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Abstract. In this note, the boundedness below of linear relation matrix MC =
(

A C
0 B

)
∈

LR(H⊕K) is considered, where A ∈ CLR(H), B ∈ CLR(K),C ∈ BLR(K,H), H,K are
separable Hilbert spaces. By suitable space decompositions, a necessary and sufficient
condition for diagonal relations A,B is given so that MC is bounded below for some
C ∈ BLR(K,H). Besides, the characterization of σap(MC) and σsu(MC) are obtained,
and the relationship between σap(M0) and σap(MC) is further presented.
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Key words: Linear relation matrix, boundedness below, approximate point spectrum, space de-
composition.

1 Introduction

The linear relation established by Neumann [1] was first introduced into functional anal-
ysis, whose motivation is to consider the adjoint of linear differential operators that are
not densely defined. It has extensive applications in nonlinear analysis, differential equa-
tions, and optimization and control problems. For instance, the port-Hamiltonian for-
mulation can be conveniently established by the linear relation language, in which the
kernel of certain row relations (dually, the range of column relations) and the structure of
the involved port-Hamiltonian pencils play significant roles [2]. The simplest naturally
occurring example of a linear relation is the inverse of a linear mapping A:X→Y, defined
by the set of solutions

A−1y :={x∈X : Ax=y}
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of the equation Ax = y. Arens [3] studied the resolvent set and the spectrum of linear
relations, and obtained the existence theorem of self-adjoint relations.

Suppose H and K are separable Hilbert spaces with infinite dimension. A linear rela-
tion A : H→K is a mapping from the subspace

D(A)={x∈H : Ax ̸=∅}⊂H,

called the domain of A, into the set of non-empty subsets of K, and for all non-zero scalars
c1,c2 and x1,x2∈D(A) such that

A(c1x1+c2x2)= c1Ax1+c2Ax2.

We introduce LR(H,K) to represent the class of linear relation from H into K and write
LR(H)=LR(H,H). The graph of A is defined by

G(A)={(x,y)∈H⊕K : x∈D(A),y∈Ax}.

Like operator case, A is called a closed linear relation provided that G(A) is closed. The
collection of all of closed linear relations is represented by CLR(H,K). The relation A−1

is determined by
G(A−1)={(y,x)∈K⊕H : (x,y)∈G(A)}.

The range of A is designed by ran(A) = A(D(A)), and the kernel by ker(A) = {x ∈ H :
(x,0)∈G(A)}; write α(A)=dimker(A) and β(A)=codimran(A). If ran(A)=K (ker(A)=
{0}), A is called surjective (injective). Note that for x∈D(A),

y∈Ax⇔Ax=y+A(0).

If A is a linear relation from H into K, then we use QA to represent the quotient mapping
QK

A(0)
∈L(K,K/A(0)), and hence QA A is obviously an operator. For x∈D(A),

QA Ax=QAy, for all y∈Ax.

For x∈D(A), we define
||Ax||= ||QA Ax||.

The norm of A is denoted by ||A||=||QA A||. This quantity is semi-norm, because ||A||=0
does not imply A= 0. If ||A||<+∞, then it is said that A is bounded. The set of all the
bounded linear relations defined everywhere is represented by BLR(H,K). The resolvent
set of a linear relation A∈LR(H) can be expressed as

ρ(A)={λ∈C : (A−λ)−1 is bounded and single valued},

and the spectrum is defined by σ(A)=C\ρ(A). Recall that A∈LR(H,K) is called bounded
below if there exists δ> 0 such that ||Ax|| ≥ δ||x|| for each x ∈D(A). The approximate
point spectrum σap(A) and the surjective spectrum σsu(A) are defined respectively by

σap(A)={λ∈C : A−λ is not bounded below},
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σsu(A)={λ∈C : A−λ is not surjective}.

The minimum modulus of a linear relation A is defined by

γ(A)= inf
x/∈ker(A)

{
||Ax||

d(x,ker(A))

}
,

where d(x,ker(B)) indicates the distance from x to ker(B). For the aforementioned basic
knowledge on linear relations, we refer readers to, e.g., [4].

