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Abstract. In this work, we concern with the numerical approach for delay differen-
tial equations with random coefficients. We first show that the exact solution of the
problem considered admits good regularity in the random space, provided that the
given data satisfy some reasonable assumptions. A stochastic collocation method is
proposed to approximate the solution in the random space, and we use the Legen-
dre spectral collocation method to solve the resulting deterministic delay differential
equations. Convergence property of the proposed method is analyzed. It is shown that
the numerical method yields the familiar exponential order of convergence in both the
random space and the time space. Numerical examples are given to illustrate the the-
oretical results.
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1 Introduction

Using delay differential equations (DDEs) to model biological/engineer systems has a
long history, dating to Malthus, Verhulst, Lotka and Volterra. Recently, DDE models
have been arisen in many diverse applications including infectious disease dynamics
including primary infection [11], immune response [24], tumor growth [23] and neural
networks [4], to name a few. As the primary goal for using these models is to better our
understanding of real word phenomena, it is becoming clear that the simple models can
not capture the whole dynamics observed in natural systems. Thus, in real applications,
the systems used are usually build up by a large number of DDEs with a lot of given data.
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The linear systems of DDEs admit the following form

u′(t)=A(t)u(t)+B(t)u(t−q(t)), t∈ I :=[0,T], (1.1)

where u = (u1,··· ,uN)
T is a vector of N unknown functions, and A, B are coefficient

matrices in R
N×N. The delay function q(t) is assumed to satisfy

0<q(t)< t, t∈ (0,T], q(0)=q≥0.

There are various types of delays in real applications [3], and here we will consider two
widely used types of them, namely,

Constantdelay : q(t)=τ>0, (1.2a)

Pantographdelay : t−q(t)=qt, 0<q<1. (1.2b)

The following initial conditions are needed for problem (1.1)

u(t)=u0, t∈ [−τ,0], forconstantdelay, (1.3a)

u(0)=u0, forpantographdelay. (1.3b)

Generally speaking, the value of interest u is computed based on the input data
(A(t),B(t),u0) which are provided mainly by experimental measurements or a priori
knowledge. It turns out that in many practical applications the input data are not known
precisely a priori, which due to error in experiments and/or less of knowledge, namely,
uncertainty in the given data. A popular way to deal with such an issue is to model these
uncertain data as random variables/random functions [8]. For the context of delay differ-
ential equations, this will introduces the following random/parametric delay differential
equations











u′(t,~ξ)=A(t,~ξ)u(t,~ξ)+B(t,~ξ)u(t−q(t),~ξ), t∈ I :=[0,T],

u(t)=u0, t∈ [−q,0], forconstantdelay,

u(0)=u0, forpantographdelay,

(1.4)

where ~ξ=(ξ1,··· ,ξM) is a random vector of M random parameters. One usually assumes
that the random parameters are independent with each other, and further more, there is
a corresponding probability density function ρ(ξi) for each random parameter ξi in its
supporting domain [ai,bi].

Such a framework for problems with uncertain input has been widely used by re-
searchers for partial/ordinary differential equations (PDE/ODE) models [8, 28, 29], and
the resulting problems are also known as stochastic PDEs/ODEs. Stochastic modeling
approaches for such problems can be categorized as either non-intrusive or intrusive. In-
trusive approaches, such as generalized polynomial chaos methods (see, e.g., [8, 28] and
references therein), usually result in deterministic coupled systems, and this require the
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update of existing codes or the development of a new code. More over, the resulting
system of equations can be larger than the original, deterministic system.

Non-intrusive approaches, such us Mento Carlo methods [6], the least-squares ap-
proach [7, 12, 30], and stochastic collocation (SC) methods [13, 14, 26, 27], have the advan-
tage that the deterministic version of a model can be used to generate an ensemble of
sample solutions from which the statistics can be calculated. The disadvantage is that a
large number of samples are often required, leading to large computational costs, espe-
cially for problems with a large number of random variables. The full comparison be-
tween non-intrusive and intrusive methods is problem dependent and remains a active
research topic [2]. We remark that both the intrusive gPC methods and the non-intrusive
SC techniques can exploit the possible regularity of the solution with respect to the ran-
dom parameters to achieve faster convergence [9, 10, 21, 31–33].

