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SOME TOPICS FROM CONTINUUM MECHANICS RELATED

TO BRAIN NEURO-MECHANICS

ALAN WINEMAN

Abstract. A number of topics from continuum mechanics are presented that are useful in de-
veloping mathematical models of brain neuromechanics. Part I reviews basic concepts used to
describe deformation or distortion of brain tissue, strains, stresses, their connection and mate-
rial stiffness. Part II presents concepts from viscoelasticity used to describe the time dependent
response of brain tissue such as stress relaxation, creep, response to sinusoidal loading, energy dis-
sipation, characteristic response times and their alteration due to non-mechanical influences. Part
III describes recent modeling approaches that can be used to describe microstructural changes in
materials due to large deformation, disease or other non-mechanical sources.
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1. Introduction

Continuum mechanics encompasses many topics that can contribute to the in-
vestigation of brain injuries resulting from concussions in sports and improvised ex-
plosive devices in military theaters, as well as brain diseases such as hydrocephalus.
This article presents an overview of three such topics that should be useful in re-
search in brain neuro-mechanics. The subject matter was selected based on two
criteria. First, it was apparent from the current literature that research in brain
neuro-mechanics could benefit from deeper insights into the implications of many
fundamental concepts of continuum mechanics. The article aims to improve that
insight. Second, there are a number of recent research directions within continuum
mechanics that are potentially useful in the study of brain neuromechanics. The
article provides an overview of two of these.

Section 2 contains a review of the notions of stress, strain and constitutive equa-
tions. It points out several issues that are generally not considered in the formu-
lation of mechanical models, but could influence the mechanical response. Section
3 presents the essentials of viscoelasticity, namely stress relaxation, creep, linearity
and the response to sinusoidal oscillations. Two important consequences of time
dependent response are pointed out. Section 4 introduces a mechanical model that
can account for chemical changes in materials such as brain tissue that are composed
of networks of macromolecules. Among these may be chemical changes associated
with disease, age or medication as well as large deformation due to swelling. Con-
cluding comments are made in Section 5.

2. Basic Notions from Continuum Mechanics

Thorough presentations of the material of this section can be found in the classic
reference by Fung [1] and the recent book by Cowin and Doty [2].

2.1. Reference Configuration, Material Elements, Strains. In developing
a mathematical model for its mechanical response, the brain is idealized as a solid
body composed of a continuous distribution of material particles. At a given instant,
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(a) (b)

Figure 1. (a) Body, orthogonal grid and differential block in ref-
erence configuration; (b) deformed body, grid and differential block
in a later configuration.

a material particle is associated with a spatial point. The distribution of material
particles is visualized by the set of such points, i.e. the spatial configuration they
occupy. The configurations of the brain can vary with time. For this reason, one
is chosen as a reference and is used as a base state for defining material properties
and determining changes.

Figure 1a shows a reference configuration with a grid of orthogonal straight lines.
The points of the grid coincide with material particles. As time varies, the material
particles can occupy different spatial points and the grid undergoes a distortion.
Straight lines change length and become curved and the right angles increase or
decrease. A deformed grid in shown in Figure 1b. In continuum mechanics, the
material particles are regarded as differential cubes whose edges are line segments of
the grid. As a result of the local distortion of the grid, each differential cube becomes
a differential parallelepiped whose edges have new lengths and whose surfaces are
no longer orthogonal. This introduces the two basic modes of deformation:

Normal Strains due to Changes in Length

Figure 2a shows a differential cube of material in the reference configuration
whose three edges have the same length dAx = dAy = dAz = dA. Figure
2b shows the differential cube in a later configuration when its edges have
changed length and it has become a differential rectangular parallelepiped
with edges dax, day and daz. The normal strain is defined as the change in
length per unit length and is usually denoted by the symbol ǫ. The block
has three normal strains, one associated with each edge,

ǫx =
dax − dAx

dAx
, ǫy =

day − dAy

dAy
, ǫz =

daz − dAz

dAz
(1)

Shear Strains due to Changes in Angle

Figure 2c shows the differential cube in a later configuration when the top
surface has displaced distance da with respect to the bottom surface thereby
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(a) (b)

(c)

Figure 2. (a) Differential block in reference state with dimen-
sions; (b) Differential block after extension along its edges: (c)
Differential block after a shear deformation.

causing an angle change between two edges. The change in angle, the shear
strain, is denoted by the symbol γ and is defined by

tanγxy =
da

dAy
.(2)

When the strain is very small in magnitude, it is common to use the ap-
proximation tanγxy ≈ γxy.