Recently, 2×2 block operator matrices have attracted attention of many scholars (See,
e.g., [5-10]). In this work, we consider the linear relations instead of operators and extend
some of the existing results. Assuming A and B to be linear relations acting respectively
on H and K, we use

MC =

(
A C
0 B

)
with C ∈ LR(K,H) to represent the relation matrix from H⊕K to H⊕K, which can be
determined by

G(MC)=

{((
x
y

)
,
(

u
v

))
: u∈Ax+Cy,v∈By

}
.

A number of authors have studied properties of MC in the recent past, including the spec-
trum, essential spectrum, Browder spectrum, Weyl spectrum, etc. (see [11–20]). In this
paper, we consider the boundedness below for MC, where A,B,C are all linear relations.

2 Auxiliary results

In this section, some lemmas are presented. We will use these results to prove our main
results in the sequel.

Lemma 2.1 ([4]). If A∈CLR(H,K), then a necessary and sufficient condition for A to have a
non-zero closed range is γ(A)>0.

Lemma 2.2 ([4]). If A∈CLR(H,K), then ker(A) and A(0) are closed.

Lemma 2.3. Let A∈CLR(H,K). Then A is bounded below if and only if A is injective and has
a closed range.

Proof. Suppose A is bounded below. For x∈D(A), if 0∈ Ax then Ax= 0+A(0)= A(0)
and

0= ||Ax||≥δ||x||

for some δ > 0. It can be obtained that x = 0, that is, A is injective. Set {yn}⊂ ran(A),
yn→y0(n→∞). Then there exists a sequence {xn}⊂D(A) such that Axn=yn+A(0) and

δ||xn||≤ ||Axn||= ||QAyn||.
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This together with the convergence of {yn} and the continuity of QA implies that {xn} is
a Cauchy sequence, and hence xn → x0(n→∞) for some x0∈H. Note that A is closed, so
x0∈D(A) and y0∈Ax0. This proves ran(A) to be closed.

Conversely, suppose that A is injective and has closed range. By Lemma 2.1, γ(A)>0
and for x∈D(A),

||Ax||≥γ(A)||x||.

Thus A is boundedness below, which ends the proof.

Lemma 2.4. For A∈ LR(H,K) and B∈BLR(K,G), if BA is bounded below then A is bounded
below.

Proof. For x∈D(A), if ||x||≤δ−1
1 ||BAx||, then

||x||≤δ−1
1 ||BAx||≤δ−1

1 ||B||||Ax||=δ−1||Ax||

with δ=δ1||B||−1, giving the conclusion.

Lemma 2.5. Let A∈CLR(H,K). Then A can be expressed as the following block linear relation
matrix

A=

(
A1 A2
0 A3

)
: ker(A)⊕(D(A)∩ker(A)⊥)→A(0)⊕A(0)⊥.

where A1 and A2 are surjective relations such that A1x1 = A2x2 = A(0) for x1 ∈ ker(A) and
x2∈D(A)∩ker(A)⊥; A3 is injective and single valued.

Proof. The block representation of A holds obviously by using Lemma 2.2. We now prove
the properties of Ai (1=1,2,3). Apparently, the result holds for x1 = x2 =0. If x1 ̸=0,x1 ∈
ker(A), then

A1x1=0+A1(0)=A1(0)=A(0)

since 0∈A1x1 and 0∈A1(0). For x2 ̸=0,x2∈ker(A)⊥, suppose

Ax2=y+A(0), (2.1)

where y∈ ran(A). Denote by P1 and P2 the orthogonal projection from K onto A(0) and
A(0)⊥, respectively. Then

A2x2=P1Ax2=A(0), A3x2=P2Ax2=P2y. (2.2)

Note that the single valued property of A3 is immediate from (2.2), and then it remains
to show that A3 is injective. Indeed, if A3x2 = 0, then P2y= 0 (for convenience, still use
(2.1) and (2.2)), which is equivalent to y∈ A(0). This in combination with (2.1) implies
Ax2=A(0), namely x2∈ker(A), whence x2=0. Thus A3 is shown to be injective.



Huo R, Du Y and Huang J / J. Math. Study, 57 (2024), pp. 71-83 75

In [11] and [19], it is shown that the usual matrix multiplication formula need not
hold for relation matrices and some special cases are also mentioned. Here we have a
simple observation.

Lemma 2.6. Let A,A′ and B,B′ be, respectively, linear relations in H and K, and C be a linear
relation form K into H. Then

(i)
(

A C
0 B

)(
A′ 0
0 B′

)
=

(
AA′ CB′

0 BB′

)
, when B′ is single valued;

(ii)
(

A′ 0
0 B′

)(
A C
0 B

)
=

(
A′A A′C

0 B′B

)
.