In this work, we concern with the sparse grid stochastic collocation approach for
problem (1.4) in the random space, and this is motivated by the regularity analysis which
will be given in Section 3. As we will see, the solution of problem considered admits very
good regularity properties in the random space, under reasonable assumptions on the
given data. This motivate us to use the high order SC methods. For each selected colloca-
tion points, the problem becomes a system of deterministic delay differential equations.
We then introduce the Legendre spectral collocation methods [1] to solve the resulting
deterministic DDEs. Convergence properties of the proposed method is analyzed. It is
shown that the methods yields the familiar exponential order of convergence in both the
random spaces and the time space. Numerical examples will be provided to verify the
efficiency of the numerical methods and the theoretical findings.

The rest of the paper is organized as follows. In Section 2 we introduce some basic
theoretical results for problem (1.4), particularly, via a single DDE, we shall show that the
solution admits good regularity with respect to the random parameters. The combination
of the stochastic collocation method and Legendre spectral methods for DDEs will be
discussed in section 3, and this is followed by some numerical examples in Section 4. We
finally give some conclusion remarks in Section 5.

2 Basic setting and regularity properties

Without loss of generality, we assume that each random parameter ξi in equation (1.4) is
located in Γi=[−1,1], and denote with Γ=ΠM

i=1Γi. It is assumed that the given functions in
(1.4) are smooth on their respective domain [0,T]. This implies that for pantograph-type

DDEs the solutions are (globally) smooth on I for any fixed parameter ~ξ ∈ Γ [3]. While
for constant-type DDEs, the solution can admit discontinuous even if the given data are
smooth, however, in this paper, we only consider constant-type DDEs with smooth solu-
tions in the time space. We leave problems with discontinuous for future study. Thus, it
appears natural to employ spectral methods for the numerical solution of these functional
equations on I since the resulting spectral approximations are globally smooth, too, and
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in addition exhibit high-order convergence. For more theoretical results on determinis-
tic delay differential equations, please refer to [3]. In the following, we will restrict our
discussion on a single stochastic DDE (2.1), and we will show that the corresponding
exact solution admits good regularity properties with respect to the random parameters,
provided that the given data satisfy reasonable assumptions.











u′(t,~ξ)= a(t,~ξ)u(t,~ξ)+b(t,~ξ)u(t−q(t),~ξ), t∈ I :=[0,T],

u(t)=u0(t,~ξ), t∈ [−τ,0], forconstantdelay,

u(0)=u0(~ξ), forpantographdelay.

(2.1)

For systems of stochastic DDEs, the proof is quite similar. For simplicity, we also as-
sume that the random variables are uniformly distributed so that ρ=1. We first give the
following Lemma.

Lemma 2.1. Consider problem (2.1), assume that the given data are sufficient smooth in the time
space I, and satisfy

max
Γ⊗I

|a(t,~ξ)|<+∞, max
Γ⊗I

|b(t,~ξ)|<+∞, max
Γ

|u0|<+∞. (2.2)

Then, we have

(

E
[

‖u‖2
L2(I)

]

)1/2
=
(

∫

Γ

∫

I
u2(t,~ξ)dtd~ξ

)1/2
.max

Γ⊗I
|u(t,~ξ)|<C(I)<+∞, (2.3)

where E[·] stands for the expectation and C(I) is a constant which depends on T and the given
data.

Proof. By (2.1), we have

u(t,~ξ)=
∫ t

0
a(t,~ξ)u(t,~ξ)dt+

∫ t

0
b(t,~ξ)u(t−q(t),~ξ)dt+u0(0,~ξ). (2.4)

For constant-type delay (q(t)=τ), we have

|u(t,~ξ)|≤max
Γ⊗I

|a(t,~ξ)|
∫ t

0
|u(t,~ξ)|dt+max

Γ⊗I
|b(t,~ξ)|

∫ t−τ

−τ
|u(s,~ξ)|ds+maxΓ|u0(0,~ξ)|

≤max
Γ⊗I

|a(t,~ξ)|
∫ t

0
|u(t,~ξ)|dt+max

Γ⊗I
|b(t,~ξ)|

∫ 0

−τ
|u0(s,~ξ)|ds+max

Γ⊗I
|b(t,~ξ)|

∫ t−τ

0
|u(s,~ξ)|ds

≤
(

max
Γ⊗I

|a(t,~ξ)|+max
Γ⊗I

|b(t,~ξ)|
)