Comments: A differential cube generally undergoes simultaneous normal and
shear strains in all three directions. At a fixed time, the strains vary throughout
the body. At a fixed cube the strains vary with time. The strains describe the
distortion of the microstructure of the material in the cube.

2.2. Cohesive Forces, Normal and Shear Stress. When a body deforms from
the reference to a later configuration, parts of the body move relative to other
parts. In order to maintain its continuity and not be torn apart, the body produces
internal cohesive forces and moments. In continuum mechanics, these are visualized
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(a) (b)

Figure 3. (a) Body in deformed configuration showing applied
forces and its intersection with a plane through point O: (b) A
portion of the body showing its external surface and an internal
planar surface with resultant internal moment and force.

as acting across internal surfaces. Figure 3a shows a body that is subjected to a
system of external forces with an internal surface passing through some internal
point O. Figure 3b shows the portion of the body to one side of the internal surface.
The action of the portion of the body on the other side of the internal surface is
represented by the resultant force vector F and moment vector M. These represent
the internal cohesive force and moment that is transmitted from the material on
one side of the surface to the material on the other. The internal cohesive force
and moment are distributed over the internal surface. That is, part of the total
force and moment act on each area increment of the internal surface. The ratio
∆F/∆A represents the average cohesive force per unit area on the area increment
of amount ∆A. This can also be thought of as cohesive force intensity. A finer
measure of the cohesive force intensity is obtained by decreasing the size of the area
increment, and with it the corresponding force increment. A precise description of
the force intensity is obtained by letting the size of the area become arbitrarily
small, and leads to the vector T = lim∆A→0∆F/∆A. The quantity T represents
the cohesive force per unit area, cohesive force intensity or stress vector acting
on a differential area increment. The stress vector T is usually decomposed into
the normal stress component Tn and the tangential or shear stress component Tt

, as shown in Figure 4. This discussion implies that the stress vector T depends
on the orientation of the internal surface. That is, there are an infinite number
of internal surfaces through a point of the body, each having a different stress
vector. It is of interest to know the stress vector on each of these surfaces so that
the surfaces with the most severe normal or shear stress can be identified. This
information can be determined by introducing the stress vectors acting on three
mutually perpendicular differential surfaces though a point as shown in Figure 5.
The nine components of the three stress vectors are shown on the figure. In the



TOPICS IN BRAIN NEURO-MECHANICS 5

Figure 4. Decomposition of the force on an internal planar sur-
face through point O into normal force and shear force components.

Figure 5. Components of the stress vectors acting on three mu-
tually perpendicular surfaces intersecting at point O.

notation σij , the first subscript denotes the direction of the normal to the surface
and the second subscript denotes the direction of the component. Thus, σxx is a
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normal stress on a surface perpendicular to the x-axis, while σxy is a shear stress
on the same surface acting in the y-direction. Let (Tx, Ty, Tz) be the components
with respect to the x-, y-, z- axes of the stress vector on the surface area increment
having a unit outer normal vector n with components (nx, ny, nz). It can be shown
that (Tx, Ty, Tz) are related to (nx, ny, nz) and the stress components by means
of the matrix relation:





Tx

Ty

Tz



 =





σxx σxy σxz

σyx σyy σyz

σzx σzy σzz









nx

ny

nz



(3)

From knowledge of (Tx, Ty, Tz), the normal and shear stresses on the surface are
readily determined.

Comment: Application of the equation of linear momentum to the body leads
to a system of partial differential equations for determining the spatial variation of
the stresses within the body. Application of the equation of angular momentum to
the body leads to the relations σxy = σyx, σxz = σzx, σyz = σzy at each point in
the body.