Lemma 2.7. Let A ∈ CLR(H), B ∈ CLR(K) and C ∈ CLR(K,H) with D(B) ⊂ D(C) and
D(A∗)⊂D(C∗). Then the adjoint of MC =

(
A C
0 B

)
is of the form

M∗
C =

(
A∗ 0
C∗ B∗

)
:D(A∗)⊕D(B∗)→H⊕K.

Proof. Let
(
(u2

v2 ),
(x2

y2

))
∈ G(

(
A∗ 0
C∗ B∗

)
). Obviously, u2 ∈D(A∗), v2 ∈D(B∗), x2 ∈ A∗u2 and

y2 ∈ C∗u2+B∗v2. For y2 ∈ C∗u2+B∗v2, there exist y2,1 ∈ C∗u2 and y2,2 ∈ B∗v2 such that
y2=y2,1+y2,2. Then, for all (x1,u1,1)∈G(A), (y1,u1,2)∈G(C) and (y1,v1)∈G(B), we have

⟨u1,1,u2⟩= ⟨x1,x2⟩, ⟨u1,2,u2⟩= ⟨y1,y2,1⟩, ⟨v1,v2⟩= ⟨y1,y2,2⟩.

Taking u1=u1,1+u1,2 yields〈(
u1
v1

)
,
(

u2
v2

)〉
=

〈(
x1
y1

)
,
(

x2
y2

)〉
.

Note that the collection of all such (
(x1

y1

)
,(u1

v1 )) is exactly G(MC). It follows that ((u2
v2 ),

(x2
y2

)
)∈

G(M∗
C). This means

(
A∗ 0
C∗ B∗

)
⊂M∗

C. On the other hand, assume
(
(u2

v2 ),
(x2

y2

))
∈G(M∗

C), i.e.,〈(
u1
v1

)
,
(

u2
v2

)〉
=

〈(
x1
y1

)
,
(

x2
y2

)〉
.

for all
((x1

y1

)
,(u1

v1 )
)
∈G(MC). Since (u1

v1 )∈ MC
(x1

y1

)
, it follows that v1 ∈ By1 and there exist

u1,1∈Ax1 and u1,2∈Cy1 such that u1=u1,1+u1,2. Thus

⟨u1,1,u2⟩+⟨u1,2,u2⟩+⟨v1,v2⟩= ⟨x1,x2⟩+⟨y1,y2⟩

for all x1 ∈D(A), y1 ∈D(B), u1,1 ∈ Ax1, u1,2 ∈Cy1 and v1 ∈ By1. In particular, if y1 = 0,
u1,2=0 and v1=0, then

⟨u1,1,u2⟩= ⟨x1,x2⟩,
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which shows u2∈D(A∗)⊂D(C∗) and x2∈A∗u2; if x1=0 and u1,1=0, then

⟨v1,v2⟩= ⟨y1,y2⟩−⟨u1,2,u2⟩
= ⟨y1,y2⟩−⟨y1,y2,1⟩= ⟨y1,(y2−y2,1)⟩

for y2,1∈C∗u2, which implies v2∈D(B∗) and y2−y2,1∈B∗v2. In conclusion, (u2
v2 )∈D(A∗)⊕

D(B∗) and (
x2
y2

)
∈
(

A∗ 0
C∗ B∗

)(
u2
v2

)
,

and hence M∗
C ⊂

(
A∗ 0
C∗ B∗

)
. This completes the proof.

Remark 2.1. Proposition 2.2 in [14] also studied the adjoint of MC with everywhere de-
fined entries and it is only proved that M∗

C ⊂
(

A∗ 0
C∗ B∗

)
.

3 Main results

This section will give the main results of this paper and their proofs. We start with the
boundedness below of diagonal relation matrices whose proof is obvious.

Theorem 3.1. Let A∈ LR(H) and B∈ LR(K). then M0=

(
A 0
0 B

)
is bounded below if and

only if A and B are both bounded below.

We now discuss the boundedness below of upper relation matrices by means of the
space decomposition technique and the minimum modulus.