∫ t

0
|u(t,~ξ)|dt+max

Γ⊗I
|b(t,~ξ)|

∫ 0

−τ
|u0(s,~ξ)|ds, (2.5)

then, the desired result (2.3) is obtained by using together the above inequality and the
Gronwall inequality.
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For pantograph-type delay (t−q(t)=qt), we have

|u(t,~ξ)|≤max
Γ
⊗

I
|a|

∫ t

0
|u(t,~ξ)|dt+max

Γ
⊗

I
|b|

∫ t

0
|u(qt,~ξ)|dt+max

Γ
|u0|

≤max
Γ
⊗

I
|a|

∫ t

0
|u(t,~ξ)|dt+

1

q
max
Γ
⊗

I
|b|

∫ qt

0
|u(s,~ξ)|ds+max

Γ
|u0|

≤
(

max
Γ
⊗

I
|a|+

1

q
max
Γ
⊗

I
|b|

)

∫ t

0
|u(t,~ξ)|dt+max

Γ
|u0|, (2.6)

again, the desired result (2.3) can be obtained by using together the above inequality and
the Gronwall inequality, and this complete the proof.

Notice that the proof for the constant-type delay and the pantograph-type delay is
quite similar, therefore, in what follows, we will only give the regularity analysis for the
pantograph-type delay problem. The proof for constant-type delay problems can be done
in a similar way as in Lemma 2.1.

2.1 Regularity of ∂ξi
u

We are now ready to provide the regularity results for ∂ξi
u, ∀1≤ i≤M.

Theorem 2.1. Consider problem (2.1) with pantograph-type delay, if the conditions in Lemma
2.1 hold, and furthermore, the given data satisfy

max
Γ⊗I

|∂ξi
a|<+∞, max

Γ⊗I
|∂ξi

b|<+∞, max
Γ

|∂ξi
u0|<+∞. (2.7)

Then, we have
(

E
[

‖∂ξi
u‖2

L2(I)

]

)1/2
=
(

∫

Γ

∫

I
(∂ξi

u)2dtd~ξ
)1/2

.max
Γ⊗I

|∂ξi
u|<Ci(I)<+∞, (2.8)

where Ci(I) is a constant depends on T and the given data.

Proof. Differential the stochastic DDE in both sides with respect to ξi and let v= ∂ξi
u, we

obtain

v(t,~ξ)=
∫ t

0
a(t,~ξ)v(t,~ξ)dt+

∫ t

0
b(t,~ξ)v(qt,~ξ)dt

+
∫ t

0

(

∂ξi
a
)

u(t,~ξ)dt+
∫ t

0

(

∂ξi
b
)

u(qt,~ξ)dt+∂ξi
u0(~ξ). (2.9)

Using the similar idea as in Lemma 2.1, we get

|v(t,~ξ)|≤
(

max
Γ
⊗

I
|a|+

1

q
max
Γ
⊗

I
|b|

)

∫ t

0
|v(t,~ξ)|dt

+
(

max
Γ
⊗

I
|∂ξi

a|+
1

q
max
Γ
⊗

I
|∂ξi

b|
)

∫ t

0
|u(t,~ξ)|dt+|∂ξi

u0(~ξ)|. (2.10)

Then, the desired result (2.8) is obtained by using together the above inequality, Lemma
2.1, assumption (2.7), and the Gronwall inequality.
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2.2 Regularity of ∂2
ξiξ j

u

By Lemma 2.1 and Theorem 2.1, we can derive the regularity properties for ∂2
ξiξ j

u.

Theorem 2.2. Consider problem (2.1) with pantograph-type delay, if the conditions in Lemma
2.1 and Theorem 2.1 hold and further more, the given data satisfy

max
Γ⊗I

|∂2
ξiξ j

a|<+∞, max
Γ⊗I

|∂2
ξiξ j

b|<+∞, max
Γ

|∂2
ξiξ j

u0|<+∞. (2.11)

Then, we have

(

E

[

‖∂2
ξiξ j

u‖2
L2(I)

])1/2
=

(

∫

Γ

∫

I
(∂2

ξiξ j
u)2dtd~ξ

)1/2

.max
Γ⊗I

|∂2
ξiξ j

u|<Cij(I)<+∞, (2.12)

where Cij(I) is a constant depends on T and the given data.