2.3. Stress - Strain Relations. The cohesive force intensity, or stress, on the
surface of a differential block of material arises in response to the distortion of
the material, as measured by the strain. The stress-strain relation accounts for
this distortion of the material’s microstructure by considering a number of different
factors. Among these are the magnitude of the strains, time dependence of the
response and directional properties of the response. For the purpose of illustrating
these concepts in this article, a number of simplifying assumptions are made:

(1) The magnitudes of the strains are small, of the order of magnitude of 0.001
- 0.1. This should characterize the strains produced in the brain in most
circumstances.

(2) It is assumed that the mechanical response of the brain is independent of
time, i.e. it is linearly elastic. Modifications when the material exhibits
time dependent or viscoelastic response are discussed in Part II of this
paper.

The directional properties of a material, such as brain, are determined by the
material microstructure. For example, there may be a dominant orientation of
its macromolecules in a particular direction. A set of unit vectors defines these
directions with respect to the material, and these are called the preferred directions.
When a material is described as orthotropic, transversely isotropic or isotropic,
these vectors are mutually perpendicular.

An isotropic material has the same properties with respect to all sets of unit
vectors, whatever their orientation. A transversely isotropic material has the same
properties with respect to all unit vectors that lie in a plane perpendicular to a
specific unit vector. An orthotropic material has different properties with respect
to each of the different unit vectors. Figure 6a shows a block of material that
is assumed to be orthotropic, transversely isotropic or isotropic. Its surfaces are
perpendicular to the preferred material directions, which coincide with the x-, y-,
z- axes of a Cartesian coordinate system. With respect to these directions, normal
stresses are related only normal strains and shear stresses are related only to shear
strains. In applications in continuum mechanics, in general, and in brain neuro-
mechanics, in particular, this block is assumed to be free of stress. That is, there
are no residual stresses.
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(a) (b)

Figure 6. (a) Enlarged view of differential block in reference con-
figuration; (b) Deformed into a parallelopiped in a later configura-
tion.

(a) (b)

Figure 7. Differential block (a) after uniaxial extension, showing
normal stress and elongational strain; (b) after shear showing shear
stress and shear strain.

When this is the case, an applied normal stress σxx produces only normal strains,
as seen in Figure 7a. The strain in the same direction as the normal stress is called
a longitudinal strain and is denoted by ǫx. For linearly elastic response, these are
related by

σxx = Eǫx.(4)

The coefficient E is a material property called Young’s modulus or the elastic
modulus. As there are a number of moduli that can be introduced to represent
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different phenomena, E will be termed the tensile modulus. A relation similar to
(4) can also be written for normal stresses and strains with respect to the y- or
z- directions. When the material is orthotropic, there is a different value of E
associated with each direction. When the material is transversely isotropic, there is
a value of E associated with the x- direction and another value associated with the
y- and z- directions. When the material is isotropic, the value of E is independent
of direction.

As shown in Figure 7b, an applied shear stress σxy produces only a shear strain
γxy in the same direction as the stress. For linearly elastic response, these are
related by:

σxy = µγxy.(5)

The coefficient µ is called the shear modulus. As in the case of the tensile
modulus, the value of the shear modulus for orthotropic, transversely isotropic or
isotropic materials can depend on the direction in which the material is sheared.

It is necessary to add a number of comments to this overview of stress-strain
relations. (i) It was mentioned earlier that the body is regarded as an assemblage
of differential blocks. The material properties can vary from one block to another,
in which case the material is described as being inhomogeneous. If this is the case,
the tensile moduli E and shear moduli µ become dependent on location. (ii) The
moduli E and µ characterize the stiffness of the material. The larger the value
of the modulus, the larger is the stress required to produce a given strain, i.e.

the material with the larger value of the modulus is stiffer. (iii) Equation (4) can
be written in the form ǫx = σxx/E. The coefficient of the stress 1/E is called
the compliance. Thus, a material with a larger value of E, a stiffer material, is
less compliant. (iv) The preferred material directions may not coincide with the
directions that are utilized when analyzing the mechanical response of a body. It is
possible, in such a case to transform the stress-strain relations so that they hold in
these non-preferred directions. If the material is isotropic, the form of the stress-
strain relations will be the same. However, if the material is transversely isotropic or
orthotropic, the transformed equations introduce new phenomena. Normal stresses
may produce shear strains, shear stresses may produce normal strains or shear
strains in different directions. (v) The influence of residual stresses is a subject of
current research. If there are residual stresses, the stress-strain relations (4) and
(5) will change. For example, (4) may become of the form

σxx = E(σres)ǫx + σres,(6)

in which σres denotes a residual stress. Thus, the term E(σres)ǫx represents a
modification of the residual stress due to distortion from the reference configuration.
In addition, E(σres) suggests that the moduli may depend on the residual stress.