Theorem 3.2. Let A ∈ CLR(H) and B ∈ CLR(K), then MC is bounded below for some C ∈
BLR(K,H) if and only if A is bounded below and

(i) α(B)≤β(A), if B has closed range;
(ii) β(A)=∞, if ran(B) is not closed.

Proof. (i) Suppose A is bounded below, B has closed range and α(B)≤ β(A). Combining
with the closedness of ker(A),ker(B),A(0),B(0), we can pick J, an arbitrary isometry
from ker(B) to ran(A)⊥, and let C be a linear relation from ker(B)⊥⊕ker(B) to A(0)⊕
(ran(A)⊖A(0))⊕ran(A)⊥ defined by

C=

 0 0
0 0
0 J

.
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Applying the decomposition similar to Lemma 2.5 yields

MC =


A1 A2 0 0
A3 0 0 0
0 0 0 J
0 0 B1 B2
0 0 B3 0

 :


D(A)∩ker(A)⊥

ker(A)
D(B)∩ker(B)⊥

ker(B)

→


A(0)

ran(A)⊖A(0)
ran(A)⊥

B(0)
B(0)⊥

, (3.1)

where

A1(x1)=A2(x2)=A(0) for x1∈ker(A) and x2∈D(A)∩ker(A)⊥, (4a)

B1(y1)=B2(y2)=B(0) for y1∈ker(B) and y2∈D(B)∩ker(B)⊥; (4b)

A3 is an invertible operator, and B3 as an operator from D(B)∩ker(B)⊥ to ran(B)⊖B(0) is
bijective. From (3.1), it can be easily seen that MC is closed. Let (x1,x2,y1,y2)T∈ker(MC)⊂
ker(A)⊥⊕ker(A)⊕ker(B)⊥⊕ker(B), then

0∈A1x1+A2x2,
0=A3x1,
0= Jy2,
0∈B1x1+B2x2,
0=B3y1.

Thus

x2∈ker(A), x1=0, y1=0, y2=0,

which leads to

ker(MC)⊂{0}⊕ker(A)⊕{0}⊕{0}. (3.5)

From Lemma 2.3, it follows that A is injective, whence ker(A)={0}. This together with
(3.5) implies that MC is injective. We now show that ran(MC) is closed. Indeed, let
(un,1,un,2,un,3,vn,1,vn,2)

T ∈ran(MC) such that (un,1,un,2,un,3,vn,1,vn,2)
T→(u1,u2,u3,v1,v2)

T

as n→∞. Then 
u1∈A(0),
u2∈R(A)⊖A(0),
u3∈R(A)⊥,
v1∈B(0),
v2∈R(B)⊖B(0).

Noticing that these sets are closed, we have:

• u1∈A2x2=A(0) for any x2∈ker(A) from (4a);
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• There exists x1∈D(A)∩ker(A)⊥ such that u2=A3x1, since A3 is invertible;
• There exists y2∈ker(B) such that u3= Jy2, since there exists yn,2∈ker(B) satisfying

Jyn,2 =un,3 →u3, which together with the isometry of J leads to yn,2 → y2 for some
y2∈ker(B) and hence u3= Jy2;

• v1∈B2y2=B(0) for any y2∈ker(B) from (4b);
• There exists y1 ∈D(B)∩ker(B)⊥ such that v2 =B3y1, since the operator B3 :D(B)∩

ker(B)⊥→ ran(B)⊖B(0) is bijective.

Obviously, 
u1
u2
u3
v1
v2

∈MC


x1
x2
y1
y2

,

which proves R(MC) to be closed. Therefore MC is bounded below by Lemma 2.3.
Conversely, suppose MC is boundedness below for some C∈BLR(K,H). Note that

MC =

(
A C
0 B

)
=

(
I 0
0 B

)(
I C
0 I

)(
A 0
0 I

)
by Lemma 2.6. From Lemma 2.4, it follows that A is bounded below. Write MC as

MC =UV,

where

U=

(
I 0
0 B

)
, V=

(
A C
0 I

)
,

By Theorem 4.1 in [22], we can get

α(MC)+β(A)+β(B)+dim(V(0))+dim(U(0))−dim(MC(0))
=β(MC)+α(A)+α(B). (3.6)

Applying α(MC)=α(A)=0 and

dim(MC(0))=dim((A(0)+C(0))⊕B(0))
=dim(A(0)+C(0))+dim(B(0))
=dim(V(0))+dim(U(0))

to (3.6), we get

β(MC)+α(B)=β(A)+β(B).
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In view of β(MC)≥ β(B), then β(A)≥ α(B). In conclusion, the proof of assertion (i) is
finished.