Proof. Differential twice the stochastic DDE in both sides with respect to ξi and ξ j and let
w=∂2

ξiξ j
u, we obtain

w(t,~ξ)=
∫ t

0
a(t,~ξ)w(t,~ξ)dt+

∫ t

0
b(t,~ξ)w(qt,~ξ)dt

+
∫ t

0

(

∂ξi
a
)

vj(t,~ξ)dt+
∫ t

0

(

∂ξi
b
)

vj(qt,~ξ)dt

+
∫ t

0

(

∂ξ j
a
)

vi(t,~ξ)dt+
∫ t

0

(

∂ξ j
b
)

vi(qt,~ξ)dt

+
∫ t

0

(

∂2
ξiξ j

a
)

u(t,~ξ)dt+
∫ t

0

(

∂2
ξiξ j

b
)

u(qt,~ξ)dt+∂2
ξiξ j

u0(~ξ). (2.13)

Using the similar idea as in Theorem 2.1, we get

|w(t,~ξ)|≤
(

max
Γ
⊗

I
|a|+

1

q
max
Γ
⊗

I
|b|

)

∫ t

0
|w(t,~ξ)|dt

+
(

max
Γ
⊗

I
|∂ξi

a|+
1

q
max
Γ
⊗

I
|∂ξi

b|
)

∫ t

0
|vj(t,~ξ)|dt

+
(

max
Γ
⊗

I
|∂ξ j

a|+
1

q
max
Γ
⊗

I
|∂ξ j

b|
)

∫ t

0
|vi(t,~ξ)|dt+

∣

∣

∣
∂2

ξiξ j
u0(~ξ)

∣

∣

∣
. (2.14)

Then, the desired result (2.12) is obtained by using together Theorem 2.1, Lemma 2.1 and
the Gronwall inequality.

Remark 2.1. It is clear that if the given data satisfy some further assumptions, the so-
lution of the problem should have higher regularity, namely, we can get the regularity
properties for ∂3

ξiξ jξk
and so on. A more detailed set of conditions can be found following

the above procedures, which will be omitted in this paper. We also remark that for certain
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cases, the solution of the DDEs may have uniformly bounded derivative (in the random
space) for any order, and this is in deed the case for many stochastic PDE models [9,10,32].
In such cases, one can expect the so called ”analytic regularity” of the solution with re-
spect to the random parameters. This will results in the spectral convergence when one
use the polynomial based approaches in the random space, such as gPC methods and SC
methods.

3 Numerical methods

In this section, we discuss the numerical approach for problem (2.1). The numerical
scheme consists of a sparse grid stochastic collocation method in the random space and
the Legendre spectral collocation method with respect to t.

3.1 A stochastic collocation methods in parametric spaces

In stochastic collocation method, one first choose a set of collocation points in the ran-

dom space {~ξk}
Θ
k=1∈Γ. Then, we compute the solution u(t,~ξk) for each collocation point.

Finally, we build a global polynomial approximation upon these evaluations

uΘ(t,~ξ)=
Θ

∑
k=1

uk(t,~ξk)Lk(~ξ), (3.1)

with suitable multivariate polynomials {Lk}
Θ
k=1 such as Lagrange polynomials.

It is clear that the computational complexity of the stochastic collocation methods is Θ

times that of a deterministic problem, where Θ is the total number of collocation points.
As the main focus here is on multidimensional random spaces, thus, it is important to
choose a nodal set Θ with fewest possible number of points under a prescribed accuracy
requirement. In the following, we will present several choices of such collocation points.

A nature choice is the tensor product of one-dimensional Lagrange interpolation
polynomials, precisely, let U i be the one dimensional interpolation formula in the ith
direction, namely,

U i(u)=
Θi

∑
j=1

u(ξ i
j)·a

i
j, j=1,··· ,Θi,

where {ξ i
j}

Θi

j=1 are the Θi collocation points in the direction ξ i, and {ai
j}

Θi

j=1 are the corre-

sponding weights. In the multivariate case M>1, the tensor product formulas are

I(u)≡
(

U i1⊗···⊗U iM

)

(u)=
Θi1

∑
k1=1

···
ΘiM

∑
kM=1

(

ai1
k1
···aiM

kM

)

u
(

ξ i1
k1

,··· ,ξ iM

kM

)

.
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Clearly, the above product formula needs Θ=Θi1 ···ΘiM nodal points. If we choose to use
the same interpolating function in each dimension with the same number of points, i.e.,
Θi1 =Θi2 = ···=ΘiM ≡m, the total number of points is Θ=mM, which grows quickly in
high dimensions.