3. Elements of Viscoelasticity

A thorough treatment of linear viscoelasticity can be found in [3]. Although
there is not yet a corresponding reference for nonlinear viscoelasticity, much useful
information is presented in the recent review article [4].

The viscoelastic response of materials is characterized by its dependence on time.
This arises from their microstructure, which consists of long-chained or macro-
molecules. When a viscoelastic material is deformed, its macromolecules undergo
reconfigurations. The reconfiguration does not occur simultaneously over the en-
tire macromolecule, but over shorter segments during short time intervals and over
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(a)

(b)

Figure 8. (a) Step strain history: (b) Corresponding stress relax-
ation function.

longer segments during larger time intervals. Thus, the description of the mechan-
ical response requires consideration of time as well as strain and stress. This is
illustrated by discussing two distinct fundamental experiments: stress relaxation
and creep.

3.1. Stress Relaxation. Let the block of material in Figure 6a be undeformed
and unstressed for all times t < 0. Let Figure 7a now represent the block at a
time t > 0, when there are both a (possibly time-dependent) longitudinal strain
and a corresponding normal stress. The block is subjected to a longitudinal strain
of amount ǫ0 that is applied instantaneously at t = 0 and then held constant.
This strain vs. time sequence, shown in Figure 8a, is called a step strain history.
The corresponding normal stress varies with time as shown in Figure 8b and is
represented by a function of strain and time, σ = G(ǫ0, t).
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In response to the jump in strain at t = 0, the stress jumps to the value G(ǫ0, 0).
It then gradually decreases with time to a steady state value G(ǫ0,∞). The jump
in stress is called instantaneous springiness or elasticity, the decrease with time
is called stress relaxation and the asymptotic value G(ǫ0,∞) is called long time
equilibrium elasticity. The function G(ǫ0, t) is called the stress relaxation function.
Of interest in describing a viscoelastic material is the size of the jump in stress
G(ǫ0, 0), a measure of the amount of stress relaxation such as G(ǫ0,∞)/G(ǫ0, 0)
and a measure of the time during which stress relaxation occurs. There are various
definitions for such a time. For the purpose of this article, a characteristic relaxation
time τR(ǫ0) is defined as the centroid of the graph of ∆G(ǫ0, t) = G(ǫ0, t)−G(ǫ0,∞)
vs. t. This defines a time at which there has been a substantial amount of stress
relaxation. The mathematical form of the dependence of G(ǫ0, t) on ǫ0 and t varies
with the material. Hence, the function G(ǫ0, t) itself is a material property. This
points out a vital distinction between the concept of a material property in linear
elasticity and that in viscoelasticity. In linear elasticity, the material properties are
constants. In viscoelasticity, the material properties are functions.

3.2. Creep. Consider again the block of material shown in Figures 6a and 7a.
Let the block now be subjected to a normal stress of amount σ0 that is applied
instantaneously at t = 0 and then held constant. This stress vs. time sequence,
shown in Figure 9a, is called a step stress history. The corresponding normal strain
varies with time as shown in Figure 9b and is represented by a function of stress
and time, ǫ = J(σ0, t).

In response to the jump in stress at t = 0, the strain jumps to the value J(σ0, 0).
It then gradually increases with time to a steady state value J(σ0,∞). The jump in
strain is again called instantaneous springiness or elasticity, the increase with time is
called creep and the asymptotic value J(σ0,∞) is again called long time equilibrium
elasticity. The function J(σ0, t) is called the creep function. Of interest in describing
a viscoelastic material is the size of the jump in strain J(σ0, 0), a measure of the
amount of creep such as J(σ0,∞)/J(σ0, 0) and a measure of the time during which
creep occurs. For the purpose of this article, a characteristic creep time τC(σ0) is
defined as the centroid of the graph of ∆J(σ0, t) = J(σ0,∞)− J(σ0, t) vs. t. This
defines a time at which there has been a substantial amount of creep.

