m

(1 + δ2k2m)

∆t

km − km−1
< 1.

By the stopping process of halving △t upon satisfaction of the CFL condition, we
also enforced a lower bound and thus the following two sided bounds

αε
−1/3
0

2
min

m=1,···,M
k−5/3
m (1 + δ2k2m)(km − km−1) < ∆t, and(24)

∆t < αε
−1/3
0 min

m=1,···,M
k−5/3
m (1 + δ2k2m)(km − km−1).

Lemma 5.1. With km and ∆t chosen as above, we have

k−5/3
m (km+1 − km) >

TotalEnergy

U2M
, for m = 1, 2, · · ·,M,(25)

∆t >

√
2

4
α4/3TotalEnergy(1 + δ2)

U3M
.(26)

Proof. The mean value theorem on [km, km+1] with g(k) = k−2/3 gives, for
ξ ∈ (km, km+1),

(−2

3
ξ−5/3) · (km+1 − km) = −2

3

TotalEnergy

U2M
,

Since ξ 7→ ξ−5/3 is decreasing, this yields the claimed result:

km+1 − km =
TotalEnergy · ξ5/3

U2M
≥ TotalEnergy · k5/3m

U2M
.

Consider now the lower bound upon △t in (24). From the first bound in the lemma,

k−5/3
m (1 + δ2k2m) (km+1 − km) >

TotalEnergy
(
1 + δ2k2m

)

U2M
.

Thus, since 1 + δ2k2m ≥ 1 + δ2 and k
−5/3
m (km+1 − km) > TotalEnergy/U2M , we

have

∆t >
αε

−1/3
0 TotalEnergy(1 + δ2)

2U2M
.

Using ε0 = 2−3/2α−1U3, we conclude

∆t >

√
2

4
α4/3 TotalEnergy(1 + δ2)

U3M
.
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Using this lower bound on ∆t in (23) and the other estimates for the various
terms and simplifying yields the following.

Proposition 5.2 (Complexity of Solving the Pao Shell Model). Under the time step
condition (24) solving (21) with Runge Kutta 4th order routine, requires complexity
(measured in floating point operations) of the order

Complexity ≤ 352
√
2

3
α−2/3UM2Tfinal.

5.3. Results. The Pao-ADM shell model displayed the behavior of the time av-
eraged solutions to (21) for the number M of shell levels moderate. The computed
energy distribution agreed with predictions over the full range 1 ≤ k ≤ 1/ηmodel.
Indeed, Figure 1 shows a clear k−5/3 energy spectrum over 1 ≤ k ≤ 1/δ (and a
bit beyond even). Over 1/δ << k ≤ 1/ηmodel there is a smooth and gradual tran-
sition to exponential decay. We see no evidence of a secondary k−11/3 decay over
1/δ ≤ k ≤ 1/ηmodel in E(k). (Compare the dotted curve against the line segments
depicting both slopes.) Since the energy in w is related to that computed, E(k),
by

Energy(w) ≃ E(k)/(1 + δ2k2)

a k−5/3 spectrum in E(k) is clear evidence of a secondary k−11/3 decay over 1/δ ≤
k ≤ 1/ηmodel in the energy in w, as predicted in [20]. Since the question can
arise if the observed energy spectrum was somehow built in by the selected equi-
distribution principle, we also repeated this calculation but selecting kn instead
by equi-distribution of E(k)/(1 + δ2k2). The spectrums computed for E(k) (not
plotted herein) with different shell levels did not change.

Figure 1 gives a logarithmic plot of the time average of En(t) in a model simu-
lation with M = 200 wave numbers with δ = 0.7 chosen to have 100 shells in each
range, 1 ≤ k ≤ 1/δ and 1/δ ≤ k ≤ 1/ηmodel.

Correct predictions depended upon having a large enough number of shell levels.
A test with almost identical initial conditions, δ = 0.6 and of only M = 50 shells
fails to produce the dissipation range, Figure 2.

6. Conclusions

The Pao energy transfer model is the simplest and the most successful transfer
theory in that it predicts the major statistics of isotropic turbulence successfully.
The Pao energy transfer analysis of ADMs recovers the correct k−5/3 energy spec-
trum and the increase of the ADM microscale. Transfer theory also gives a formula
for relaxation parameter selection induced by perfect resolution agreeing with one
derived through similarity. Thus, transfer theory indicates strongly that ADMs
capture essential, universal features of turbulence accurately and without special
adjustments.

Energy transfer models other than the Pao model generally fail to predict tur-
bulence statistics correctly. On the other hand, the Pao model can be criticized for
being too successful: as t increases E(k, t) converges smoothly and rapidly to the
correct statistical energy distribution. For example, the Pao theory predicts that
the ADM energy spectrum E(k, t) approaches its time averaged value exponentially
fast. Thus the Pao model does not capture time dependent behavior, such as energy
bottlenecks and intermittence, of turbulence. One major open question in the Pao
theory is thus how to extend Pao based energy transfer models and derived shell
models so as to capture effects reminiscent of intermittence.
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Figure 1. Energy spectrum with M = 200.
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