A more reasonable choice is the Smolyak formulas [20]. The Smolyak algorithm is a
linear combination of product formulas, and the linear combination is chosen in such a
way that the interpolation property for M= 1 is preserved for M> 1. Compared to the
tensor product rule, only products with a relatively small number of points are used and
the resulting nodal set has significantly less number of nodes Much research has been
devoted to the Smolyak algorithm since its introduction in [20], see, e.g., [15,16]. Starting
with the one-dimensional interpolation formula, the Smolyak algorithm is given by

A(q,M)= ∑
q−M+1≤|i|≤q

(−1)q−|i|
(

M−1
q−|i|

)(

U i1 ⊗···⊗U iM

)

,

where i=(i1,··· ,iM), and the index q is called level. To compute A(q,M), we only need to
evaluate function on the sparse grids

Θq =H(q,M)=
⋃

q−M+1≤|i|≤q

(

Θi1 ⊗···⊗ΘiM

)

.

In the following, we propose two different abscissas in the construction of the Smolyak
formula.

A popular choice is the Clenshaw-Curtis abscissas which is introduced in [5]. These
abscissas are the extrema of Chebyshev polynomials and for Θi >1, we choose

ξ i
k =−cos

(π(j−1)

k−1

)

, k=1,··· ,Θi.

More over, we set ξ i
1 =0 if Θ1 =1 and further require the number of abscissas Θi in each

level to grow according to the following formula

Θi =2i−1+1, ∀i>1.

Using such particular choice, we can obtain nested sets of abscissas, i.e., Θi ∈Θi+1 and
thereby Θq ∈Θq+1.

Another frequently used abscissas is the Gaussian abscissas, in which one uses the
zeros of the orthogonal polynomials with respect to some positive weight. But, these
Gaussian abscissas are in general not nested, as mentioned above for Clenshaw-Curtis
points. Nevertheless, as in the Clenshaw-Curtis case, we choose the number Θi of ab-
scissas that are used by U i. One can refer [22] for an insightful comparison of quadrature
formulas based on Clenshaw-Curtis and Gaussian abscissas. The natural choice of the
weight should be the probability density function ρ of the random variables ξ i. Exam-
ples of isotropic sparse grids, constructed from the nested Clenshaw-Curtis abscissas and
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Figure 1: Sparse Grid v.s. Tansor Product: Level=5”clenshaw-curtis”.

the non-nested Gaussian abscissas are shown in Fig. 1, where we have considered a two-
dimensional parameter space and a maximum level level = 5 (sparse grid H(5,2)). It is
clear to see that the sparse grid setting uses smaller number of collocation points com-
pared to the tensor product.

3.2 Deterministic solver

By using the SC approach in the random space, one arrives at a set of uncoupled deter-
ministic DDEs (DDEs for different points are independent, while each DDEs can still be
coupled if the original DDEs are coupled). In this section, we introduce the Legendre
spectral collocation method to solve the resulting deterministic DDEs. Such a numer-
ical method has been introduced for example in [1]. The following discussion is con-
cerned with pantograph-type DDEs. However, the corresponding numerical method for
constant-type DDEs can be done in the same way [25]. For other numerical methods on
DDEs, please refer to [3] and references therein.

Consider the following one dimensional deterministic DDE
{

u′(t)= a(t)u(t)+b(t)u(qt), t∈ I :=[0,T],
u(0)=u0.

(3.2)

Let {tk}
N
k=0 be the set of the (N+1) Gauss-Legendre, or Gauss-Radau, or Gauss-Lobatto

points in [−1,1] and denote by PN the space of real polynomials of degree not exceeding
N.