As in the case of stress relaxation, the function J(σ0, t) is a material property. In
general, there is no simple relation between the stress relaxation function G(ǫ0, t)
and the creep function J(σ0, t).

3.3. Linear Response. Linearity is a property that simplifies the interpretation
of experimental data and leads to a model that is convenient for analyzing me-
chanical response. In order for a material to be described as linear, its mechanical
response must exhibit scaling and superposition. Scaling can be determined by
considering how G(ǫ0, t) depends on ǫ0 or how J(σ0, t) depends on σ0. One method
for doing this is through an experimental program in which specimens are sub-
jected to longitudinal step strain histories at different strains ǫ1, ǫ2, ..., ǫN . Plots
of G(ǫi, t̃) versus ǫi for different times t̃ are called stress relaxation isochrones.
These isochrones may be straight lines or curves. Isochrones that are straight lines
indicate scaling while curved isochrones indicate nonlinear response. In the former
case,

σ = ǫ0G(t),(7)
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(a)

(b)

Figure 9. (a) Step strain history; (b) Corresponding creep function.

G(t) is called the stress relaxation modulus. A similar discussion, carried out for
the creep response, introduces creep isochrones. If these are straight lines,

ǫ = σ0J(t),(8)

and J(t) is called the creep compliance.
Superposition can be determined by experiments involving two-step strain histo-

ries, shown in Figure 10a. When the total stress is the superposition of the stresses
for the individual step strain histories, i.e.

σ = ǫ1G(t) + (ǫ2 − ǫ1)G(t− t1),(9)

the material exhibits the property of superposition.When the mechanical response
satisfies (7) and (9), it is said to be linear.

3.4. Sinusoidal Oscillations. Another indication of linearity is given by the re-
sponse to small amplitude oscillations. Let the longitudinal strain of the block of
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(a)

(b)

Figure 10. (a) Two-step strain history; (b) Response to the two-
step strain history assuming linearity of response.

material in Figure 7a vary sinusoidally with frequency ω, e.g.

ǫ(t) = ǫ0sin(ωt)(10)

where |ǫ0| << 1. When there is linearity of response, the stress has a steady state
response that is described by

σ(t) = ǫ0 [G
′(ω)sin(ωt) +G′′(ω)cos(ωt)] ,(11)

or, equivalently,

σ(t) = ǫ0G
⋆(ω)sin(ωt+ δ(ω)),(12)

where

G⋆(ω) =
[

G′(ω)2 +G′′(ω)2
]1/2

, tanδ(ω) = G′′(ω)/G′(ω).(13)

The stress varies sinusoidally at the same frequency ω as the strain, but is out of
phase with the strain by δ(ω). Both the ratio of the stress and strain amplitudes
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Figure 11. Applied sinusoidal strain history and corresponding
stress response, assuming linearity of response.

G⋆(ω) and the phase difference vary with frequency ω. These features of the strain
and stress variation are shown in Figure 11.

G′(ω) is called the storage modulus and G′′(ω) is called the loss modulus. They
are an alternate set of material properties that vary with frequency. G′(ω) and
G′′(ω) can be calculated from the stress relaxation modulus G(t) and vice versa,
but such relations are not presented here.

Similarly, let the normal stress on the block of material in Figure 7a vary sinu-
soidally,

σ(t) = σ0sin(ωt).(14)

When there is linearity of response, the steady state strain is

ǫ(t) = σ0 [J
′(ω)sin(ωt) + J ′′(ω)cos(ωt)] .(15)

J ′(ω) is called the storage compliance and J ′′(ω) is called the loss compliance. They
are another set of material properties that vary with frequency. J ′(ω) and J ′′(ω)
can be calculated from the creep compliance J(t) and vice versa. They can also be
expressed in terms of G′(ω) and G′′(ω).

Comments: It is expected that the response is linear when the strain magni-
tude |ǫ0| is sufficiently small. The onset of nonlinear response can be detected by
carrying out experiments with progressively larger strain amplitudes and determin-
ing when the stress is no longer sinusoidal. This discussion has been carried out
using longitudinal strains and normal stresses. Analogous statements can be made
for shear strains and shear stresses, in which case the modulus in extension G(t) is
to be interpreted as a modulus in shear.