(ii) Assume that A is bounded below, ran(B) is not closed and β(A) = ∞. Define
C =

(0
J
)

: K → ran(A)⊕ran(A)⊥, where J is an isometry from K to ran(A)⊥. The linear
relation matrix MC can be expressed as

MC =

 A1 0
0 J
0 B


defined from H⊕K to ran(A)⊕ran(A)⊥⊕K. If (x,y)T ∈ker(MC), then

0∈A1x,
0= Jy,
0∈By.

Obviously, x∈ker(A) and y=0, which implies

ker(MC)⊂ker(A)⊕{0}={0},

whence MC is injective. Next, we will show that ran(MC) is closed. Assuming (x,y)T ∈
D(A)⊕D(B), we have

||MC (
x
y)||2= ||Ax||2+||Jy||2+||By||2

≥||Ax||2+||Jy||2

≥γ2(A)||x||2+||y||2

≥min(γ2(A),1)(||x||2+||y||2).

Thus
γ(MC)= inf{||MC (

x
y)|| : (x

y)∈D(A)⊕D(B),||x||2+||y||2=1}>0.

From Lemma 2.1, it follows that MC has closed range. Note that MC is closed, so MC is
bounded below by Lemma 2.3.

Conversely, suppose MC is boundedness below for some C∈BLR(K,H). As above, A
is bounded below. We now suppose β(A)<∞. Since R(B) is not closed,

γ(B)= inf
{

||By||
d(y,ker(B))

: y∈D(B)\ker(B)
}
=0.

For any y∈D(B)\ker(B),

||By||
d(y,ker(B))

=
||By1||

inf
v∈ker(B)

{||y1+y2−v||} =
||By1||

inf
v∈ker(B)

{||y1−v||}
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=
||By1||

inf
v∈ker(B)

√
||y1||2+||v||2

=
||By1||
||y1||

,

where y=y1+y2 with y1∈D(B)∩ker(B)⊥ and y2∈ker(B). Then

inf{||By|| : y∈D(B)∩ker(B)⊥,||y||=1}=γ(B)=0,

which ensure that there exists a sequence {yn}⊂D(B)∩ker(B)⊥ of orthogonal unit vec-
tors such that Byn →0 as n→∞. This makes us claim that for some ε0>0,

d(ran(A),Cynk)≥ ε0 for all k∈N, (3.7)

where {ynk} is some subsequence of {yn}. Assume not and, without loss of general-
ity, let d(ran(A),Cyn)→ 0. Therefore, there exists a sequence {xn} ⊂ D(A) such that
d(Axn,Cyn)→0. Since MC is injective, (xn,yn)

T /∈ker(MC) and

d(
(xn

yn

)
,ker(MC))=

√
||xn||2+||yn||2≥||yn||=1,

which indicates

||MC
(xn

yn

)
||

d(
(xn

yn

)
,ker(MC))

≤||MC
(xn

yn

)
||=

√
||Axn−Cyn||2+||Byn||2→0.

This contradicts

γ(MC)= inf
{

||MC (
u
v)||

d((u
v),ker(MC))

: (u
v)∈D(MC)\ker(MC)

}
>0

since MC has closed range by Lemma 2.3. Thus (3.7) holds true as expected. In what
follows, suppose {e1,. . .,eβ(A)} is a basis of ran(A)⊥, and write Pk for the orthogonal pro-
jection from H to span{ei} (i=1,.. .,β(A)). For k∈N, let uk∈Cynk and uk=uk,1+uk,2 with
uk,1∈ ran(A)⊥ and uk,2∈ ran(A). Since ||uk,1||≥ ε0 (n∈N) by (3.7), it can be seen that

∞

∑
k=1

∥∥∥∥1
k

uk,1

∥∥∥∥=∞,∥∥∥∥∥ ∞

∑
k=1

Pi0

(
1
k

uk,1eiθk

)∥∥∥∥∥=∞

for a certain i0∈{1,.. .,β(A)} and 0≤ θk <2π (k∈N). Let

y=
∞

∑
k=1

1
n

ynk eiθk ,
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and then ||y||2=∑∞
k=1

1
k2 <∞. However

||Cy||≥ ||Pi0(Cy)||=
∥∥∥∥∥ ∞

∑
k=1

Pi0 C
(

1
k

ynk eiθk

)∥∥∥∥∥=∞,

which is a contradiction. So β(A)=∞. This ends the proof.