Integration of (3.2) from [0,ti] leads to

u(ti)=u0+
∫ ti

0
a(s)u(s)ds+

∫ ti

0
b(s)u(qs)ds. (3.3)

Let us employ the linear transformation

si
θ =

ti

2
θ+

ti

2
,
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and let {ωk}
N
k=0 be the corresponding weights. Suppose that the spectral approximation

U(t) has the form

u(t)≈U(t) :=
N

∑
j=0

u(tj)Fj(t), t∈ [−1,1],

where the Fj(t) are the Lagrange interpolation polynomials with respect to the set

{θk}
N
k=0, the spectral approximation to the transformed equation (3.3) yields,

u(ti)=u0+
ti

2

∫ 1

−1
a(si

θ)u(s
i
θ)dθ+

ti

2

∫ 1

−1
b(si

θ)u(qsi
θ)dθ. (3.4)

Then, the approximated solution is determined by the spectral equations

U(ti)=u0+
ti

2

N

∑
k=0

a(sik)U(sik)wk+
ti

2

N

∑
k=0

b(sik)U(qsik)wk, (3.5)

where

U(sik) :=
N

∑
j=0

u(tj)Fj(sik), sik := si
θk
=

ti

2
(θk+1).

Setting UN :=[U(t0),··· ,U(tN)]
T, b :=[u0,··· ,u0]T and

Aij :=
ti

2

N

∑
k=0

(a(sik)Fj(sik)+b1(sik)Fj(q1sik),

(i, j=0,1,··· ,N), we can write the spectral equations (3.5) in the form

(I−AN)UN =b, (3.6)

where AN :=[Aij]∈R(N+1)×(N+1).

Remark 3.1. The entire numerical methods is: for every selected simple ~ξk, we use the

above numerical method to get a approximate solution ũ(t,~ξk), then, the numerical solu-
tion will be given by

ũΘ(t,~ξ)=
Θ

∑
k=1

ũ(t,~ξk)Lk(~ξ). (3.7)
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3.3 Error separation

Note the total error ‖u−ũΘ‖ in the space L2(T)⊗L2(Γ) can be splitted into the following
two parts

ǫ=‖u−ũΘ‖≤‖u−uΘ‖+‖uΘ−ũΘ‖=ǫI+ǫI I . (3.8)

The first term is the interpolation error introduced by the SC methods in the random
space, and such error has been well investigated be many researchers [13,14], typically, if
the interpolated functions have bounded S-order mix derivatives, then the interpolation
error behaves like [13]

ǫI ≤C(w+1)2M2−S(w+1) max
0≤k1,···,kM≤S

‖∂k1
ξ1
···∂kM

ξM
u‖L2(Γ,L2(D)),

where w is the level in sparse grid methods. The second term is introduced by the deter-
ministic solver, and the error can be estimated via the following theorem [1]:

Theorem 3.1. Consider the spectral approximation method for DDEs in Section 3.2, If the gien
data are sufficiently smooth, then the error between the exact solution u and numerical solution
U behaves as

‖u−U‖L1(I)≤CN−m− 1
2 |b(•)u(q•+q−1)|H̄m

N (I)+CN
1
2−m|b|H̄m

N(I)‖u‖L2(I).

Here m indicates the regularity of the solution with respect to the time variable. One
can find more details for the definition for corresponding norm |·|H̄m

N (I) in [1]. By the
above results, we can expect the spectral convergence of the entire numerical approach.

4 Numerical examples

In this section, we provided with several numerical examples. In the computations, to
avoid the numerical error introduced by time discretizations, we will use 15 Legendre
points in the deterministic DDE solver. Gaussian abscissas sparse grid is used in the ap-
proximation in the random spaces. The following mean square error is used to evaluate
the numerical scheme

ǫ=
(

∫

Γ

∫

I

(

uexact−unum
)2

dtd~ξ
)1/2

.

Let us first consider the following problems

I :











u′(t)=u
(

t−
π

2

)

+g(α,t), 0≤ t≤
π

2
,

u(t)=sin(αt), −
π

2
≤ t≤0,

II :

{

u′(t)=cos(αt)u(qt)+g(t,β,α),

u(t=0)=0.