3.5. Dissipation of Energy. Figure 12a shows a block of viscoelastic material
that is fixed to a rigid support over its bottom surface and a mass over its top
surface. The mass is given an initial horizontal displacement x(0) that produces a
shear strain y = x(0)/h in the viscoelastic block. The mass is released and the block
of material tries to recover its original shape, i.e. the shear strain starts to decrease.
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(a)

(b)

Figure 12. (a) Viscoelastic block and an attached mass in the
reference state; (b) Lateral disturbance of the mass at a later time.

Figure 12b shows a possible displacement time variation. The displacement will
decrease to zero by means of decaying oscillations or by a monotonic decrease.
Either way, the kinetic energy of the motion is dissipated because of the viscoelastic
nature of the material. In short, viscoelastic materials dissipate energy. The process
of dissipation is a consequence of the process of stress relaxation, ∆G(ǫ0, t) =
G(ǫ0, t)−G(ǫ0,∞) > 0. When there is linear viscoelastic response, it can be shown

that ∆G(t) = G(t) − G(∞) > 0 implies G
′′

(ω) > 0 and δ(ω) > 0. Thus, stress
relaxation in step strain tests or a difference in phase between stress and strain in
sinusoidal tests indicate that the material dissipates energy. Therefore, when the
brain is subjected to a sudden motion, brought on by a blow to the head, it becomes
distorted. If the brain were composed of an elastic material, it would continue to
vibrate, i.e. ring like a bell. Because of its viscoelasticity, the brain gradually
recovers its original shape and returns to its rest state.
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3.6. Arbitrary Variation of Strain with Time. The preceding comments con-
sidered only strains that undergo step changes or sinusoidal variation with time.
In order determine the stress variation with time for other strain histories, it is
necessary to develop a stress-strain-time or constitutive relation. When there is
linear viscoelastic response, there are two methods for developing a constitutive re-
lation. One method utilizes mechanical analogs composed of linear elastic springs
and linear viscous dampers. It leads to a relation that expresses stress and its time
derivatives to strain and its time derivatives. There are also complicated initial
conditions associated with these equations. The second method makes use of the
properties of scaling and superposition and results in the integral relation

σ(t) = G(0)ǫ(t) +

∫ t

0

ǫ(s)
dG(t− s)

d(t− s)
ds,(16)

in which G(t) is the stress relaxation modulus for the material. When there is non-
linear viscoelastic response, there is no current generally accepted relation between
stress, strain and time.

3.7. Process Time Relative to Stress Relaxation Time. Viscoelastic re-
sponse of a material depends on the time during which a strain is applied relative
to a time that characterizes the duration of the stress relaxation process, i.e. a
characteristic stress relaxation time. This can be illustrated by means of a simple
example for linear viscoelastic response. Let the stress relaxation modulus for a
material have the form

G(t) = G∞ + (G0 −G∞) e−t/τR .(17)

G0 = G(0) is the initial value of the stress relaxation function, G∞ = G(∞) is
the long time asymptotic value and τR is the characteristic stress relaxation time,
corresponding to the centroid of the plot of ∆G(t) = G(t)−G∞ = (G0 −G∞) e−t/τR

vs. t, shown in Figure 8b. Let the material be subjected to a constant strain rate
deformation history of the form ǫ(t) = αt, in which α denotes the strain rate.
Suppose the strain is increased to a specific value, denoted by ǫ0 at time τP , so that
α = ǫ0/τP . Figure 13a shows the strain ǫ0 being reached at three different rates
corresponding to three different time intervals of straining relative to the stress
relaxation time: time interval τP1 = 0.1τR at strain rate α1, time interval τP2 = τR
at strain rate α2, time interval τP3 = 3τR at strain rate α3. Figure 13b shows plots
of σ/G0 vs. t/τR for the three cases. Note that the stress at strain ǫ0 is largest at
the largest strain rate α1 or when the time interval is the shortest relative to stress
relaxation time τR. The stress at strain ǫ0 decreases as the strain rate decreases
and the time interval increases relative to stress relaxation time τR.