Remark 3.1. Note that the operator matrix version of Theorem 3.2 can be found in [6], in
which A, B, C and MC are all operators of the corresponding Hilbert spaces.

Example 3.1. Let H=K= l2, and the linear relations A,B are defined as

Ax=(0,0,0,x1,0,0,0,x2,0,0,0,.. .)+A(0), x=(x1,x2,. . .)∈ l2,

A(0)={(y1,0,0,0,y2,0,0,0,y3,0,0,0,.. .) : (y1,y2,. . .)∈ l2},

Bx=(0,x1,x2,. . .), x=(x1,x2,. . .)∈ l2.

It is obvious that A is bounded below with β(A)=∞, and B is a bounded operator with
closed range and α(B)=0. From Theorem 3.2, there exists C∈BLR(K,H) such that MC is
bounded below. On the other hand, defining the relation C by

Cx=(0,0,x1,0,0,0,x2,0,0,0,.. .)+C(0), x=(x1,x2,. . .)∈ l2,

C(0)=(0,z1,0,0,0,z2,0,0,0,z3,0,0,0,.. .), (z1,z2,. . .)∈ l2,

we then claim that C is such a candidate relation. In fact, if (x
y)∈ker(MC), then{

0∈Ax+Cy;
0∈By,

which implies x∈ker(A) and y=0 since B is injective. Thus

ker(MC)⊂ker(A)⊕{0}={0},

which in combination with ran(MC)=H⊕ran(B) leads to boundedness below of MC.

The above example illustrates the correctness of Theorem 3.2. Based on Lemma 2.7,
the dual result of Theorem 3.2 can be presented as follows.

Theorem 3.3. Suppose A∈CLR(H), B∈CLR(K), then for some C∈BLR(K,H), MC is sur-
jective if and only if B is surjective and

(i) β(A)≤α(B), if the range of A is closed;
(ii) β(B)=∞, if the range of A is not closed.

From Theorems 3.2 and 3.3, we can directly get the perturbation results for the ap-
proximate point spectrum and surjective spectrum.



82 Huo R, Du Y and Huang J / J. Math. Study, 57 (2024), pp. 71-83

Corollary 3.1. Suppose A∈CLR(H), B∈CLR(K), then⋂
C∈CR(K,H)

σap(MC)=σap(A)∪{λ∈C : R(B−λ) is not closed and β(A−λ)<∞}

∪{λ∈C : R(B−λ) is closed and β(A−λ)<α(B−λ)}.

Corollary 3.2. Suppose A∈CLR(H), B∈CLR(K), then⋂
C∈CR(K,H)

σsu(MC)=σsu(B)∪{λ∈C : R(A−λ) is not closed and α(B−λ)<∞}

∪{λ∈C : R(A−λ) is closed and α(B−λ)<β(A−λ)}.

Applying Theorem 3.2, we can discuss the relationship between σap(M0) and σap(MC).

Theorem 3.4. Suppose A∈CLR(H), B∈CLR(K), then

σap(A)∪σap(B)=σap(MC)∪(σsu(A)∩σap(B))

holds for every C∈BLR(K,H).

Proof. Obviously,

σap(A)∪σap(B)⊃σap(MC)∪(σsu(A)∩σap(B)).

It is sufficient to prove

σap(A)∪σap(B)⊂σap(MC)∪(σsu(A)∩σap(B)). (3.8)

Assume λ∈(σap(A)∪σap(B))\σap(MC). Then MC−λ is boundedness below and, by The-
orem 3.2, at least any of the following two conclusions hold:

• β(A−λ)=∞, if the range of B−λ is not closed;
• β(A−λ)≥α(B−λ), if the range of B−λ is closed.

In view of λ ∈ σap(B), we know that α(B−λ) > 0 if the range of B−λ is closed, and
hence A−λ is not surjective no matter which of the above conditions holds. Thus λ ∈
σsu(A)∩σap(B). This shows that

(σap(A)∪σap(B))\σap(MC)⊂σsu(A)∩σap(B),

whence (3.8) is valid. The proof ends here.
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