Problem I is a delay problem with constant delay, and we chose a special g such that the
exact solution for this problem is u= sin(αt), where α is a uniformly distributed random



414 T. Zhou / Adv. Appl. Math. Mech., 6 (2014), pp. 403-418

0 1 2 3 4 5 6 7 8 9
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of collocation points

N
um

er
ic

al
 e

rr
or

 

Numerical Error, w.r.t. grid points
exp(−level)

10
0

10
1

10
2

10
3

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of points

N
um

er
ic

al
 e

rr
or

s

Numerical Error, w.r.t. #points

0 2 4 6 8 10 12
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Level

N
um

er
ic

al
 e

rr
or

s

Numerical Error, w.r.t. grid level
exp(−level)

(a) (b) (c)

Figure 2: (a) Example I, mean square error v.r.t. number of collocation points. Example II, mean square error
v.r.t. number of collocation points (b) and mean square error v.r.t sparse grid level (c).

variable in [−1,1]. This is a one dimensional stochastic problem. Problem II is a delay
problem with Pantograph-type delay, let

g(t,β,α)=−
(

αsin(αt)exp−βt+αβcos(αt)exp−βt+cos(αqt)exp−βqt
)

,

then, it can be checked that the exact solution is u=cos(αt)exp−βt . Again, α,β are traded
as two independent random variables which are uniformly distributed in the domain
[−1,1]. Thus, we will use two dimensional sparse grid collocation methods to approxi-
mate the solution in the random spaces.

In Fig. 2(a), we plot the mean square error with respect to the collocation points for
Example I, where spectral convergence is obtained. In Figs. 2(b) and (c), convergence
properties for Example II are provided, the left plot is the mean square error with respect
to the collocation points and the right plot is the mean square error with respect to the
sparse grid level. It can be seen that the numerical methods convergent very fast.

Now, we consider the following delay systems

III :











x′1(t)=sin(αt)x1(qt)−cos(t)x2(qt)+g1(t),

x′2(t)=cos(βt)x1(qt)+sin(t)x′2(qt)+g2(t),

x1(−1)= a1, x2(−1)=b1,

IV :











x′1(t)= tx1(t)+βx1(t−1)+g1(t),

x′2(t)=γx2
1(t)+g2(t),

x1(t)=γexp−αt, −1≤ t≤0, x2(0)=1.

In problem III, α, β are two random variables. The functions g1(t,α,β), g2(t,α,β) and
the initial conditions are chosen such that the exact solutions are x1 = sin(αt), x2(t) =
cos(βt). We remark that the deterministic solver can be easily extended to deal with delay
systems [1]. In problem IV, α,β,γ are traded as three random variables. This problem is a
reduced version of the one used by Palanisamy et al. [17] for the optimal control of linear
time-varying delay systems via single term Walsh series. Again, the functions g1(t), g2(t)
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Figure 3: Example III, mean square error v.r.t. number of collocation points (a) and mean square error v.r.t
sparse grid level (b).
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Figure 4: Example IV, mean square error v.r.t. number of collocation points (a) and mean square error v.r.t
sparse grid level (b).

are chosen as

g1(t)=−
(

αγexp−αt+γtexp−αt+βγexp−α(t−1)
)

, g2(t)=−2βexp−2βt−γ3exp−2αt,

such that the exact solutions are x1(t)=γexp−αt, x2(t)=exp−2βt .

In Fig. 3, we provide with the numerical results for Example III, and again, the left
plot is the mean square error with respect to the collocation points and the right plot is
the mean square error with respect to the sparse grid level. We show the similar results
for Example IV in Fig. 4. We learn from these plots that the proposed numerical methods
works well for DDE systems. We also remark that for Example IV, where there are three
stochastic variables, it involves a large number of collocation points (see Fig. 4, Level=10
results in more or less 104 collocation points). One can lighten such an increase of num-
ber of points by adopting the so called anisotropic version of sparse grid [14]. We will
investigate these techniques in the future study for large DDE systems.
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5 Conclusions

In this work, we consider the numerical approach for delay differential equations with
random coefficients. We show that the exact solutions of the problems considered can
admit good regularity in the random space, provided that the given data satisfy some
reasonable assumptions. A stochastic collocation method is proposed to approximate the
solution in the the random space, and we use the Legendre spectral collocation method
to solve the resulting deterministic delay differential equations. Convergence properties
of the proposed method is analyzed. It is shown that the numerical method yields the
familiar exponential order of convergence both in the random space and the time space.
Numerical examples are given to illustrate these results.

We address the issue here and want to open up the possibility of designing efficient
numerical methods to more complicate DDE systems, which include

• DDEs with discontinuous solutions in the time space and/or in the random space.

• DDE systems of large number of delay differential equations and large amount of
random parameters.

• Investigate the stability properties of complicate non-linear delay problems with
uncertainty input, such us DDEs in description of biochemical reactions chan-
nels [18], and Lotka-Volterra models for population Dynamics [19] and so on.
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