This simple example points out two main consequences of viscoelasticity. The
first is that different stresses correspond to the same strain. The stress at a time
depends not only on the strain at that time but also on the preceding strain his-
tory. The second is that the stress depends on a loading time τP relative to the
stress relaxation time τR. It has been suggested that the stress relaxation time τR
may be changed by age, disease or medication. This simple example shows that a
mathematical model such as viscoelasticity can be used to explore the implications
of these factors on the mechanical response of brain.
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(a)

(b)

Figure 13. (a) Constant strain rate histories arriving at the same
strain at different rates; (b) Corresponding stress histories showing
the strain rate dependence.

4. Models of Microstructural Change

The material presented in this section is relatively recent and has only appeared
in journal articles. Further details can be found in [5] and [6] and the references con-
tained therein. The mechanical response of soft biological tissue is often assumed
to be elastic or viscoelastic. The list of such tissues includes heart, arteries, uterus,
tendons and ligaments and brain. A common feature of non-biological elastomeric
materials and soft biological tissue is that they are composed of macromolecules
that form networks and have lateral connections such as crosslinks. These lateral
connections give the material its solid-like properties, i.e. recovery of shape upon
release of stress. The elastic response of soft biological tissue is described using
mathematical models for non-biological elastomeric materials. The material pa-
rameters in such models are generally determined by experiment. However, in the
case of elastomers, research in polymer science has provided a connection between
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macromolecular structure and the material parameters. For example, the tensile
modulus E is given by

E = NkT,(18)

where N is the crosslink density, k is Boltzmann’s constant and T is the absolute
temperature.

The connection between the tensile modulus E of an elastomer and its macro-
molecular network, as represented by the expression for E in (18), has been used by
Tobolsky [7] to explain changes in the mechanical response of elastomers resulting
from changes in its macromolecular structure. Tobolsky [7] described experiments
on rubber strips that were given different fixed uniaxial extensions, held at differ-
ent constant elevated temperatures for various time periods, cooled down and then
evaluated for the stress-strain response. The rubber was observed to have a reduced
tensile modulus and permanent set on release of load. These were attributed to
changes in the macromolecular structure arising from the scission of macromolec-
ular network junctions and the formation of new networks by crosslinking. The
decrease of modulus E was attributed to the decrease by scission of the crosslink
density N .

In these experiments, scission and crosslinking were a result of oxidation at
elevated temperatures. Subsequent research has introduced other causes that may
produce similar microstructural changes. Scission and crosslinking due to large
deformations was studied in [5], while the coupled influence of high temperature
and large deformation were treated in [6]. Sodhi and Rao [8] discussed scission
and crosslinking in stents resulting from ultraviolet radiation while Soares, Moore
and Rajagopal [9] analyzed biodegradation of stents due to their interaction with
a diffusing fluid. Regardless of the cause, scission and crosslinking were shown to
have a significant impact on mechanical response. These studies for non-biological
elastomeric materials suggest that it may be useful to consider the possibility of
microstructural changes in soft biological tissue as a result of large deformation,
interaction with a diffusing fluid or some other biochemical factor. For this reason,
this section contains an overview of a recently developed constitutive theory for
non-biological elastomeric materials that could be used in a study of the mechanical
consequences of microstructural changes in brain tissue. The basic premise is that
there is continuously occurring scission of crosslinks of the original macromolecular
network while it deforms. The crosslinks re-connect to form new networks in new
reference configurations. Each network can carry stress and the total stress in the
material is the sum of the stresses in all of the networks. A small strain version of
the general constitutive theory, applicable to uniaxial response, has the form

σ(t) = b(1)(t)E0ǫ(t) +

∫ t

ts

a(t̂)b(2)(t, t̂)Ē(t̂)[ǫ(t)− ǫ(t̂)]dt̂.(19)

ǫ(t) is the strain in the original network at time t and E0 is the tensile modulus
of this network. Thus, E0ǫ(t) is the stress in the original network before scission
occurs. ts is the time at the start of the process of scission and crosslinking. b(1)(t)
is the crosslink density of the original network that remains at time t and, thus,
b(t)E0ǫ(t) is the current stress carried by that network. a(t̂) represents the rate of
formation by crosslinking of a new network at time t̂. Its reference configuration
coincides with that of the original material at time t̂. The network that was formed
at time t̂ has undergone the strain ǫ(t) − ǫ(t̂) at time t and is presumed to act
as a linear elastic material with elastic modulus Ē(t̂), which may differ from E0.
This new network may also undergo scission, and b(2)(t, t̂) is the volume fraction
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of network formed at time t̂ that remains at time t. The integral represents the
sum of the stresses in all networks that form from the start of scission at time ts to
the current time. b(1)(t), a(t̂) and b(2)(t, t̂) are non-mechanical quantities that are
determined by experiment or from biochemical kinetics.

Before the onset of the process of scission and crosslinking, b(1)(0) = 1 and
a(t̂) = 0. Equation (19) then gives σ(t) = E0ǫ(t), which states that the stress arises
only from the original network. During the process of scission and crosslinking,
(19) can be written in the form

σ(t) = E(t) [ǫ(t)− ǫ⋆(t)] ,(20)

in which

E(t) = b(1)(t)E0 +

∫ t

ts

a(t̂)b(2)(t, t̂)Ē(t̂)dt̂,(21)

and

ǫ⋆(t) =

∫ t

ts
a(t̂)b(2)(t, t̂)Ē(t̂)ǫ(t̂)dt̂

b(1)(t)E0 +

∫ t

ts

a(t̂)b(2)(t, t̂)Ē(t̂)dt̂

(22)

E(t) represents an evolving tensile modulus and ǫ⋆(t) represents an evolving strain
that the material would return to if the stress were to be removed. If the process
of scission and crosslinking were to be stopped at time t, (20) would give the new
stress-strain relation. If the material were to completely remodel, then there is a
time tf when b(1)(tf ) = 0. Assuming there is no scission of new networks after time
tf , the stress-strain response for the remodeled material would be

σ = E(tf ) [ǫ− ǫ⋆(tf )] ,(23)

E(tf ) =

∫ tf

ts

a(t̂)b(2)(t, t̂)Ē(t̂)dt̂(24)

and

ǫ⋆(tf ) =

∫ tf
ts

a(t̂)b(2)(t, t̂)Ē(t̂)ǫ(t̂)dt̂
∫ tf
ts

a(t̂)b(2)(t, t̂)Ē(t̂)dt̂
(25)

This mathematical model may be useful in studying the mechanical consequences of
changes in brain tissue caused by such diverse events as: (1) large deformation due
to swelling, (2) large deformation during sloshing of the brain following a sudden
motion of the head, (2) wave propagation from a blow to the head or (3) naturally
occurring changes due to disease or aging.

5. Concluding Comments

This article has presented an overview of three topics from continuum mechanics
that should be useful in research in brain neuro-mechanics. The first topic reviewed
the notions of stress, strain and constitutive equations. It emphasized the signif-
icance of the reference configuration, its role in the development of mathematical
models and the influence of residual stresses in the reference configuration on the
mechanical response of brain tissue. The second topic reviewed the essentials of vis-
coelasticity, namely stress relaxation, creep, linearity and the response to sinusoidal
oscillations. Two important consequences of these phenomena were addressed. The
first was their connection to the dissipation of kinetic energy of brain tissue, i.e.
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the settling down of disturbances with time. The second was the influence of dis-
ease, age or other non-mechanical factors on stress relaxation and how this could
affect the response of brain tissue to disturbances. The third topic introduced a
mechanical model that accounts for microstructural changes in materials composed
of networks of macromolecules, and which should include soft biological tissue such
as brain tissue. The chemical changes of scission and crosslinking at macromolec-
ular network junctions can lead to modified material properties and permanent
shape change and, thereby, altered mechanical response. It was pointed out that
there are various causes for this process that could be relevant to the study of brain
neuro-mechanics. Among these may be chemical changes associated with disease,
age or medication as well as large deformation due to swelling. These last two top-
ics, viscoelasticity and microstructural modification, provide a framework in which
mechanical concepts such as stress and strain can be combined with non-mechanical
concepts such as biochemical kinetics. This coupling should be useful in research
in brain neuro-mechanics.
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